Bernoulli numbers, Bernoulli polynomials...

We know that Bernoulli numbers appear everywhere in mathematics. I will consider here two topics: basic formulae for integrals leading to Euler-Maclaurin type formulae and Fourier transformations formulae for calculations of ζ function at even points. In both cases naturally appear the same series of polynomials...

Shortly: Bernoulli Polynomials are polynomials $\left\{B_{n}\right\}$ of the degree n which are convenient for integration by part as well as polynomials $\left\{x^{n}\right\}$. They also are orthogonal to constant function. Bernoulli numbers are values of Bernoulli polynomials in boundary points.

§1 Integral and area of trapezium

Everybody who heard about integral knows that $\int_{a}^{b} f(t) d t$ equals approximately to the area of trapezoid with altitude $(b-a)$ and parallel sides equal to the values of the function f at the points a, b :

$$
\begin{equation*}
\int_{a}^{b} f(t) d t \approx(b-a) \cdot \frac{f(a)+f(b)}{2} \tag{1}
\end{equation*}
$$

Very simple question: How this formula follows from the formula of integration by parts $\left(\int f(x) d x=\right.$ $x f(x)-\ldots$)? (I was surprised realising that I never asked myself this simple question before.)

Answer: Instead $\int f(x) d x=x f(x)-\int x f^{\prime}(x) d x$ take $\int f(x) d x=(x+c) f(x)-\int(x+c) f^{\prime}(x) d x$ putting $x+c$ instead x, where c is an arbitrary constant. Thus we come to

$$
\begin{equation*}
\int_{a}^{b} f(t) d t=\left.(x+c) f(x)\right|_{a} ^{b}-\int_{a}^{b}(t+c) f^{\prime}(t) d t \tag{2}
\end{equation*}
$$

Now if we choose $c=-\frac{a+b}{2}$ we come to (1).

$$
\begin{equation*}
\int_{a}^{b} f(t) d t=\left.\left(x-\frac{a+b}{2}\right) f(x)\right|_{a} ^{b}-\int_{a}^{b}\left(x-\frac{a+b}{2}\right) f^{\prime}(t) d t=\frac{b-a}{2}(f(a)+f(b))+\ldots \tag{2a}
\end{equation*}
$$

One can go further performing integration by part. Keeping in mind formula (2a) instead an expansion

$$
\begin{equation*}
\int f(x) d x=x f(x)-\frac{x^{2}}{2} f^{\prime}(x)+\frac{x^{3}}{3!} f^{\prime \prime}(x)-\frac{x^{4}}{4!} f^{\prime \prime \prime}(x)+\ldots \tag{3}
\end{equation*}
$$

we consider an expansion

$$
\begin{equation*}
\int f(x) d x=B_{1}(x) f(x)-\frac{B_{2}(x)}{2} f^{\prime}(x)+\frac{B_{3}(x)}{3!} f^{\prime \prime}(x)-\frac{B_{4}(x)}{4!} f^{\prime \prime \prime}(x)+\ldots \tag{3a}
\end{equation*}
$$

where polynomials $\left\{B_{1}(x), B_{2}(x), B_{3}(x), \ldots\right\}$ are defined by the relations $\frac{d B_{k+1}(x)}{d x}=k B_{k}(x)$:

$$
\begin{gather*}
B_{1}(x)=x+c_{1}, B_{2}(x)=2\left(\frac{x^{2}}{2}+c_{1} x+c_{2}\right), B_{3}(x)=6\left(\frac{x^{3}}{6}+c_{1} \frac{x^{2}}{2}+c_{2} x+c_{3}\right), \\
B_{4}(x)=24\left(\frac{x^{4}}{24}+c_{1} \frac{x^{3}}{6}+c_{2} \frac{x^{2}}{2}+c_{3} x+c_{4}\right), \text { and so on } \tag{3b}
\end{gather*}
$$

where $c_{1}, c_{2}, c_{3}, \ldots$ are an arbitrary constants. We have for an interval (a, b) that

