## On a simple proof of Nullstelensatz

Vladimir Dotzenko wrote the article [1] where he described a simple proof of Nullstellensatz for the field $\mathbf{C}$ of complex numbers. As it is claimed in this article, this proof is "a part of mathematical folklore". (The standard proof of this Theorem possesses a "difficult part". (See e.g. the excellent book "Algebraic geometry for pedestrians" of Miles Read [2].))

I would like to retell this proof, paying little bit more attention on its crucial non-standard part.
Theorem 1 Let $M=\left\{f_{1}, f_{2}, \ldots, f_{k}\right\}$ be a set of polynomials in the ring of polynomials of $n$ complex variables.

Then or these polynomials have common root or there exist polynomials $g_{1}, \ldots, g_{n}$ (over complex numbers) such that $f_{1} g_{1}+\ldots+f_{k} g_{k} \equiv 1$.

In other words an ideal $I$ generated by polynomials $\left\{f_{1}, f_{2}, \ldots, f_{k}\right\}$ in the ring $\mathbf{K}=\mathbf{C}\left[x_{1}, \ldots, x_{n}\right]$ of polynomials on $\mathbf{C}^{n}$ equals to $\mathbf{K}$ if these polynomials have not common root.

It is famous Hilbert's Nullstelensatz.
One can consider another formulation of this theorem:
Theorem $\mathbf{1}^{\prime}$ Let $M=\left\{f_{1}, f_{2}, \ldots, f_{k}\right\}$ be a set of polynomials over complex numbers. Then if for an arbitrary polynomial $F \in \mathbf{K}$ set of common roots of polynomials $\left\{f_{1}, f_{2}, \ldots, f_{k}\right\}$ belongs to the set of roots of polynomial $F$ :

$$
f_{1}\left(x_{0}\right)=f_{2}\left(x_{0}\right)=\ldots=f_{n}\left(x_{0}\right) \Rightarrow F\left(x_{0}\right)=0
$$

then there exists natural $m$ such that $F^{m}$ belongs to the ideal $I=\left(f_{1}, \ldots, f_{n}\right)$.
This Theorem is equivalent to previous one (see any standard textbook)
The proof of the Theorem 1 follows from the following
Lemma Let K: C be a field extension of the field $\mathbf{C}$. Let $\left\{a_{i}\right\}(i=1,2,3, \ldots)$ be a set of elements of $\mathbf{K}$ such that the span of these elements over $\mathbf{C}$ is $\mathbf{K}$, i.e. for an arbitrary $x \in \mathbf{K}$ there exists a finite set $\left\{a_{i_{1}}, \ldots, a_{i_{p}}\right\}$ such that $x=\lambda_{1} a_{i_{1}}+\lambda_{2} a_{i_{2}}+\ldots+\lambda_{p} a_{i_{p}}$. Then $\mathbf{K}=\mathbf{C}$.

In other words an arbitrary field $\mathbf{K}$ which is an extension of the field $\mathbf{C}$ of complex numbers coincides with $\mathbf{C}$ or degree of the extension is uncountable*.

Theorem follows from the lemma by means of the following standard textbook considerations:
Proof (of Theorem $1^{\prime}$ '). Let $I=\left(f_{1}, \ldots, f_{n}\right)$ be an ideal generated by the polynomials $\left\{f_{1}, \ldots, f_{n}\right\}$.
Suppose $I \neq \mathbf{C}\left[x_{1}, \ldots, x_{n}\right]$. Consider the maximal ideal $J(J \neq \mathbf{K})$ in $\mathbf{C}\left[x_{1}, \ldots, x_{n}\right]$ which contains $I$ and a field $\mathbf{L}=\mathbf{C}\left[x_{1}, \ldots, x_{n}\right] \backslash J$.

