
Bernoulli numbers, Bernoulli polynomials...

We know that Bernoulli numbers appear everywhere in mathematics. I will consider here two topics:
basic formulae for integrals leading to Euler-Maclaurin type formulae and Fourier transformations formulae
for calculations of ζ function at even points. In both cases naturally appear the same series of polynomials...

Shortly: Bernoulli Polynomials are polynomials {Bn} of the degree n which are convenient for integration
by part as well as polynomials {xn}. They also are orthogonal to constant function. Bernoulli numbers are
values of Bernoulli polynomials in boundary points.

§1 Integral and area of trapezium

Everybody who heard about integral knows that
∫ b

a
f(t)dt equals approximately to the area of trapezoid

with altitude (b− a) and parallel sides equal to the values of the function f at the points a, b:

∫ b

a

f(t)dt ≈ (b− a) · f(a) + f(b)
2

(1)

Very simple question: How this formula follows from the formula of integration by parts (
∫

f(x)dx =
xf(x)− . . .)? (I was surprised realising that I never asked myself this simple question before.)

Answer: Instead
∫

f(x)dx = xf(x)− ∫
xf ′(x)dx take

∫
f(x)dx = (x+ c)f(x)− ∫

(x+ c)f ′(x)dx putting
x + c instead x, where c is an arbitrary constant. Thus we come to

∫ b

a

f(t)dt = (x + c)f(x)
∣∣b
a
−

∫ b

a

(t + c)f ′(t)dt (2)

Now if we choose c = −a+b
2 we come to (1).

∫ b

a

f(t)dt =
(

x− a + b

2

)
f(x)

∣∣b
a
−

∫ b

a

(
x− a + b

2

)
f ′(t)dt =

b− a

2
(f(a) + f(b)) + . . . (2a)

One can go further performing integration by part. Keeping in mind formula (2a) instead an expansion

∫
f(x)dx = xf(x)− x2

2
f ′(x) +

x3

3!
f ′′(x)− x4

4!
f ′′′(x) + . . . (3)

we consider an expansion
∫

f(x)dx = B1(x)f(x)− B2(x)
2

f ′(x) +
B3(x)

3!
f ′′(x)− B4(x)

4!
f ′′′(x) + . . . , (3a)

where polynomials {B1(x), B2(x), B3(x), . . .} are defined by the relations dBk+1(x)
dx = kBk(x):

B1(x) = x + c1, B2(x) = 2
(

x2

2
+ c1x + c2

)
, B3(x) = 6

(
x3

6
+ c1

x2

2
+ c2x + c3

)
,

B4(x) = 24
(

x4

24
+ c1

x3

6
+ c2

x2

2
+ c3x + c4

)
, and so on , (3b)

where c1, c2, c3, . . . are an arbitrary constants. We have for an interval (a, b) that

∫ b

a

f(t)dt =
N∑

n=1

(−1)n−1 Bn(x)
n!

f (n−1)(x)|ba +
(−1)N

N !

∫ b

a

BN (t)f (N)(t)dt =

B1(b)f(b)−B1(a)f(a)− B2(b)f ′(b)−B2(a)f ′(a)
2

+
B3(b)f ′′(b)−B3(a)f ′′(a)

6
+ . . . (4)
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Now encouraged by the trapezoid formula choose c1 = −a+b
2 . Then

B2(a) = B2(b) . (5)

since B1(a) = B1(b) if c1 = −a+b
2 . We want to keep the relation (5) for all Bk(x) for k ≥ 2:

Bk(a) = Bk(b) for all k ≥ 2 (5a)

In this case the formula (4) becomes:

∫ b

a

f(t)dt = (b− a) · f(a) + f(b)
2

+
∑

n≥2

(−1)n−1

n!
Bn(a)

(
f (n−1)(b)− f (n−1)(a)

)
(6)

§2 Bernoulli polynomials and numbers
The condition (5a) fixes uniquely all constants c2, c3, . . . , c4, . . . in (3). We come to recurrent formula

for polynomials Bn(x):

B0(x) ≡ 1,

{
Bk(x): dBk(x)

dx = kBk−1(x)∫ b

a
Bk(x)dx = 0, i.e. Bk+1(a) = Bk+1(b)

(k = 1, 2, 3, . . .) (2.1)

One can say roughly that polynomials Bn(x) = xn + . . . are ”deformations” of polynomials xn suitable for
integration by part.

These polynomials are:

B0(x) = 1
B1(x) = x− a+b

2
B2(x) = (x− a)(x− b) + 1

6 (b− a)2

B3(x) = (x− a)3 − 3
2 (x− a)2(b− a) + 1

2 (x− a)(b− a)2

B4(x) = (x− a)4 − 2(x− a)3(b− a) + (x− a)2(b− a)2 − 1
30 (b− a)4

....

(2.1a)

Consider normalised polynomials choosing a = 0, b = 1:

B0(x) = 1, B′
n(x) = nBn−1,

∫ 1

0

Bn(x)dx = 0, i.e. Bn+1(0) = Bn+1(0), n = 1, 2, . . . :

B0(x) = 1
B1(x) = x− 1

2
B2(x) = x2 − x + 1

6
B3(x) = x3 − 3

2x2 + 1
2x

B4(x) = x4 − 2x3 + x2 − 1
30

B5(x) = x5 − 5
2x4 + 5

3x3 − x
6

B6(x) = x6 − 3x5 + 5
2x4 − 1

3x2 + 1
42

B7(x) = x7 − 7
2x6 + 7

2x5 − 7
6x3 + 1

6x
. . .

