Three identities on determinants

1. Let B be $m \times n$ matrix and D be $n \times m$ matrix. Then

$$
\begin{equation*}
\operatorname{det}(1+B D)=\operatorname{det}(1+D B) \tag{1}
\end{equation*}
$$

Proof. $\operatorname{Tr}(B D)^{k}=\operatorname{Tr}(D B)^{k}$. Hence characteristic polynomials $\operatorname{det}(1+z B D)$ and $\operatorname{det}(1+z B D)$ coincide. Thus we come to (1). How to prove it in another way?

It follows from (1) that if $D=B^{+}=\left(x^{1}, x^{2}, \ldots, x^{n}\right)$ is $1 \times n$ matrix then

$$
\operatorname{det}\left(\delta^{i k}+x^{i} x^{k}\right)=\operatorname{det}(1+B D)=\operatorname{det}(1+D B)=\operatorname{det}\left(1+x^{i} x^{i}\right)=1+\left(x^{1}\right)^{2}=\ldots+\left(x^{n}\right)^{2}
$$

The relation (1) has two very amusing "generalisation":
2. Assume that entries of matrices B and D are "odd numbers", i.e. anticommuting elements of some $\mathbf{Z}_{\mathbf{2}}$-algebra (e.g. odd elements of Grassmann algebra). In this case we have instead (1) the following elation:

$$
\begin{equation*}
\operatorname{det}(1+\mathcal{B D})=\frac{1}{\operatorname{det}(1+\mathcal{D B})} \tag{2}
\end{equation*}
$$

(Here and later denoting \mathcal{B} instead B and \mathcal{D} instead D I would like to emphasize the odd nature of matrices.)
To prove (2) we note that $\operatorname{Tr}(\mathcal{B D})^{k}=-\operatorname{Tr}(\mathcal{D B})^{k}$. Hence

$$
\begin{gathered}
\frac{d}{d z} \log [\operatorname{det}(1+z B D) \operatorname{det}(1+z D B)]=\operatorname{Tr}\left[(1+z B D)^{-1} B D+(1+z D B)^{-1} D B\right]= \\
\sum_{k} z^{k}\left[\operatorname{Tr}(B D)^{k+1}+\operatorname{Tr}(D B)^{k+1}\right]=0 \Rightarrow \operatorname{det}(1+z B D) \operatorname{det}(1+z D B) \equiv 1
\end{gathered}
$$

3.. If \mathcal{B} and \mathcal{D} are $n \times n$ matrices such that \mathcal{B} is symmetrical matrix and \mathcal{D} is antisymmetrical matrix $\left(\mathcal{B}_{i k}=\mathcal{B}_{k i}, \mathcal{D}_{i k}=-\mathcal{D}_{k i}\right)$ then

$$
\begin{equation*}
\operatorname{det}(1+\mathcal{B D})=1 \tag{3}
\end{equation*}
$$

This is very important identity*.
This identity can be considered as a special case of identity (2). But it can be proved independently. Indeed to prove the identity (2) it is enough to show that

$$
\begin{equation*}
\operatorname{Tr}(\mathcal{B D})^{k}=0 \tag{4}
\end{equation*}
$$

since in the same way as above the relation (4) implies that characteristic polynomial $\operatorname{det}(1+z \mathcal{B D})$ equals to 1 . We have:

$$
\operatorname{Tr}(\mathcal{B D})^{k}=-\operatorname{Tr}(\mathcal{D B})^{k}=\operatorname{Tr}\left(\mathcal{D}^{+} \mathcal{B}^{+}\right)^{k}=-\operatorname{Tr}\left((\mathcal{B D})^{+}\right)^{k}=-\operatorname{Tr}(\mathcal{B D})^{k}
$$

Hence we come to (4)

[^0]
[^0]: * In particular it follows form this identity that square root of Berezinian (superdeterminant) of linear canonical transformation is equal to the determinant of its boson-boson sector

