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Chebyshev approximation and Helly’s Theorem

Helly’s Theorem states that m ≥ n + 2 convex bodies in Rn have non-empty intersec-
tion if any n + 1 of them have non-empty intersection. This Theorem stated by German
mathematician Helly in 1913 has many different proofs. It can be proved using just ele-
mentary mathematics (excellent topic for pupils in the school). On the other hand one of
its proofs uses such elaborated notion as Chech cohomology.

In this etude I try to show application of Helly’s Theorem to theory of approxima-
tion of functions. I am writing this etude inspired and based on the wonderful article of
V.G.Boltiansky and N.M.Yaglom ”Convex bodies” (Encyclopaedia of Elementary Mathe-
matics. Volume 5. Geometry. Moscow 1966 (in Russian))

Helly’s theorem on convex bodies have the following very interesting application to
theory of approximation of continuous functions by polynomials. Here we consider in detail
the case when we approximate a function by lines (polynomials of order n = 1) and briefly
formulate the general case. (The idea of the proof is not very different for general case).

We consider continuous functions on the interval [a, b]. We define the distance d∞
between continuous functions as

d(f, g) = ||f − g||∞ = max
x∈[a,b]

|f(x) − g(x)| .

We say that the line Lf = kx + b is a line which is the closest to the function f if for an
arbitrary line l, d(f, l) ≥ d(f.Lf ):

max
x∈[a,b]

|f(x) − kx − b| = ε , and for arbitrary line y = k′x + b′ max
x∈[a,b]

|f(x) − k′x − b′| ≥ ε .

The following Theorem is obeyed:

Theorem 1 Let the line Lf be a closest line to the continuous function f = f(x),
x ∈ [a, b]. If ε is the distance between this line and the function f then there exist three
points x1, x2, x3, a ≤ x1 < x2 < x3 ≤ b such that the differences between function f and
the line Lf at these points are ±ε, and signs are alternating:







f(x1) − Lf (x1) = ε
f(x2) − Lf (x2) = −ε
f(x3) − Lf (x3) = ε

, or







f(x1) − Lf (x1) = −ε
f(x2) − Lf (x2) = ε
f(x3) − Lf (x3) = −ε

, (1)

Respectively for approximation by polynomials of order n we have:

Theorem 1∗ Let the n−th order polynomial P
(n)
f is the closest n-th order polynomial

to the continuous function f = f(x), (x ∈ [a, b]) in the n+1-dimensional linear space of all
polynomials of the order at most n: P (n)(x) = a0x

n + a1x
n−1 + a1x + a0, (a0, . . . .an are

arbitrary real numbers.). If ε is the distance between the polynomial P
(n)
f and the function

f then in the interval [a, b] there exist n + 2 points x1, . . . xn+2, a ≤ x1 < . . . < xn+2 ≤ b
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such that the differences between function f and the polynomial P
(n)
f at these points are

±ε and signs are alternating, i.e.



























f(x1) − P
(n)
f (x1) = ε

f(x2) − P
(n)
f (x2) = −ε

f(x3) − P
(n)
f (x3) = ε

. . .
f(xn+2) − P

(n)
f (xn+2) = (−1)n+1ε

, or



























f(x1) − P
(n)
f (x1) = −ε

f(x2) − P
(n)
f (x2) = ε

f(x3) − P
(n)
f (x3) = −ε

. . .
f(xn+2) − P

(n)
f (xn+2) = (−1)nε

. (1∗)

Example Chebyshev approximation and Chebyshev polynomials.
Consider Chebyshev polynomials {Tk},

Tk(x) =
1

2k−1
cos k arccos x , −1 ≤ x ≤ 1 ,

T1(x) = x, T2(x) =
2x2 − 1

2
, T3(x) =

4x3 − 3x

4
, T4(x) =

8x4 − 8x2 + 1

8
. . . , . . .

( 1
2Tk−1(x) + 2Tk+1(x) = xTk(x).).

The basic property of Chebyshev polynomials is that for every natural n, the polyno-
mial Tn(x) is the polynomial which is closest to zero in the n-dimensional affine space of
all polynomials of order n with leading term xn:

d(Tn) = max
x∈[−1,1]

|Tn(x)| =
1

2n−1
≤ min

a1,a2,...,an

max
x∈[−1,1]

|xn + a1x
n−1 + . . . + an−1x + an| .

It implies that the polynomial P (n)(x) = xn+1 − Tn+1(x) is the closest to the parabola
f = xn+1 in the linear space of polynomials of order at most n1). The distance between
the parabola y = xn+1 and the polynomial P (n)(x) is equal to ε = 1

2n . At the n+2 points

{x1}, xi = arccos πi
n+1 , (i = 0, 1, 2, . . . , n+1) the difference is ±ε and signs are alternating:

xn+1
i − P (n)(xi) = Tn+1(xi) = − (−1)i

2n
, (i = 0, 1, . . . , n + 1) .

