
Geometrical meaning of Crammer rule.

The Crammer rule which you can find in any handbooks for mathematical calcualtions
for engineers may be seems to be little bit annoying for mathematicians. But it has a very
simple and beautiful geometrical meaning

We know Crammer rule. It states the following:
Consider n simultaneous linear equations for n unknowns:

Ax = c , (0.1)

where A is n× n matrix, c is n× 1 matrix with real entries , x is n× 1 of unknowns. (We
can view x, c as vectors x = xiei in Rn and A as a linear operator).

The solution of this system, the vector x = A−1c can be calculated in many different
ways. The following recipe of calculations is practical:

If we remove i-th row from the matrix A and put instead it the vector c we come to
the matrix which we denote by Ai: If matrix A can be considered as the ordered set of n
vectors:

A = (a1, . . . ,an) (0.2)

then

A1 = (c,a2, . . . ,an) , A2 = (a1, c,a3, . . . , an) , An−1 = (a1, . . . ,an−2, c,an) , An = (a1, . . . ,an−1, c)

Crammer rule tells that in the case if det A 6= 0 then the solution of the system (0.1) is

xi =
detAi

detA
, (i = 1, 2, . . . , n) (0.3)

This rule is may be the best known formula in Linear Algebra for the wide community
of non-mathematicians. (For example you can find it in any mathematical manual for
engineers.)

There are million proofs of this elementary formula. I would like to expose here just
one which looks nice (and which can be generalised for graded spaces).

Crammer identity and Crammer rule

We use exterior n-form on Rn. Exterior n-form ω(x1, . . . ,xn) is bilinear n-form (func-
tion on n vectors which is linear with respect to all vectors) and which is antysymmetrical
with respect to any two vectors:

ω(. . . ,xi, . . . ,xj , . . .) = −ω(. . . ,xj , . . . ,xi, . . .) . (0.4)

In particular this means that for any vector x

ω(. . . ,x, . . . ,x, . . .) = 0 . (0, 4a)

(In fact conditions (0.4) and (0,4a) for bilinear forms are equivalent: show it.)
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An example of exterior n-form is determinant: Choose a basis and consider

ω(x1,x2, . . . ,xn) = det(x1, . . . ,xn) , (0.5)

where (x1, . . . ,xn) in the right hand side is n × n matrix composed of vectors x1, . . . ,xn

in the chosen basis.
Exercise Any exterior n-form in Rn is proportional to (0.5).

Exterior n-form in Rn defines the volume of n-parallelepiped: ω(x1, . . . ,xn)
can be considered as a volume of parallelepiped formed by vectors x1, . . . ,xn.

Proposition
Let ω be an arbitrary exterior n-form on Rn and vector c belongs to the span of the

vectors {a1, . . . ,an}, i.e.

c = ckak = c1a1 + c2a2 + . . . + cnan

Then the following identity takes place

ω(a1,a2, . . . ,an)c =

ω(c,a2,a3, . . . , an)a1 + ω(a1, c,a3, . . . , an)a2 + . . . + ω(a1,a2,a3, . . . ,an−1, c)an (1.1)

We call this identity Crammer identity

Remark Here and everywhere ck is k-th component of the vector c, not the k-th
power of the c!!!)

Crammer rule immediately follows from the Crammer identity. Indeed let ω be a
non-degenerate exterior n form. Then the equation (0.1) means that

c = xiai = c1a1 + c2a2 + . . . + cnan , (1.2)

where ai are rows of the matrix A (see (0.2)). On the other hand due to Crammer identity
(1.1)

c =
ω(c,a2,a3, . . . ,an)
ω(a1,a2, . . . ,an)

a1 +
ω(a1, c,a3, . . . ,an)
ω(a1,a2, . . . ,an)

a2 + . . . +
ω(a1,a2,a3, . . . ,an−1, c)

ω(a1,a2, . . . , an)
an =

c1 det(c,a2,a3, . . . ,an)
det(a1,a2, . . . ,an)

+ c2 det(a1, c,a3, . . . ,an)
det(a1,a2, . . . ,an)

+ . . . cn det(a1,a2,a3, . . . ,an−1, c)
det(a1,a2, . . . ,an)

(1.3)

Comparing (1.2)and (1.3) we come to (0.3).

It remains to prove Crammer identity (1.1):

Proof of Crammer identity.
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It is just one enough long line: Let c = c1a1 + c2a2 + . . . + cnan. Then using linearity
and anitsymmetricity (0.4), (0.4a) we come to

ω(a1,a2, . . . ,an)c = ω(a1,a2, . . . ,an)
(
c1a1 + c2a2 + . . . + cnan

)
=

c1ω(a1,a2, . . . ,an)a1 + c2ω(a1,a2, . . . ,an)a2 + . . . + cnω(a1,a2, . . . ,an)an =

ω(c1a1,a2, . . . ,an)a1 + ω(a1, c2a2, . . . ,an)a2 + . . . + ω(a1,a2, . . . , cnan)an =

ω(c1a1+c2a2+. . .+cnan,a2, . . . ,an)a1+ω(a1, c1a1+c2a2+. . .+cnan, . . . ,an)a2+. . .+. . . =

ω(c,a2, . . . ,an)a1 + ω(a1, c, . . . ,an)a2 + . . . + ω(a1,a2, . . . , an−1, c)an.

It is worth to note that these considerations can be generalised for linear operators on Z2-
spaces (superspaces) (Here very interesting mathematics begins (see the works on Berezini-
ans of T. Voronov and mine. ))

All the best
H.M.K. 12.01.10
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