On a simple proof of Nullstelensatz

Vladimir Dotzenko wrote the article [1] where he described a simple proof of Nullstellensatz for the
field C of complex numbers. As it is claimed in this article, this proof is ”a part of mathematical folklore”.
(The standard proof of this Theorem possesses a "difficult part”. (See e.g. the excellent book ” Algebraic
geometry for pedestrians” of Miles Read [2].))

I would like to retell this proof, paying little bit more attention on its crucial non-standard part.

Theorem 1 Let M = {f1, f2,..., fx} be a set of polynomials in the ring of polynomials of n complex
variables.

Then or these polynomials have common root or there exist polynomials g1, ..., g, (over complex num-
bers) such that fig1 + ...+ frgr = 1.

In other words an ideal I generated by polynomials {fi, f2,..., fx} in the ring K = Clxy,...,z,] of
polynomials on C” equals to K if these polynomials have not common root.

It is famous Hilbert’s Nullstelensatz.
One can consider another formulation of this theorem:

Theorem 1’ Let M = {f1, fo,..., fx} be a set of polynomials over complex numbers. Then if for an
arbitrary polynomial F' € K set of common roots of polynomials {f1, f2,..., fi} belongs to the set of roots
of polynomial F":

fi(zo) = fa(wo) = ... = fulzo) = F(x0) =0,
then there exists natural m such that F™ belongs to the ideal I = (f1,..., fn)-

This Theorem is equivalent to previous one (see any standard textbook)
The proof of the Theorem 1 follows from the following

Lemma Let K : C be a field extension of the field C. Let {a;} (i = 1,2,3,...) be a set of elements
of K such that the span of these elements over C is K, i.e. for an arbitrary = € K there exists a finite set
{as,,...,a;,} such that x = A\ja;, + Aeai, + ... 4+ Apa;,. Then K = C.

In other words an arbitrary field K which is an extension of the field C of complex numbers coincides
with C or degree of the extension is uncountable®.

Theorem follows from the lemma by means of the following standard textbook considerations:

Proof (of Theorem 1°). Let I = (f1,..., fn) be an ideal generated by the polynomials {fi,..., fn}.

Suppose I # Clzy,...,2,]. Consider the maximal ideal J (J # K) in Cl[zq,...,z,] which contains I
and a field L = Clzy,...,zy)\J.

Consider the countable set of polynomials (e.g. polynomials {z7" 25" ... 2"} which span the ring
Clx1,...,x,]. Hence equivalence classes of these polynomials span the field L = Clzy,...,z,]\J. It follows

from the lemma that the field L is isomorphic to the field C of complex numbers. Let a; € C be the image
of equivalence class [z;] of monomial x;. Since f; € J image of an equivalence class of polynomial f; is equal
to zero. Hence the point x; = a; is a common root of polynomials {f;}. x;. Contradiction.

Now we go to the central part of this topic, we prove the Lemma.

Proof of the Lemma

Let field extension K : C be spanned by the countable set of vectors {a;} (i =1,2,3,...).
Prove that for arbitrary 0 € K, 6 € C.

Consider the following uncountable set of elements in K:

M=)

* In the paper [2] author gives this second formulation equivalent formulation of the lemma:

We prefer the first formulation above , since the case when algebraic dimension is more than finite could
be little bit confusing for a reader.



where the set z runs over all complex numbers except a number 6 (if § € C). (If § € C we have nothing to
prove but we consider this case t00.)

Claim: There exists a finite subset of elements in M which are linear dependent elements (over C.)

This claim implies the lemma. Indeed let {ﬁ} be a finite subset of linear dependant vectors, i.e.

where all coefficients {¢;} are complex numbers and at least one of the complex numbers ¢; is not equal to
zero. This is an algebraic equation on 8 over algebraically closed field C. Hence 6 € C.

It remains to prove the claim.

Denote by K, the span of the first r vectors {a1,as,...,a,}. We have a sequence of {Ky} of finite-
dimensional space K; C Ky C ... K; CK;;; C ... and U2 K, = K.

Consider the subsets M = M NK,. At least one of these subsets, say M} possesses infinite number
of elements (in fact incountable number of elements) since the set M = Uy M}, is uncountable. The infinite

subset M}, belongs to finite-dimensional space K. We see that there exists N + 1 linear dependent elements

{9_1% } (i=1,z...,N+1) in K; (N is dimension of the space K). Claim is proved.
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