(2.2)

Exercise 1 Show that relation between normalised polynomials B
[0,1]
n in (7) and polynomials B

[a,b]
n is

B[a,b]
n (x) = (a− b)nB[0,1]

n

(
x− a

b− a

)
(2.3)

This formula controls the behaviour of Bernoulli polynomials under changing of a, b.
We define Bernoulli number bn as a value of polynomial (2.2) at the points 0 or 1 (or polynomial (2.1a)

divided by a coefficient (b− a)n)
bn = Bn(0) = Bn(1).
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We have
b0 = 1, b1 = −1

2
, b2 =

1
6
, b3 = 0, b4 = − 1

30
, b5 = 0, b6 =

1
42

, b7 = 0, . . .

Interesting observation:

Proposition 1 Bernoulli numbers bn are equal to zero if n is an odd number bigger than 1.

This proposition follows from the following very beautiful property of Bernoulli polynomials:

Proposition 2 Let {Bn(x)} be a set of Bernoulli polynomials corresponding to the interval (a, b) (see
eq. (7)). Let P be a reflection with respect to the middle point a+b

2 of the interval (a, b):

P : x 7→ a + b− x (2.4)

Then all Bernoulli polynomials (except B1) are eigenvectors of this transformation:

Bn(Px) = Bn(x) for all even n, n = 0, 2, 4, . . . (2.5a)

and
Bn(Px) = −Bn(x) for all odd n ≥ 3, n = 3, 5, 7, . . . (2.5b)

Indeed it follows from (2.5b) that bn = Bn(a) = −Bn(b) = −bn for odd n ≥ 3. Thus bn = 0 for
n = 3, 5, 7, . . ..

The statement of this Proposition 2 is irrelevant to the choice of a, b. To prove the Proposition it is
suffice to consider the special case a = −b. In this case the transformation P in (2.4) is just x 7→ −x.
Thus in this case the statement of Proposition is that Bernoulli polynomials Bn(x) are even polynomials
(Bn(x) = Bn(−x)) if n is even, and they are odd polynomials if n is an odd number greater than 1
(Bn(x) = −Bn(−x)).

Prove it by induction. Suppose that for n ≤ 2N this is true. Then consider polynomial B2N (x). We have
that

∫ a

−a
B2N (x)dx = 0, hence

∫ a

0
B2N (x)dx = 0 since by induction hypothesis this is an even polynomial.

Hence

B2N+1(x) = (2N + 1)
∫ x

0

B2N (t)dt .

Indeed this polynomial obeys the differential equation B′
2N+1(x) = (2N + 1)B2N (x) This polynomial is also

an odd polynomial. Hence it obeys the boundary condition
∫ a

−a
B2N+1(x)dx = 0. It remains to prove that

B2N+2 is an even polynomial. We have that B2N+2(x) =
∫ x

0
B2N+1(t)dt + c2N+2, where c2N+2 is a constant

chosen by the boundary condition
∫ a

a
B2N+2(x)dx = 0. We see that B2N+2 is even since B2N+1 is an odd

polynomial and constant is an even polynomial.

§3 Integral and area of trapezium (revisited)—Euler-Maclaurin formula

Now equipped by the knowledge of formulae return to the last formula from the first paragraph:

∫ b

a

f(t)dt = (b− a) · f(a) + f(b)
2

+
∑

n≥2

(−1)n−1

n!
Bn(a)

(
f (n−1)(b)− f (n−1)(a)

)
= (3.1)

(b− a) · f(a) + f(b)
2

+
∑

n≥2

(−1)n−1

n!
bn(b− a)n

(
f (n−1)(b)− f (n−1)(a)

)
= (3.1a)

(b− a) · f(a) + f(b)
2

+
∑

k≥1

(−1)2k−1

(2k)!
b2k(b− a)2k

(
f (2k−1)(b)− f (2k−1)(a)

)
= (3.1a)

(b− a) · f(a) + f(b)
2

+
1
6
(b− a)2 (f ′(b)− f ′(a))− 1

30
(b− a)4 (f ′′′(b)− f ′′′(a)) + . . .
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We are ready to write down asymptotic formula for series: Dividing the interval [0, 1] on N + 1 parts
consider the formula above for any interval

[
k
N , k+1

N

]
, then making summation we come to:

∫ 1

0

f(x)dx =
1

2N
f(0) +

(
f

(
1
N

)
+ f

(
2
N

)
+ . . . + f

(
N − 1

N

))
+

1
2N

f(0)+

+
∑

k≥1

(−1)2k−1

(2k)!
b2k

N2k

(
f (2k−1)(1)− f (2k−1)(0)

)

it is well-known Euler-Macklourin asymptotic formula.
Remark Our notation for bernoulli numbers is not standard. Bernoulli numbers are Bn = b2n.
Exercise Use this formula for the functions f = xr to express sums

∑N
i=1 ir via Bernoulli numbers.

§4 Fourier image of Bernoulli polynomials and ζ-function

Bernoulli polynomials are deformations of xn which are convenient for integration by part. Function ex

is eigenvalue of derivation operator. This means that Bernoulli polynomials have ”good” Fourier transform.
Do calculations. Consider Fourier polynomials for the interval [0, 1] (see 2.2) and an orthonormal basis
ck{e2πikx} where .... Indeed

〈
Bn(x), e2πik

〉
=

∫ 1

0

Bn(x), e2πikx ∼ 1
kn

Hence

〈
Bn(x), e2πik

〉 ∼
∑ 1

k2n
= ζ(2n)

Notice that square of the norms of Bernoulli polynomials can be expressed via Bernoulli numbers due to
their properties...
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