Funny integrals (Borwein integrals)
Yesterday my son David showed me the funny integrals on the web-blog of Steven
Lundsburg (professor of Economics, Rochester University), cite:
http:/ /www.thebigquestions.com/2012/03/26 /loose-ends/.
I enjoyed them so much! Hope you will enjoy too
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Consider integrals:

It really looks surprising but the sequence {A;, As, As, ...} looks in the following way:
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Yes, the eighth term is not equal to 7. As author of the blog claims it is equal to
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This is based on the paper [1].
Shortly the idea of calculating integrals (as it was explained in the article [1]) is based

sin ax

on the remark that Fourier image of the function is characteristic function of the
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Now using the fact that Fourier image of product is convolution one can reduce the problem

interval [—a,a]:

of calculating these integrals to calculating integrals of functions related with convolutions
of characteristic functions of intervals.
§ Calculations without Fourier transformation
At the end of the article [1] authors consider another I much more elementary method
which is found on the following identity:
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in the case if
S ol + Yl < 1. (20)
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This identity goes to the work [2] of C. Stormer in 1885 (see the detailes in [1].)
This identity implies why the first seven terms in (1) are equal to 5. Indeed one may
read the identity in the following way: for positive integers aq,as, ... ,ak

oo N i
/ H SIMART SIMT 5 g in the case if > ay <1 (3)
T

Now we see that integral for (1)
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This is the case for first seven integrals in (1), but this is not the case for the integral Asg.

Indeed

1+1+1+1+1+1_

3 79 11 13
1+1 1 + 1 15+9+5 143+77+91_29+311 43024 -1
3 5 9 13 1001 45 1001 45045
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43024 1 43024 + 3003 46027

5055 T 15 45045 45045

Nevertheless we still can calculate Ag an come to monstrous answer above using
integrals below.

A proof of indentity (2) and calculations below are founded on the following basic
identities*:

sin apx Isin(ax + ¢;)xr  1sin(ar — ¢;)x
COS C; T = — + = ,
T 2 T 2 T
and ' .
sin apx k
= cos txdt.
€T 0

It follows from these identities that the integrand in relation (4) can be represented by the
following integral:

n

sin aix sin x
| | | |cos CiT =
- x

=1

* See [1] for details.The proof below is a variation on...
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dty...dt,.  (5)

Yoasinfettiz k... Etyrtart.. +op)
/ OStigai, an+m
(i=1,...,k)

(Here the summation goes over all combinations of sings =+.)
Hence due to the fact that

Oosinaxdx:{lifa>0
0 T —lifa<0’

we see that if condition (2a) is obeyed then the integral (2) equals to the integral of constant

5 over rectangular polyhedron with volume a; ... a,,. This implies the identity (2).

For example calculate fooo %%dm We have that

[oe) : o0 . . o
/ cosap BT l/ sin(1 + a)x + sin(1 a)a:dx _ g if [a] < 1.
0 0

x 2 x
/ dtzdaz = az .
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/ smaassmxdx_/ dt//
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We see that [ S2eLsIDe gy — 2 if o <1 (It is equal to 2%) for |a| > 1.

In the s1m11ar way we may calculate [~
that a1 +a9 <1

Thus

sin a1 x sin CLQ%’ sin x
3

dx for positive a1, as such

* sina;x sin asx sin x Yoo sin(x £ tix £ tox)
/ aj?’ d,f = / (- \/'0 S tl S ai 8 dtldthﬂ?.
0
0<t <as
0<r<

The integral of integrand over x equals to 5 since 14 #; £¢; > 0. Hence integral equals

to araz 5.
In the case if condition (2a) is not obeyed we still may use these methods.

Remark When I wrote this text I knew that in Wikipedia these integrals are called
Borwein integrals.....
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