$$\mathbf{Z}_{10} = \mathbf{Z}_2 \oplus \mathbf{Z}_5$$

It is very natural to consider 10-adic numbers in spite of the fact that 10 is not prime. The simplest way to define the ring $\tilde{\mathbf{Z}}_{10}$ is the following: The set $\tilde{\mathbf{Z}}_{10}$ is the set of formal series $\sum_{n=0}^{\infty} a_n 10^n$ where a_n are numbers $\{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$. One can naturally introduce ring structure mimicking addition and multiplication rules, so called "slozhenije i umnozhenije stolbikom". E.g. If $x = \sum_{n=0}^{\infty} a_n 10^n$, $y = \sum_{n=0}^{\infty} b_n 10^n$ then $x+y = \sum_{n=0}^{\infty} c_n 10^n$, where c_n are defined by

$$c_n = \begin{cases} a_n + b_n + r_n & \text{if } a_n + b_n + r_n < 10\\ a_n + b_n + r_n - 10 & \text{if } a_n + b_n + r_n \ge 10 \end{cases} \quad n = 0, 1, 2, \dots$$

and

$$r_0 = 0, \ r_{k+1} = \begin{cases} 0 \text{ if } a_n + b_n + r_k < 10\\ 1 \text{ if } a_n + b_n + r_n \ge 10 \end{cases} \text{ for } k \ge 0$$

To be more precise consider presentation of *p*-adic numbers by infinite sequence: $x = (x_0, x_1, x_2, \ldots, x_n)$ where $x_0 = a_0, x_1 = a_0 + 10a_1, \ldots, x_k = \sum_{n=0}^k a_n 10^n, \ldots$ if $x = \sum_{n=0}^{\infty} a_n 10^n$. The natural projection $P_k: \sum_{n=0}^{\infty} a_n 10^n \to \sum_{n=0}^k a_n 10^n$ projects x_{k+1} on x_k . One can see that if $x = \sum_{n=0}^{\infty} a_n 10^n = (x_0, x_1, x_2, x_3, \ldots), y = \sum_{n=0}^{\infty} b_n 10^n = (y_0, y_1, y_2, y_3, \ldots)$ then

$$x + y = z = (z_0, z_1, z_2, z_3, \ldots)$$

where $z_k = P_k(x_k + y_k)$ and

$$xy = w = (w_0, w_1, w_2, w_3, \ldots)$$

where $w_k = P_k(x_k y_k)$ This ring is not integral domain: (see examples below).

It is well=known that If integer N is product of different primes then $\mathbf{Z}/N\mathbf{Z}$ is direct sum of fields. In particular $\mathbf{Z}/10\mathbf{Z} = \mathbf{F_2} + \mathbf{F_5}$, (here as always $\mathbf{F_p} = \mathbf{Z}/\mathbf{pz}$ prime field of characteristic p for prime p)— The China's algorithm establish the isomorphism between $\mathbf{F_{p_1}} \oplus \mathbf{F_{p_2}}$ and $\mathbf{Z}/p_1p_2\mathbf{Z}$ if $p_1 \neq p_2$.

This can be be prolonged:

Proposition The ring \mathbf{Z}_{10} is isomorphic to the direct sum of the rings \mathbf{Z}_2 and \mathbf{Z}_5 .

Present explicitly the maps $\phi: \mathbf{Z}_{10} \to \mathbf{Z}_2 \oplus \mathbf{Z}_5$ and inverse map $\psi: \mathbf{Z}_2 \oplus \mathbf{Z}_5 \to \mathbf{Z}_{10}$ which establish this isomorphism. If $x = \sum_{n=0}^{\infty} a_n 10^n \in \mathbf{Z}_{10}$ then

$$\psi(x) = \left(\sum_{n=0}^{\infty} \left(5^n a_n\right) 2^n, \sum_{n=0}^{\infty} \left(2^n a_n\right) 5^n\right) \in \mathbf{Z}_2 \oplus \mathbf{Z}_5$$

Note that this map sends rational integrals on the diagonal: Image of ϕ on \mathbf{Z} is diagonal in $\mathbf{Z} \oplus \mathbf{Z}$.

