On Taylor identity

A standard proof of Taylor Theorem for smooth (infinitely differentiable) function,

$$
\begin{equation*}
f(x)=\sum_{k=0}^{n} f^{(k)}\left(x_{0}\right) \frac{\left(x-x_{0}\right)^{k}}{k!)}+O\left(x^{n+1}\right) \tag{1}
\end{equation*}
$$

contains a 'nasty' part related with estimation of residul term $O\left(x^{n+1}\right)$. There is an elegant proof of Taylor Theorem which is based on the identity

$$
\begin{equation*}
f(x)=\sum_{k=0}^{n} f^{(k)}\left(x_{0}\right) \frac{\left(\left(x-x_{0}\right)^{k}\right.}{k!)}+\frac{1}{n!} \int_{x_{0}}^{x} \frac{d^{n+1}}{d t^{n+1}} f(t)(x-t)^{n} d t \tag{2}
\end{equation*}
$$

This identity immediately leads to (1).
Few weeks ago my friend Sasha Karabegov acquinted me with the problems suggested on the PUTNAM competition in USA universities ${ }^{1)}$. Sasha was local organiser of this competition in his University. He has suggested the beautiful solutions of some questions, and in particular of the question A5 on this competition ${ }^{2)}$. His elegant proof is based on the identity (2). In fact in this proof he deduces in elementary way the following Theorem:

Let $f(x)$ be a smooth function on \mathbf{R} such that this function and its all derivatives at all the points take non-negative values. Then the condition that function f vanishes at arbitrary point implies that it vanishes at all the points:

$$
\begin{equation*}
\forall x, \forall n f^{(n)}(x) \geq 0 \text { and } f\left(x_{0}\right)=0 \Rightarrow f(x) \equiv 0 \tag{3}
\end{equation*}
$$

This statement is related with the Bernstein's Theorem on monotone functions ${ }^{3)}$.
In what follows I expalin the identity (1) and reproduce Karabegov's proof.

Taylor identity

I have known this identity ' for hundred years'. Karabegov's proof makes】 me to realise that this is really very effective.

Let $f=f(x)$ be a smooth function. Then integrating by parts we come to

$$
f(x)=f(0)+\int_{0}^{x} \frac{d f(t))}{d t} d t=f(0)+\underbrace{\int_{0}^{x} \frac{d f(t))}{d t} \cdot 1 d t}_{\mathrm{I}}=
$$

${ }^{1)}$ see https://kskedlaya.org/putnam-archive/2018.pdf
${ }^{2)}$ see the fourth solution of this question in https://kskedlaya.org/putnam-archive/2018s.pdf or the Appendix to this text
${ }^{3)}$ see the second solution of the question in https://kskedlaya.org/putnam-archive/2018s.pdff

