Irrational powers of integers.

Few days ago Alex Wilkie asked me a question: Let α be a positive real number such that for all integer n, n^{α} is integer too. Prove that α is an integer too. I came to very beautiful solutions of this problem. Here it is:

Consider "polynomials"

$$P_1(x) = (x+1)^{\alpha} - x^{\alpha},$$

$$P_2(x) = (x+2)^{\alpha} - 2(x+1)^{\alpha} + x^{\alpha},$$

$$P_3(x) = (x+3)^{\alpha} - 3(x+2)^{\alpha} + 3(x+1)^{\alpha} - x^{\alpha},$$

$$P_4(x) = (x+4)^{\alpha} - 4(x+3)^{\alpha} + 6(x+2)^{\alpha} - 4(x+3)^{\alpha} + x^{\alpha}$$

and so on...(In fact these polynomials are finite versions of k-th derivative of function x^{α} .)

One can show that in Taylor series expansion of "polynomial" $P_k(x)$ (with respect to x: $(x + a)^{\alpha} = x^{\alpha} + \frac{\alpha(\alpha - 1)}{2}x^{\alpha - 1} \dots$ the first k terms disappear:

$$P_k(x) = \dots x^{\alpha - k} + \dots$$

The proof of this fact is simple but it contains a beautiful combinatorics.

This becomes crucial for solution.

Let α be real number such that $\alpha \leq k$. Suppose that n^{α} is integer for all α . If $\alpha < k$ then $P_k(x)$ tends to 0 if x tends to infinity. On the other hand $P_k(x)$ takes integer values at all integer x. Hence we come to conclusion that $P_k(x)$ equals identically to zero if $\alpha < k$. Hence in Taylor series expansion all coefficients are equal to zero. Hence α is integer This is wonderfull is not it? (19.02.2012)

PS In fact as Alex Wilkie told me the following:

1) real positive α is integer if 2^{α} , 3^{α} and 5^{α} are integers. This is really difficult to prove. There is no an counterexample: such a positive real non-integer α such that m^{α} , n^{α} are integer.