Letter of Sasha Borovik, 24 November 2018
on problem of 101 coins
So everything boils down to a statement about natural numbers:
We are given 101 natural numbers, and after removal of any one of them fromthe list the remaining numbers can be redistributed in two groups of 50 numbers each insuch a way that the sum of numbers in each group is the same. Prove that all numbers are equal.

Here is a re-write of the solution suitable for junior school kids.
After removal of any of numbers the sum of the remaining numbers is even. Hence all numbers have the same parity: either they are all even, or they are all odd. In the first case, divide all numbers by 2 . In the second case, subtract 1 from all numbers. In both cases we get the same problem, but with smaller numbers, and this continues until one of the numbers is 0 . If numbers are all zero, we are done. Assume that there is a non-zero number left. Notice that we can no longer make further subtractions of 1, but only divisions by 2 , and we continue them until some other number becomes odd. At this point, either removal of 0 , or removal of that odd number creates 100 numbers with the odd sum, a contradiction.

Ideologically this is a hidden calculation in base 2 arithmetic (this is why 2-adic numbers appeared in Karabegov's arithmetic (this is why 2-adic numbers appeared in Karabegov's beautiful solution), alike the Russian Peasants' Multiplication or Russian Peasants' Greatest Common Divisor. Pedagogically, this is a nice example of the use of abstraction: in the original formulation with coins, the problem is next to imposible for a schoolchild - you cannot subtract 1 from the value of a coin, it is called debasement of the coinage and, I am afraid, is likely to remain a criminal offence in this country. It helps to show to a child that he/she can forget about coins and get freedom of action - the child will be likely to look for this freedom in other problems as well. Historically, in my previous incarnation I had a chance to see, and participate in, creation of mathematical olympiad problems - this was the same kind of process as the one demonstrated to us by Hovik. Thanks to Hovik, I had a chance to revive sweet memories of my younger years. Alas, nostalgia is not what it used to be ...

Best wishes - Sasha