The inverse map is little bit not so obvious:

Let $(x, y) \in \mathbf{Z}_2 \oplus \mathbf{Z}_5$ where $x = (x_0, x_1, x_2, \ldots,)$ with $x_k = \sum_{n=0}^k a_n 2^n$ and $y = (y_0, y_1, y_2, \ldots,)$ with $y_k = \sum_{n=0}^k b_n 5^n$. Show that there exists $z = (x_0, x_1, x_2, \ldots,)$ with $z_k = \sum_{n=0}^k c_n 10^n$ which obeys the conditions:

$$z_k = x_k \pmod{2^{k+1}}, \ z_k = y_k \pmod{5^{k+1}}, \ k = 0, 1, 2, 3, \dots$$

and z_k are uniquely defined by these conditions. It follows from this statement that map $\psi = \phi^{-1}$ is defined by equation $\psi(x, y) = z$

For k = 0 this is obvious. Suppose we proved it for $k \leq l$. For k = l + 1 we have equations

$$z_{l+1} = z_l + c_{l+1} 10^{l+1} = x_{l+1} = x_l + a_{l+1} 2^{l+1} (\text{mod } 2^{l+2})$$

and

$$z_{l+1} = z_l + c_{l+1} 10^{l+1} = y_{l+1} = y_l + b_{l+1} 5^{l+1} \pmod{5^{l+2}}$$

on unknowns $a_{l+1}, b_{l+1} \in \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$. These equations have solutions and these solution is unique because due to inductive hypothesis for $k = l \ z_l = x_l + \delta^{(2)} 2^{l+1}$ and $z_l = x_l + \delta^{(5)} 5^{l+1}$.

Remark The maps ϕ, ψ are "lifting" of the maps establishing isomorphism between ring $\mathbf{Z}/10\mathbf{Z}$ and direct sum of the fields $\mathbf{F_2}$ and $\mathbf{F_5}$.

Example. Consider an elements $(1,0) \in \mathbb{Z}_2 \oplus \mathbb{Z}_5$. Find an element $z = \sum_{n=0}^{\infty} c_n 10^n$ such that $\phi(z) = (1,0)$. If $z = (z_0, z_1, z_2, z_3, \ldots)$ then one can see that

$$z_0 = 5, z_1 = 25, z_2 = 625, \dots$$

we come to.... Yes! you are right we come to the sequence which we know very well from the school: sequence $5, 25, 625, \ldots$ —sequence of numbers such that final digits of their squares coicide with these numbers: $5^2 = 25, 25^2 = 625, \ldots$ In the language of 10-adic numbers $z = \psi(1.0)$ is 10-adic number $(5, 25, 625, \ldots)$ such that $x^2 = x$. It is because

$$x^2 = (1,0)^2 = (1,0) = x$$

Now we see that the second non-trivial solution of the equation $x^2 = x$ in the ring $\mathbf{Z}_2 \oplus \mathbf{Z}_5$ is w = (0, 1). One can see that

$$\psi(0,1) = (6,76,376,\ldots)$$

Remark The following simple and beautiful interpretation : equation $x^2 = x$ has more than one solution since 10 is not a prime number^{*}: \mathbf{Z}_{10} is not an integral domain; e.g. (a, 0)(0, b) = (0, 0) = 0. (1, 0)(0, 1) = 0

Pseudo Teichmullers for \mathbf{Z}_{10}

^{*} This interpretation belongs to A.Veselov.

Recall standard facts about Teichmuller map. If p is prime then the ring \mathbf{Z}_p possesses all roots of degree p-1 of unity, i.e. there exist a map $T: \mathbf{F}_p \to \mathbf{Z}_p$ (Teihmuller map) such that

$$T^p(\bar{a}) = T(a),$$

One can see that $T(\bar{a}\bar{b}) = T(\bar{a})T(\bar{b})$ and $T(\bar{+}a\bar{b}) = T(\bar{a}) + T(\bar{b}) = p\mathbf{Z}_p$ Here $\mathbf{F}_{\mathbf{p}} = \{\bar{\mathbf{0}}, \bar{\mathbf{1}}, \bar{\mathbf{2}}, \ldots\}$ is a prime field of characteristic p.