$$
\begin{gather*}
\int_{a}^{b} f(t) d t=\left.\sum_{n=1}^{N}(-1)^{n-1} \frac{B_{n}(x)}{n!} f^{(n-1)}(x)\right|_{a} ^{b}+\frac{(-1)^{N}}{N!} \int_{a}^{b} B_{N}(t) f^{(N)}(t) d t= \\
B_{1}(b) f(b)-B_{1}(a) f(a)-\frac{B_{2}(b) f^{\prime}(b)-B_{2}(a) f^{\prime}(a)}{2}+\frac{B_{3}(b) f^{\prime \prime}(b)-B_{3}(a) f^{\prime \prime}(a)}{6}+\ldots \tag{4}
\end{gather*}
$$

Now encouraged by the trapezoid formula choose $c_{1}=-\frac{a+b}{2}$. Then

$$
\begin{equation*}
B_{2}(a)=B_{2}(b) . \tag{5}
\end{equation*}
$$

since $B_{1}(a)=B_{1}(b)$ if $c_{1}=-\frac{a+b}{2}$. We want to keep the relation (5) for all $B_{k}(x)$ for $k \geq 2$:

$$
\begin{equation*}
B_{k}(a)=B_{k}(b) \quad \text { for all } k \geq 2 \tag{5a}
\end{equation*}
$$

In this case the formula (4) becomes:

$$
\begin{equation*}
\int_{a}^{b} f(t) d t=(b-a) \cdot \frac{f(a)+f(b)}{2}+\sum_{n \geq 2} \frac{(-1)^{n-1}}{n!} B_{n}(a)\left(f^{(n-1)}(b)-f^{(n-1)}(a)\right) \tag{6}
\end{equation*}
$$

§2 Bernoulli polynomials and numbers

The condition (5a) fixes uniquely all constants $c_{2}, c_{3}, \ldots, c_{4}, \ldots$ in (3). We come to recurrent formula for polynomials $B_{n}(x)$:

$$
B_{0}(x) \equiv 1, \quad\left\{\begin{array}{l}
B_{k}(x): \quad \frac{d B_{k}(x)}{d x}=k B_{k-1}(x) \tag{2.1}\\
\int_{a}^{b} B_{k}(x) d x=0, \text { i.e. } B_{k+1}(a)=B_{k+1}(b)
\end{array} \quad(k=1,2,3, \ldots)\right.
$$

One can say roughly that polynomials $B_{n}(x)=x^{n}+\ldots$ are "deformations" of polynomials x^{n} suitable for integration by part.

These polynomials are:

$$
\begin{gather*}
B_{0}(x)=1 \\
B_{1}(x)=x-\frac{a+b}{2} \\
B_{2}(x)=(x-a)(x-b)+\frac{1}{6}(b-a)^{2} \tag{2.1a}\\
B_{3}(x)=(x-a)^{3}-\frac{3}{2}(x-a)^{2}(b-a)+\frac{1}{2}(x-a)(b-a)^{2} \\
B_{4}(x)=(x-a)^{4}-2(x-a)^{3}(b-a)+(x-a)^{2}(b-a)^{2}-\frac{1}{30}(b-a)^{4}
\end{gather*}
$$

Consider normalised polynomials choosing $a=0, b=1$:

$$
\begin{gather*}
B_{0}(x)=1, B_{n}^{\prime}(x)=n B_{n-1}, \int_{0}^{1} B_{n}(x) d x=0 \text {, i.e. } B_{n+1}(0)=B_{n+1}(0), n=1,2, \ldots \text { : } \\
B_{0}(x)=1 \\
B_{1}(x)=x-\frac{1}{2} \\
B_{2}(x)=x^{2}-x+\frac{1}{6} \\
B_{3}(x)=x^{3}-\frac{3}{2} x^{2}+\frac{1}{2} x \\
B_{4}(x)=x^{4}-2 x^{3}+x^{2}-\frac{1}{30} \tag{2.2}\\
B_{5}(x)=x^{5}-\frac{5}{2} x^{4}+\frac{5}{3} x^{3}-\frac{x}{6} \\
B_{6}(x)=x^{6}-3 x^{5}+\frac{5}{2} x^{4}-\frac{1}{3} x^{2}+\frac{1}{42} \\
B_{7}(x)=x^{7}-\frac{7}{2} x^{6}+\frac{7}{2} x^{5}-\frac{7}{6} x^{3}+\frac{1}{6} x
\end{gather*}
$$

