On number of real roots. (Silvester Theorem)

Theorem The number of real roots of the polynomial $f=x^{n}+a_{n-1}+\ldots+a_{0}$ with real coefficients a_{0}, \ldots, a_{n-1} is equal to the signature of the quadratic form given by the $n \times n$ matrix $a_{i j}=s_{i+j-2}$ where $i, j=1, \ldots, n$ and $s_{k}=x_{1}^{k}+\ldots+x^{k}$ are Newton polynomials polynomials on coefficeints ($s_{1}=-a_{n-1}$, $\left.s_{2}=a_{n-1}^{2}-2 a_{n-2}, \ldots\right)\left(\left\{x_{1}, \ldots, x_{n}\right\}\right.$ is the set of complex roots of this polynomials.)

I know the very beautiful proof of this Theorem. (It comes from Prasolov +)
Assume that all roots are distinct. Consider the set of polynomials $\left\{h_{i}(x)\right\}$ of degree $\leq n-1$ such that polynomial h_{i} is equal to 1 at the root x_{i} and it is equal to zero at all other roots, which are equal to 1 :

$$
h_{i}(x)=\frac{f(x)}{\left(x-x_{i}\right) f^{\prime}\left(x_{i}\right)}
$$

(In general roots are complex and these polynomials are complex) Note that polynomials $\left\{h_{i}(x)\right\}$ are the base of Lagrange interpolation formula:

For every polynomial p of degree $\leq n$

$$
p(x) \equiv p\left(x_{i}\right) h_{i}(x)
$$

These formulae play the role of China reiminders isomorphism on the ring of polynomials)
Now consider complex n-dimensional vector space V of all complex polynomials factorised by f. The set of polynomials $h_{i}(x)$ is the basis in this space. The components $\left(p_{1}, \ldots, p_{n}\right)$ of every polynomial with respect of this basis is just the values of these polynomials at roots: $p_{i}=p\left(x_{i}\right)$ (according Lagrange interpolaion formula)

Every element of this space defines linear operator $L_{g}: L_{g} p=g p(\operatorname{modulo} f)$
Consider the symmetric bilinear form A such that its value on every pair g, r is equal to the trace of the of the operator $L_{g r}$. It is evident that basis $\left\{h_{i}\right\}$ is orthonormal basis with respect of this form because $h_{i} h_{j} \equiv 0$ if $i \neq j$:

$$
A\left(h_{i}, h_{j}\right)=\delta_{i j}
$$

Hence we come to the formula

$$
A(g, r)=g_{1} r_{1}+\ldots+g_{n} r_{n}=\sum_{i=1}^{n} g\left(x_{i}\right) r\left(x_{i}\right)
$$

It follows from this formula that

$$
A\left(x^{p}, x^{q}\right)=\sum_{i=1} x_{i}^{p+q}=s_{p+q}
$$

We see that matrix $a_{i j}=s_{i+j-2}$ is just the matrix of symmetri bilinear form A in the real basis $\left\{1, x, x^{2}, \ldots\right\}$.
Now suppose that $2 q$ roots of this polynomial are complex and the rest $r-2 q$ are real. Thus $2 q$ polynomials $h_{1}, \ldots h_{2 q}$ are complex and the rest are real.

Consider the real basis $\left\{a_{1}, b_{1}, \ldots, a_{q}, b_{q}, h_{q+1, \ldots, h_{n}}\right\}$, where $h_{1}=a_{1}+i b_{1}, h_{2}=a_{1}-i b_{1}, h_{3}=a_{2}+i b_{2}$, $h_{4}=a_{2}-i b_{2}, \ldots$. Since $A\left(h_{i}, h_{j}\right)=\delta_{i j}$ hence

$$
A\left(a_{i}, a_{j}\right)=\frac{1}{2} \delta_{i j}, \quad A\left(a_{i}, b_{j}\right)=0, \quad A\left(b_{i}, b_{j}\right)=\frac{-1}{2} \delta_{i j}
$$

Hence the signature of this form is equal to $n-2 q$. It is just equal to the number of real roots.