In this special case the nodes of Chebyshev polynomials are equidistant. The Theorem
tells that the property of changing the signs is kept in the general case. This statement is
important for practical calculations of approximation.

What about a proof of this Theorem? First of all formulate the following Corollary
from Helly’s Theorem:

1) In formulation of Theorem 1∗ we deal with n+1-dimensional linear space polynomials
of order at most n. Regarding the basic property of Chebyshev polynomials we deal with n-
dimensional affine space of n-th order polynomials with leading term xn. E.g. polynomial
T4(x)− x4 belongs to the 4-dimensional linear space of polynomials of order at most 3, in
spite of the fact that its leading term is proportional to x2.
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Corollary Let M be the set of parallel segments such that this set belongs to
bounded domain in R2. Suppose that for an arbitrary three segments there exists a line
which intersects these segments. Then there exists a line which intersects all the segments.

Respectively if for arbitrary k + 2 segments there exists k-th order polynomial which
intersects these segments, then there exists k-th order polynomial which intersects all the
segments.

We first sketch the proof of Theorem based on this Corollary then prove the Corollary.
We will prove the Theorem for lines, i.e. for approximation by polynomials of the

order n = 1. The idea of proof is the same for an arbitrary n.
Proof

Let Lf : y = kx + b be a closest line to the function f . Let a distance be equal to ε:

max
x∈[a,b]

|f(x) − kx − b| = ε, ∀k′, b′ , max
x∈[a,b]

|f(x) − k′x − b′| ≥ ε.

Pick an arbitrary ε′: 0 < ε′ < ε. Consider the set M = {dx} (x ∈ [a, b]) of vertical
segments centered at the points of graph of the function f with length 2ε′, i.e. the segments
dx = [ax, bx] such that points ax, bx have coordinates

ax = (x, f(x) − ε′), bx = (x, f(x) + ε′) .

It follows from Corollary of Helly’s Theorem that there exist three points x1, x2, x3 such
that there is no a line which intersects corresponding segments dx1

, dx2
, dx3

. Indeed if for
arbitrary three points x1, x2, x3 there exists a line which intersects corresponding segments
dx1

, dx2
, dx3

then due to the Corollary there exists a line L′ which intersects all the segments
{dx}, i.e. the distance between line L′ and a function f is less or equal to ε′. This
contradicts to the fact the line Lf is the closest line.

We come to the following observation:
Observation 1 For every ε′: 0 < ε′ < ε there exist three points x1, x2, x3 ∈ [a, b]

such that the distance between arbitrary line and the function f at one of these points is
greater than ε′.

This observation plus continuity arguments implies the following observation:
Observation 2 There exist three points x1, x2, x3, a ≤ x1 ≤ x2 ≤ x3 ≤ b such that

the distance between arbitrary line and the function f at one of these points is greater or
equal than ε.

Indeed consider the sequence {εn} such that 0 < εn < ε and εn → ε, e.g. εn = ε− 1
n+M

(for enough big M). Choose for every εn points {x(n)
1 , x

(n)
2 , x

(n)
3 } such that for an arbitrary

line (including the line Lf ) at one of these points the distance between the function f
and this line is greater than εn. Due to compactness of the segment [a, b] we can pick

from this sequence the subsequence {x(nk)
1 , x

(nk)
2 , x

(nk)
3 } such that limk→∞ x

(nk)
1 = x1,

limk→∞ x
(nk)
2 = x2, limk→∞ x

(nk)
3 = x3. One can see that points {x1, x2, x3} are the

points such that for an arbitrary line L and for an arbitrary n, the distance between
function f and the line L at on eof these points is bigger than εn. Thus we come to the
the statement of Observation 2.
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Now prove the Theorem using the Observation 2. Using Observation 2 choose the
points {x1, x2, x3} and show that the relations (1) are obeyed for these points.

Consider the line Lf which is closest to the function f , (d(f, Lf ) = ε). Consider
∆i = f(xi) − Lf (xi), i = 1, 2, 3. We have to show that all ∆i have the modulus ε and
signes are alternating:

|∆1| = |∆2| = |∆3| = ε, ∆1∆3 > 0, ∆1∆2 < 0 , (1a)

i.e. conditions (1) are obeyed. If these conditions are not obeyed then it is easy to show
that one can always find a line L such that its distance to the function f at all points
x1, x2 and x3 is less than ε. This contradicts to Observation 2.

Suppose for example that ∆1 > 0 and ∆2 > 0. If ∆3 > 0 then one can choose δ > 0
such that all the distances between function f and the line L = Lf + ε at points x1, x2, x3

are less than ε. If ∆3 < 0 then rotating the line Lf around the point (x2, Lf (x2)) on a
smal angle we again come to the line L′ such that all the distances between function f and
the line L′ at points x1, x2, x3 are less than ε. Hence if ∆1 > 0 then ∆2 < 0.