Exercise 1 Show that relation between normalised polynomials $B_{n}^{[0,1]}$ in (7) and polynomials $B_{n}^{[a, b]}$ is

$$
\begin{equation*}
B_{n}^{[a, b]}(x)=(a-b)^{n} B_{n}^{[0,1]}\left(\frac{x-a}{b-a}\right) \tag{2.3}
\end{equation*}
$$

This formula controls the behaviour of Bernoulli polynomials under changing of a, b.
We define Bernoulli number b_{n} as a value of polynomial (2.2) at the points 0 or 1 (or polynomial (2.1a) divided by a coefficient $\left.(b-a)^{n}\right)$

$$
b_{n}=B_{n}(0)=B_{n}(1)
$$

We have

$$
b_{0}=1, b_{1}=-\frac{1}{2}, b_{2}=\frac{1}{6}, b_{3}=0, b_{4}=-\frac{1}{30}, b_{5}=0, b_{6}=\frac{1}{42}, b_{7}=0, \ldots
$$

Interesting observation:
Proposition 1 Bernoulli numbers b_{n} are equal to zero if n is an odd number bigger than 1 .
This proposition follows from the following very beautiful property of Bernoulli polynomials:
Proposition 2 Let $\left\{B_{n}(x)\right\}$ be a set of Bernoulli polynomials corresponding to the interval (a, b) (see eq. (7)). Let P be a reflection with respect to the middle point $\frac{a+b}{2}$ of the interval (a, b) :

$$
\begin{equation*}
P: x \mapsto a+b-x \tag{2.4}
\end{equation*}
$$

Then all Bernoulli polynomials (except B_{1}) are eigenvectors of this transformation:

$$
\begin{equation*}
B_{n}(P x)=B_{n}(x) \text { for all even } n, n=0,2,4, \ldots \tag{2.5a}
\end{equation*}
$$

and

$$
\begin{equation*}
B_{n}(P x)=-B_{n}(x) \text { for all odd } n \geq 3, n=3,5,7, \ldots \tag{2.5b}
\end{equation*}
$$

Indeed it follows from (2.5b) that $b_{n}=B_{n}(a)=-B_{n}(b)=-b_{n}$ for odd $n \geq 3$. Thus $b_{n}=0$ for $n=3,5,7, \ldots$.

The statement of this Proposition 2 is irrelevant to the choice of a, b. To prove the Proposition it is suffice to consider the special case $a=-b$. In this case the transformation P in (2.4) is just $x \mapsto-x$. Thus in this case the statement of Proposition is that Bernoulli polynomials $B_{n}(x)$ are even polynomials $\left(B_{n}(x)=B_{n}(-x)\right)$ if n is even, and they are odd polynomials if n is an odd number greater than 1 $\left(B_{n}(x)=-B_{n}(-x)\right)$.

Prove it by induction. Suppose that for $n \leq 2 N$ this is true. Then consider polynomial $B_{2 N}(x)$. We have that $\int_{-a}^{a} B_{2 N}(x) d x=0$, hence $\int_{0}^{a} B_{2 N}(x) d x=0$ since by induction hypothesis this is an even polynomial. Hence

