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Two formulae for Lie groups

I will recall here calculations of

Σ1 = e−AXeA = AdA(X) (1)

and calculation of

Σ2 = e−AeA+εX , for ε2 = 0 (2)

Both formulae are very useful. (E.g. the second one is inevitable if we would like to perform

explicit calculations with left invariant vetor fields.) This is standard to calculate these

sums using differential equations. Here I will calculate just by brute force combinatorial

calculations.

The first formula comes naturally from differential equation: to calculate Σ1 in (1)

consider a function

SX(t) = e−tAXetA .

This function is a solution of differential equation{
dS
dt = −[A,S(t)] = −adAS(t)
S(t)t=0 = X

Solving this equation we have that

S(t) = X −
∫ t

0

[A,S(τ)]dτ .

Writing this integral recurcsively we come to perturbation expansion or to

S(t) = e−tadAX .

Now combinatorial (brute force) solution:

Σ1 = e−AXeA =
∑
n,m

(−1)nAnXAm

n!m!
=
∑
n

(
n∑

k=0

(−1)kAkXAn−k

k!(n− k)!

)
=

∑
n

1

n!

(
n∑

k=0

(−1)kCk
nA

kXAn−k

)
.

One can see that polynomials

Dn(A,X) =
n∑

k=0

(−1)kCk
nA

nXAn−k
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belong to Lee algebra G(A,X), (they are up to a sign so called Dynkin polynomials):

Dn(A,X) = XAn − nAXAn−1 + . . .+ (−1)nAnX =

(−1)n[A, . . . , [A,X ] . . .]︸︷︷︸
ntimes

= adnAX . (Dynkin)

D1 = −AX +XA = −[A,X] ,D2 = XA2 − 2AXA+A2X = [A, [A,X]]

D3 = XA3 − 3AXA2 + 3A2XA−A3X = −[A, [A, [A,X]]] ,

and so on.

We come to

Σ1 =
∑
n

1

n!

(
n∑

k=0

(−1)kCk
nA

kXAn−k

)
=
∑
n

(−1)nadnAX

n!
= e−adAX =

1− [A,X] +
[A, [A,X]]

2
− [A, [A, [A,X]]]

6
+ . . .

Much more funny formula (2):

Differential equation. Consider function

S(t) = e−tAet(A+εX)

it obeys equation: {
dS
dt = e−tAεXetAS(t)
S(t)t=0 = X

Brute force calculations:

Σ2 = e−AeA+εX =

∑ (−1)nAn

n!

∑ Am

m!
+
∑ m terms︷ ︸︸ ︷

Am−1X +Am−2XA+Am−3XA2 + . . .+XAm−1

m!

 =

1 +
∑
r


∑

p+q=r

(−1)pAp

p!

(r − q) terms︷ ︸︸ ︷
Ar−q−1X +Ar−q−2XA+Ar−q−3XA2 + . . .+XAr−q−1

(r − q)!

 =

1 +
∑
m,n

(∑
p

(−1)pAp

p!

)
AmXAn

(m+ n+ 1)!
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Here changing p+m→ m we come to

Σ2 = 1 +
∑

m,n,p=0,...,m

(−1)pAmXAn

p!((m− p) + n+ 1)!
=
∑
m,n

tmn
AmXAn

(m+ n+ 1)!
,

where

tmn =
m∑

p=0

(−1)p

p!(m+ n+ 1− p)!
.

Observation

tmn = (−1)mCm
m+n .

It follows from this observation that from formula (Dynkin) for Dynkin polynomials, that

Σ2 = 1 +
∑
m,n

tmn
AmXAn

(m+ n+ 1)!
= 1 +

∑
N

1

N + 1

(
N∑

k=0

(−1)kCk
NA

kXAN−k

)
︸ ︷︷ ︸
Dynkin’s polynomial DN

=

1 +

∞∑
N=0

(−1)NadNAX

(N + 1)!
=

1 +X − 1

2
[A,X] +

1

6
[A, [A,X]]− 1

24
[A, [A, [A,X]]]− 1

120
[A, [A, [A, [A,X]]]] + . . . = .

It remains to prove Observation.

Proof We will use Pascal’s tree identity:

Ck
n + Ck+1

n = Ck+1
n+1 .

Then

tmn =
m∑

p=0

(−1)p

p!(m+ n+ 1− p)!
=

C0
m+n+1 − C1

m+n+1 + C2
m+n+1 − C3

m+n+1 + . . .+ (−1)mCm
m+n+1 =

[C0
m+n]−[C0

m+n+C1
m+n]+[C1

m+n+C2
m+n]−[C2

m+n+C3
m+n]+. . .+(−1)m[Cm−1

m+n+Cm
m+n] =

= (−1)mCm
m+n
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