By analogous considerations one can easy show that in all the cases when conditions
(1),(1a) are not obeyed then one can choose another line L′ such that the distance between
the line L′ and a function f at all points x1, x2, x3 is less than ε. This implies the statement
of Theorem.

Finally we prove the Corollary 1.
Let M be the set of parallel segments. WLOG we may suppose that all the segments

are vertical. Consider an arbitrary vertical segment d, Denote by Πd the set of lines which
intersect with the segment d. Every line which intersect this segment is non-vertical line,
y = kx + b. We parameterise all not-vertical lines by pairs (k, b). One can see that the
set of the pairs (k, b) which correspond to the set of line Πd is the convex set: If segment
connects the points (x0, y0), (x0, y0 + d) (d > 0) then the condition that the line kx + b
intersect this segment is:

y0 ≤ kx0 + b ≤ y0 + d

These conditions define the strip, the convex set in the plane (k, b). Now the Corollary
follows from Helly’s Theorem.

Application in approximation theory

.
In the Theorem 1 we considered a polynomial P

(n)
f which is the closest polynomial

to the continuous function f(x), (x ∈ [a, b]) in the linear space of all the polynomials of
the order at most n. This polynomial sometimes is called minimax polynomial for the
function f in the linear space of all polynomials of order at most n. The existence of
this polynomial is followed from continuity arguments. The Theorem 1 gives necessary
condition that polynomial is minimax polynomial. In fact conditions (1,1∗) not only are
necessary but they are sufficient conditions which define the minimax polynomial:

Theorem(Chebychev equi-oscillation Theorem)

Minimax polynomial P
(n)
f is uniquely defined by the condition that there exist n + 2

points in which the difference f(x) − P
(n)
f (x) attains maximum values with alternating

signs (condition (1∗) is obeyed.)
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Proof

Suppose that for polynomial (Pn(x) of order at most n) conditions (1∗) are obeyed.
Show that this polynomial is minimax polynomial. Let Q(x) be a polynomial of order at
most n such that

d(f,Q) = ||f − Q||∞ = max
x

|f(x) − Q(x)| < ε .

Then compare polynomials Q(x) and P (x). Since d(f,Q) < ε and Pn(xi)−f(xi) = ε(−1)i,
then P (xi) − Q(xi) 6= 0 and signs are alternating at these points. We have n + 2 points
hence polynomial P (x)−Q(x) has at least n+1 roots (between these points). On the other
hand P (x)−Q(x) is a polynomial of order at most n. Hence P (x) ≡ Q(x). Contradiction.

We have proved that Pn(x) is a minimax polynomial (in the linear space of polynomials
of order at most N). It remains to prove its uniqueness.

Suppose P ′

n(x) is another minimax polynomial. Prove that P ′

n ≡ Pn. Using triangle

inequality it is easy to see that polynomial P̃n =
Pn+P ′

n

2 is minimax polynomial also. Let

x̃0, x̃2, x̃n+1 be points where P̃n(x̃i) − f(x̃i) = ±(−1)iε. We have











∣

∣

∣

Pn(x̃i)+P ′

n
(x̃i)

2 − f(x̃i)
∣

∣

∣
= ε

|Pn(x̃i) − f(x̃i)| ≤ ε
|P ′

n(x̃i) − f(x̃i)| ≤ ε

⇒ Pn(x̃i)−f(x̃i) = P ′

n(x̃i)−f(x̃i) = |ε| ⇒ Pn(x̃i) = P ′

n(x̃i) .

Thus these two polynomials coincide since they coincide at n + 2 points and both are
polynomials of order ≤ n

We can use these Theorems 1 for finding minimax polynomials.

Example Find the line closest to the function f = sin x on the interval [0, π/2]. If
Lf : y = kx + b is the closest line, and the distance is equal to ε then

ε = (kx + b − sinx)
∣

∣

x1

= − (kx + b − sinx)
∣

∣

x2

= (kx + b − sinx)
∣

∣

x3

.

The points x1, x2, x3 are: x1 = 0, x3 = π
2 and the middle point x2 is defined by the

stationary point condition. We come to simultaneous equations











kx1 + b − sinx1 = b = ε
kx2 + b − sinx2 = −ε
k − cos x2 = 0
kx3 + b − sinx3 = k π

2 + b − 1 = ε

Solving this system we come to k = 2
π
, x0 = arccos 2

π
and

ε = b =
1

2

(

sin arccos
2

π
− 2

π
arccos

2

π

)

=

√
π2 − 4 − 2 arccos 2

π

2π
≈ 0.10526

The line y = 2
π
x + b with b ≈ 0.10526 is the closest line to the function f = sin x on the

interval [0, π/2]. The distance is equal to ε ≈ 0.10526.
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