$$
\begin{aligned}
& f(0)+\int_{0}^{x} \frac{d}{d t} f(t) \frac{d}{d t}(t-x) d t=f(0)+\left.\frac{d}{d t} f(t)(t-x)\right|_{0} ^{x}-\int_{0}^{x} \frac{d^{2}}{d t^{2}} f(t)(t-x) d t= \\
& f(0)+f^{\prime}(0) x+\underbrace{\int_{0}^{x} \frac{d^{2}}{d t^{2}} f(t)(x-t) d t}_{\text {II }}= \\
& f(0)+f^{\prime}(0) x-\frac{1}{2} \int_{0}^{x} \frac{d^{2}}{d t^{2}} f(t) \frac{d}{d t}\left((t-x)^{2}\right) d t= \\
& f(0)+f^{\prime}(0) x-\left.\frac{1}{2} \frac{d^{2}}{d t^{2}} f(t)(t-x)^{2}\right|_{0} ^{x}+\frac{1}{2} \int_{0}^{x} \frac{d^{3}}{d t^{3}} f(t)(t-x)^{2} d t= \\
& f(0)+f^{\prime}(0) x+f^{\prime \prime}(0) \frac{x^{2}}{2}+\frac{1}{2} \underbrace{\int_{0}^{x} \frac{d^{3}}{d t^{3}} f(t)(x-t)^{2} d t}_{\text {III }}= \\
& f(0)+f^{\prime}(0) x+f^{\prime \prime}(0) \frac{x^{2}}{2}-\frac{1}{6} \int_{0}^{x} \frac{d^{3}}{d t^{3}} f(t) \frac{d}{d t}\left((x-t)^{3}\right) d t= \\
& f(0)+f^{\prime}(0) x+f^{\prime \prime}(0) \frac{x^{2}}{2}+\left.\frac{1}{6} \frac{d^{3}}{d t^{3}} f(t)(t-x)^{3}\right|_{0} ^{x}-\frac{1}{6} \int_{0}^{x} \frac{d^{4}}{d t^{4}} f(t)(x-t)^{3} d t= \\
& f(0)+f^{\prime}(0) x+f^{\prime \prime}(0) \frac{x^{2}}{2}+f^{\prime \prime \prime}(0) \frac{x^{3}}{6}+\frac{1}{6} \underbrace{\int_{0}^{x} \frac{d^{4}}{d t^{4}} f(t)(x-t)^{3} d t}_{\text {IV }}= \\
& f(0)+f^{\prime}(0) x+f^{\prime \prime}(0) \frac{x^{2}}{2}+f^{\prime \prime \prime}(0) \frac{x^{3}}{6}-\frac{1}{24} \int_{0}^{x} \frac{d^{4}}{d t^{4}} f(t) \frac{d}{d t}\left((t-x)^{4}\right) d t= \\
& f(0)+f^{\prime}(0) x+f^{\prime \prime}(0) \frac{x^{2}}{2}+f^{\prime \prime \prime}(0) \frac{x^{3}}{6}-\left.\frac{1}{24} \frac{d^{4}}{d t^{4}} f(t)(t-x)^{4}\right|_{0} ^{x}+\frac{1}{24} \int_{0}^{x} \frac{d^{5}}{d t^{5}} f(t)(t-x)^{4} d t= \\
& f(0)+f^{\prime}(0) x+f^{\prime \prime}(0) \frac{x^{2}}{2}+f^{\prime \prime \prime}(0) \frac{x^{3}}{6}+f^{\prime \prime \prime \prime}(0) \frac{x^{4}}{24}+\frac{1}{24} \underbrace{\int_{0}^{x} \frac{d^{5}}{d t^{5}} f(t)(x-t)^{4} d t}_{\text {IV }}=
\end{aligned}
$$

and so on:

$$
\ldots=\sum_{k=1}^{n} f^{(k)}(0) \frac{x^{k}}{k!}+\frac{1}{n!} \int_{0}^{x} \frac{d^{n+1}}{d t^{n+1}} f(t)(x-t)^{n} d t
$$

Appendix

Here I reproduce the Karabegov's proof of the Theorem (3)..

Shortly speaking his proof is the following: if $f\left(x_{0}\right)=0$ then for all $x \leq x_{0}, f(x)=0$ also since $f^{\prime}(x) \geq 0$ for $x \leq x_{0}$. Thus all derivatives of the smooth function f vanish at the point x_{0}. Hence it follows from the identity (1) that for all x and for all n,

$$
\begin{equation*}
f(x)=\frac{1}{n!} \int_{x_{0}}^{x} \frac{d^{n+1}}{d t^{n+1}} f(t)(x-t)^{n} d t \tag{A1}
\end{equation*}
$$

for an arbitary n. Hence integrating this identity we see that for every x_{1} and for every n

$$
\begin{gather*}
\int_{x_{0}}^{x_{1}} f(x) d x=\int_{x_{0}}^{x_{1}} d x\left(\frac{1}{n!} \int_{x_{0}}^{x} f^{(n+1)}(t)(x-t)^{n} d t\right)= \\
\frac{1}{n!} \int_{x_{0}}^{x_{1}} d t\left(\int_{t}^{x} f^{(n+1)}(t)(x-t)^{n} d x\right)=\frac{1}{(n+1)!} \int_{x_{0}}^{x_{1}} f^{(n+1)}(t)\left(x_{1}-t\right)^{n+1} \tag{A2}
\end{gather*}
$$

Choose an arbitrary $x_{1}>x_{0}$. Then it follows from equations (A2) and (A1) that

$$
\begin{gathered}
\int_{x_{0}}^{x_{1}} f(x) d x=\frac{1}{(n+1)!} \int_{x_{0}}^{x_{1}} f^{(n+1)}(t)\left(x_{1}-t\right)^{n+1} \leq \\
\frac{x_{1}-x_{0}}{n+1}\left(\frac{1}{n!} \int_{x_{0}}^{x_{1}} f^{(n+1)}(t)\left(x_{1}-t\right)^{n}\right)=\frac{x_{1}-x_{0}}{n+1} f\left(x_{1}\right) \Rightarrow f\left(x_{1}\right)=0
\end{gathered}
$$

since this inequality holds or arbitrary n.