$$
B_{2 N+1}(x)=(2 N+1) \int_{0}^{x} B_{2 N}(t) d t
$$

Indeed this polynomial obeys the differential equation $B_{2 N+1}^{\prime}(x)=(2 N+1) B_{2 N}(x)$ This polynomial is also an odd polynomial. Hence it obeys the boundary condition $\int_{-a}^{a} B_{2 N+1}(x) d x=0$. It remains to prove that $B_{2 N+2}$ is an even polynomial. We have that $B_{2 N+2}(x)=\int_{0}^{x} B_{2 N+1}(t) d t+c_{2 N+2}$, where $c_{2 N+2}$ is a constant chosen by the boundary condition $\int_{a}^{a} B_{2 N+2}(x) d x=0$. We see that $B_{2 N+2}$ is even since $B_{2 N+1}$ is an odd polynomial and constant is an even polynomial.
§3 Integral and area of trapezium (revisited) —Euler-Maclaurin formula
Now equipped by the knowledge of formulae return to the last formula from the first paragraph:

$$
\begin{gather*}
\int_{a}^{b} f(t) d t=(b-a) \cdot \frac{f(a)+f(b)}{2}+\sum_{n \geq 2} \frac{(-1)^{n-1}}{n!} B_{n}(a)\left(f^{(n-1)}(b)-f^{(n-1)}(a)\right)= \tag{3.1}\\
(b-a) \cdot \frac{f(a)+f(b)}{2}+\sum_{n \geq 2} \frac{(-1)^{n-1}}{n!} b_{n}(b-a)^{n}\left(f^{(n-1)}(b)-f^{(n-1)}(a)\right)= \tag{3.1a}\\
(b-a) \cdot \frac{f(a)+f(b)}{2}+\sum_{k \geq 1} \frac{(-1)^{2 k-1}}{(2 k)!} b_{2 k}(b-a)^{2 k}\left(f^{(2 k-1)}(b)-f^{(2 k-1)}(a)\right)= \tag{3.1a}\\
(b-a) \cdot \frac{f(a)+f(b)}{2}+\frac{1}{6}(b-a)^{2}\left(f^{\prime}(b)-f^{\prime}(a)\right)-\frac{1}{30}(b-a)^{4}\left(f^{\prime \prime \prime}(b)-f^{\prime \prime \prime}(a)\right)+\ldots
\end{gather*}
$$

We are ready to write down asymptotic formula for series: Dividing the interval $[0,1]$ on $N+1$ parts consider the formula above for any interval $\left[\frac{k}{N}, \frac{k+1}{N}\right]$, then making summation we come to:

$$
\begin{gathered}
\int_{0}^{1} f(x) d x=\frac{1}{2 N} f(0)+\left(f\left(\frac{1}{N}\right)+f\left(\frac{2}{N}\right)+\ldots+f\left(\frac{N-1}{N}\right)\right)+\frac{1}{2 N} f(0)+ \\
+\sum_{k \geq 1} \frac{(-1)^{2 k-1}}{(2 k)!} \frac{b_{2 k}}{N^{2 k}}\left(f^{(2 k-1)}(1)-f^{(2 k-1)}(0)\right)
\end{gathered}
$$

it is well-known Euler-Macklourin asymptotic formula.
Remark Our notation for bernoulli numbers is not standard. Bernoulli numbers are $B_{n}=b_{2 n}$.
Exercise Use this formula for the functions $f=x^{r}$ to express sums $\sum_{i=1}^{N} i^{r}$ via Bernoulli numbers.

$\S 4$ Fourier image of Bernoulli polynomials and ζ-function

Bernoulli polynomials are deformations of x^{n} which are convenient for integration by part. Function e^{x} is eigenvalue of derivation operator. This means that Bernoulli polynomials have "good" Fourier transform. Do calculations. Consider Fourier polynomials for the interval $[0,1]$ (see 2.2) and an orthonormal basis $c_{k}\left\{e^{2 \pi i k x}\right\}$ where Indeed

$$
\left\langle B_{n}(x), e^{2 \pi i k}\right\rangle=\int_{0}^{1} B_{n}(x), e^{2 \pi i k x} \sim \frac{1}{k^{n}}
$$

Hence

$$
\left\langle B_{n}(x), e^{2 \pi i k}\right\rangle \sim \sum \frac{1}{k^{2 n}}=\zeta(2 n)
$$

Notice that square of the norms of Bernoulli polynomials can be expressed via Bernoulli numbers due to their properties...

