Irrational powers of integers.

Few days ago Alex Wilkie asked me a question: Let α be a positive real number such that for all integer n, n^{α} is integer too. Prove that α is an integer too. I came to very beautiful solutions of this problem. Here it is:

Consider "polynomials"

$$
\begin{gathered}
P_{1}(x)=(x+1)^{\alpha}-x^{\alpha} \\
P_{2}(x)=(x+2)^{\alpha}-2(x+1)^{\alpha}+x^{\alpha} \\
P_{3}(x)=(x+3)^{\alpha}-3(x+2)^{\alpha}+3(x+1)^{\alpha}-x^{\alpha} \\
P_{4}(x)=(x+4)^{\alpha}-4(x+3)^{\alpha}+6(x+2)^{\alpha}-4(x+3)^{\alpha}+x^{\alpha}
\end{gathered}
$$

and so on...(In fact these polynomials are finite versions of k-th derivative of function x^{α}.)
One can show that in Taylor series expansion of "polynomial" $P_{k}(x)$ (with respect to $x:(x+a)^{\alpha}=x^{\alpha}+\frac{\alpha(\alpha-1)}{2} x^{\alpha-1} \ldots$ the first k terms disappear:

$$
P_{k}(x)=\ldots x^{\alpha-k}+\ldots
$$

The proof of this fact is simple but it contains a beautiful combinatorics.
This becomes crucial for solution.
Let α be real number such that $\alpha \leq k$. Suppose that n^{α} is integer for all α. If $\alpha<k$ then $P_{k}(x)$ tends to 0 if x tends to infinity. On the other hand $P_{k}(x)$ takes integer values at all integer x. Hence we come to conclusion that $P_{k}(x)$ equals identically to zero if $\alpha<k$. Hence in Taylor series expansion all coefficients are equal to zero. Hence α is integer This is wonderfull is not it? (19.02.2012)

PS In fact as Alex Wilkie told me the following:

1) real positive α is integer if $2^{\alpha}, 3^{\alpha}$ and 5^{α} are integers. This is really difficult to prove. There is no an counterexample: such a positive real non-integer α such that m^{α}, n^{α} are integer.
