
On number of real roots. (Silvester Theorem)

Theorem The number of real roots of the polynomial f = xn + an−1 + . . . + a0 with real coefficients
a0, . . . , an−1 is equal to the signature of the quadratic form given by the n × n matrix aij = si+j−2 where
i, j = 1, . . . , n and sk = xk

1 + . . . + xk are Newton polynomials polynomials on coefficeints (s1 = −an−1,
s2 = a2

n−1 − 2an−2, . . .) ( {x1, . . . , xn} is the set of complex roots of this polynomials.)
I know the very beautiful proof of this Theorem. (It comes from Prasolov + ......)
Assume that all roots are distinct. Consider the set of polynomials {hi(x)} of degree ≤ n− 1 such that

polynomial hi is equal to 1 at the root xi and it is equal to zero at all other roots,which are equal to 1:

hi(x) =
f(x)

(x− xi)f ′(xi)

(In general roots are complex and these polynomials are complex) Note that polynomials {hi(x)} are the
base of Lagrange interpolation formula:

For every polynomial p of degree ≤ n

p(x) ≡ p(xi)hi(x)

These formulae play the role of China reiminders isomorphism on the ring of polynomials)
Now consider complex n-dimensional vector space V of all complex polynomials factorised by f . The set

of polynomials hi(x) is the basis in this space. The components (p1, . . . , pn) of every polynomial with respect
of this basis is just the values of these polynomials at roots: pi = p(xi) (according Lagrange interpolaion
formula)

Every element of this space defines linear operator Lg : Lgp = gp (modulo f)
Consider the symmetric bilinear form A such that its value on every pair g, r is equal to the trace of

the of the operator Lgr. It is evident that basis {hi} is orthonormal basis with respect of this form because
hihj ≡ 0 if i 6= j:

A(hi, hj) = δij

Hence we come to the formula

A(g, r) = g1r1 + . . . + gnrn =
n∑

i=1

g(xi)r(xi)

It follows from this formula that
A(xp, xq) =

∑

i=1

xp+q
i = sp+q

We see that matrix aij = si+j−2 is just the matrix of symmetri bilinear form A in the real basis {1, x, x2, . . .}.
Now suppose that 2q roots of this polynomial are complex and the rest r − 2q are real. Thus 2q

polynomials h1, . . . h2q are complex and the rest are real.
Consider the real basis {a1, b1, . . . , aq, bq, hq+1,...,hn}, where h1 = a1 + ib1, h2 = a1 − ib1, h3 = a2 + ib2,

h4 = a2 − ib2, . . .. Since A(hi, hj) = δij hence

A(ai, aj) =
1
2
δij , A(ai, bj) = 0, A(bi, bj) =

−1
2

δij

Hence the signature of this form is equal to n− 2q. It is just equal to the number of real roots.
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