On calculation of one determinant

Let $A=\left\|a_{i k}\right\|$ be $n \times n$ matrix. Calculate determinant of the $n+1 \times n+1$ matrix

$$
\left(\begin{array}{cc}
a_{i k} & u_{k} \\
v_{i} & 0
\end{array}\right)
$$

Try to use the Frobenius formula:

$$
\operatorname{det}\left(\begin{array}{ll}
A & B \\
C & D
\end{array}\right)=\operatorname{det}\left(A-B D^{-1} C\right) \operatorname{det} D
$$

It does not work straightforwardly since $D=0$. We will use it in the following way:

$$
\begin{gathered}
\operatorname{det}\left(\begin{array}{cc}
a_{i k} & u_{k} \\
v_{i} & 0
\end{array}\right)=\lim _{\varepsilon \rightarrow 0}\left[\operatorname{det}\left(\begin{array}{cc}
a_{i k} & u_{k} \\
v_{i} & \varepsilon
\end{array}\right)\right]=\lim _{\varepsilon \rightarrow 0}\left[\operatorname{det}\left(a_{i k}-\frac{u_{i} v_{k}}{\varepsilon}\right) \varepsilon\right]= \\
\lim _{\varepsilon \rightarrow 0}\left[\operatorname{det} A \operatorname{det}\left(1-\frac{a^{i m} u_{m} v_{k}}{\varepsilon}\right) \varepsilon\right]=\lim _{\varepsilon \rightarrow 0}\left[\operatorname{det} A\left(1+\sum_{k \geq 1} \frac{L_{k}}{\varepsilon^{k}}\right) \varepsilon\right]= \\
\lim _{\varepsilon \rightarrow 0}\left[\operatorname{det} A\left[1-\operatorname{Tr}\left(\frac{a^{i m} u_{m} v_{k}}{\varepsilon}\right)+\sum_{k \geq 2} \frac{L_{k}}{\varepsilon^{k}}\right] \varepsilon\right]= \\
\lim _{\varepsilon \rightarrow 0}\left(\operatorname{det} A \varepsilon-\operatorname{det} A a^{i m} u_{m} v_{i}+\operatorname{det} A \sum_{k \geq 2} \frac{L_{k}}{\varepsilon^{k-1}}\right)=-\operatorname{det} A a^{i m} u_{m} v_{i}
\end{gathered}
$$

since the limit exists. Here $A^{-1}=\left\|a^{i m}\right\|$ is the matrix inverse to the matrix $A=\left\|a_{i k}\right\|$. We see that in particular all $L_{k}=0$ for $k \geq 2^{1)}$. Hence

Note that $\operatorname{det} A a^{i m}=\tilde{a}_{i m}$ is cofactor of matrix $\left\|a_{i k}\right\|$, all elements of this matrix are polynomials on entries of matrix $\left\|a_{i k}\right\|$.

Geometrical meaning Let $A=\left\|a_{i k}\right\|$ be symmetric $n \times n$ matrix. Consider quadric $C_{A}: a_{i} k x^{i} x^{k}=0$ in P^{n-1}. One can see that the equation

$$
\operatorname{det}\left(\begin{array}{cc}
a_{i k} & u_{k} \\
u_{i} & 0
\end{array}\right)=0
$$

defines the pencil C^{*} of lines $u_{m} x^{m}=0$ which are tangent to quadric C.
Thus we see that pencil C^{*} dual to the quadric C is defined by the matrix which is cofactor of matrix A.

[^0]
[^0]: ${ }^{1)}$ In fact $L_{k}=\operatorname{Tr} \wedge^{k} K$, where $K_{m}^{i}=a^{i m} u_{m} v_{k}$, and it can be shown straightforwardly that all L_{k} vanish for $k \geq 2$. The trick is that we do not need to do it.

