18 January 2017
On calculation of one determinant
Let A = ||a;x|| be n x n matrix. Calculate determinant of the n 4+ 1 x n + 1 matrix
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Try to use the Frobenius formula:
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det(c D) = det(A — BD'C)det D.

It does not work straightforwardly since D = 0. We will use it in the following way:
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since the limit exists. Here A~! = ||a’™|| is the matrix inverse to the matrix A = ||a;x||.

We see that in particular all L = 0 for k£ > 2V). Hence
Note that det A "™ = @, is cofactor of matrix ||a;k||, all elements of this matrix are
polynomials on entries of matrix ||a;||-

Geometrical meaning Let A = ||a;x|| be symmetric n x n matrix. Consider quadric
Ca: a;kz’z® = 0in P"~1. One can see that the equation
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det ( w0 ) =0
defines the pencil C* of lines u,,™ = 0 which are tangent to quadric C.

Thus we see that pencil C* dual to the quadric C is defined by the matrix which is
cofactor of matrix A.

U In fact L = Tr A¥ K, where K! = a"™u,,vx, and it can be shown straightforwardly
that all L vanish for k& > 2. The trick is that we do not need to do it.
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