Consider the countable set of polynomials (e.g. polynomials $\left\{x_{1}^{m_{1}} x_{2}^{m_{2}} \ldots x_{k}^{m_{k}}\right\}$ which span the ring $\mathbf{C}\left[x_{1}, \ldots, x_{n}\right]$. Hence equivalence classes of these polynomials span the field $\mathbf{L}=\mathbf{C}\left[x_{1}, \ldots, x_{n}\right] \backslash J$. It follows from the lemma that the field $\mathbf{L}$ is isomorphic to the field $\mathbf{C}$ of complex numbers. Let $a_{i} \in \mathbf{C}$ be the image of equivalence class $\left[x_{i}\right]$ of monomial $x_{i}$. Since $f_{i} \in J$ image of an equivalence class of polynomial $f_{i}$ is equal to zero. Hence the point $x_{i}=a_{i}$ is a common root of polynomials $\left\{f_{i}\right\} . x_{i}$. Contradiction.

Now we go to the central part of this topic, we prove the Lemma.

## Proof of the Lemma

Let field extension $\mathbf{K}: \mathbf{C}$ be spanned by the countable set of vectors $\left\{a_{i}\right\}(i=1,2,3, \ldots)$.
Prove that for arbitrary $\theta \in \mathbf{K}, \theta \in \mathbf{C}$.
Consider the following uncountable set of elements in $\mathbf{K}$ :

$$
\mathcal{M}=\left\{\frac{1}{\theta-z}\right\}
$$

* In the paper [2] author gives this second formulation equivalent formulation of the lemma:

We prefer the first formulation above, since the case when algebraic dimension is more than finite could be little bit confusing for a reader.
where the set $z$ runs over all complex numbers except a number $\theta$ (if $\theta \in \mathbf{C}$ ). (If $\theta \in \mathbf{C}$ we have nothing to prove but we consider this case too.)

Claim: There exists a finite subset of elements in $\mathcal{M}$ which are linear dependent elements (over $\mathbf{C}$.)
This claim implies the lemma. Indeed let $\left\{\frac{1}{\theta-z_{i}}\right\}$ be a finite subset of linear dependant vectors, i.e.

$$
\sum_{i} \frac{c_{i}}{\theta-z_{i}}=0
$$

where all coefficients $\left\{c_{i}\right\}$ are complex numbers and at least one of the complex numbers $c_{i}$ is not equal to zero. This is an algebraic equation on $\theta$ over algebraically closed field $\mathbf{C}$. Hence $\theta \in \mathbf{C}$.

It remains to prove the claim.
Denote by $\mathbf{K}_{r}$ the span of the first $r$ vectors $\left\{a_{1}, a_{2}, \ldots, a_{r}\right\}$. We have a sequence of $\left\{\mathbf{K}_{k}\right\}$ of finitedimensional space $\mathbf{K}_{1} \subseteq \mathbf{K}_{2} \subseteq \ldots \mathbf{K}_{i} \subseteq \mathbf{K}_{i+1} \subseteq \ldots$ and $\cup_{r=1}^{\infty} \mathbf{K}_{r}=\mathbf{K}$.

Consider the subsets $\mathcal{M}_{k}=\mathcal{M} \cap \mathbf{K}_{r}$. At least one of these subsets, say $\mathcal{M}_{k}$ possesses infinite number of elements (in fact incountable number of elements) since the set $\mathcal{M}=\cup_{k} \mathcal{M}_{k}$ is uncountable. The infinite subset $\mathcal{M}_{k}$ belongs to finite-dimensional space $\mathbf{K}_{k}$. We see that there exists $N+1$ linear dependent elements $\left\{\frac{1}{\theta-z_{i}}\right\}(i=1, z \ldots, N+1)$ in $\mathbf{K}_{k}\left(N\right.$ is dimension of the space $\left.\mathbf{K}_{k}\right)$. Claim is proved.

## References

[1] V. Dotzenko "On a proof of Hilbert Nullstelensatz Theorem", Matematicheskoje prosveshenije, 3, v6, pp.116-118, (2002) (in Russian)
[2]