Roughly speaking for any $a \in 1, 2, ..., p-1$ there is *p*-adic number, i.e. a sequence $\{x_0, x_1, x_2\}$ such that $x_{k+1} = x_k (modp^k)$ and $x_k^p = x_k + ...$ One can see that

$$T(\bar{a}) = \lim_{n \to \infty} a^{p^n} = (a, a^p, a^{p^2}, \dots, a^{p^n}, \dots)$$

because $a^{p^{n+1}} = a^{p^{n+1}-p^n} a^{p^n}$ and $a^{p^{n+1}-p^n} = a^{\varphi(p^n)} = 1 + \dots p^{n+1}$ What happens in $\tilde{\mathbf{Z}} = 2$. We already know that for $\bar{a} = 5.6 \in \mathbf{Z}$

What happens in $\tilde{\mathbf{Z}}_{10}$? We already know that for $\bar{a} = 5, 6 \in \mathbf{Z}/10\mathbf{Z} \ \tilde{T}(\bar{5}) = (5, 25, \ldots)$ and $\tilde{T}(6) = (6, 76, \ldots)$ the order of these elements is equal to 2.

Now look for all elements

 $\bar{a} = 1 \ \tilde{T}(\bar{1}) = 1$. Order is equal to 2 $(1^2 = 1)$

 $\bar{a} = \bar{2}$. We have that $\bar{2} = (\bar{0}, \bar{2})$ in $\mathbf{F_2} \oplus \mathbf{F_5}$. We see that $\tilde{T}(\bar{2}) = (0, T_5(\bar{2}) = (0, 2^{5^{\infty}})$. $2^{5^{\infty}} = (2, 32,)$ Its image in $\tilde{\mathbf{Z}}_{10}$ is equal to $2^{5^{\infty}}$

In the pedestrians language we come to the sequence: (2, 32, 432, ...) such that $2^5 = 32, 32^5 = ...432, 432^5 = ...4432$

 $\bar{a} = \bar{3}$. We have that $\bar{3} = (\bar{1}, \bar{3})$ in $\mathbf{F_2} \oplus \mathbf{F_5}$. We see that $\tilde{T}(\bar{3}) = (1, T_5(\bar{2}) = (0, 3^{5^{\infty}})$. $(T_2(1) = 1)$. $3^{5^{\infty}} = (3, \dots, 43, \dots, 443, \dots)$, $3^5 = \dots, 43, 43^5 = \dots, 443$

Now we have to calculate the image of $(1, 3^{5^{\infty}})$ in $\tilde{\mathbf{Z}}_{10}$. Is it equal to $3^{5^{\infty}}$? Yes In the pedestrians language we come to the sequence:

 $(3, 43, 443, \ldots)$ such that $3^5 = 43, 43^5 = \ldots 443, 443^5 = \ldots 443$

 $\bar{a} = \bar{4}$. We have that $\bar{4} = (\bar{0}, \bar{4})$ in $\mathbf{F_2} \oplus \mathbf{F_5}$. Note that order of $\bar{4}$ in $\mathbf{F_5}$ is equal to 2. We see that $\tilde{T}(\bar{4}) = (0, T_5(\bar{4}) = (0, 4^{5^{\infty}})$. $4^{5^{\infty}} = (4, \ldots, 24, \ldots, 624, \ldots)$, $4^5 = \ldots, 24$, $24^5 = \ldots, 624$, $624^5 = \ldots, 624$... In fact cubes not only fifth orders have the same end: $4^3 = \ldots, 4, 24^5 = \ldots, 24, 624^5 = \ldots, 624$...

The image of $(0, 4^{5^{\infty}})$ in $\tilde{\mathbf{Z}}_{10}$. Is it equal to $4^{5^{\infty}}$? Yes In the pedestrians language we come to the sequence: $(4, 24, 624, \ldots)$ such that $4^3 = \ldots 4, 24^3 = \ldots 24, \ldots$ and $4^5 = 4\mathbf{24}, 24^5 = \ldots 6\mathbf{243},$

 $\bar{a} = \bar{5}$. We have that $\bar{5} = (\bar{1}, \bar{0})$ in $\mathbf{F_2} \oplus \mathbf{F_5}$ We know already that $\tilde{T}(5) = (5, 25, 625, \ldots)$. 10-adic number $x = 5^{2^{\infty}} = (5, 25, 625, \ldots)$ obeys the equation $x^2 = x$

 $\bar{a} = \bar{6}$. We have that $\bar{6} = (\bar{0}, \bar{1})$ in $\mathbf{F_2} \oplus \mathbf{F_5}$ We know already that $\tilde{T}(6) = (6, 76, 376, \ldots)$. 10-adic number $y = 6^{5^{\infty}} = (6, 76, 376, \ldots)$ obeys the equation $x^2 = x$

 $\bar{a} = \bar{7}$. We have that $\bar{6} = (\bar{1}, \bar{2})$ in $\mathbf{F_2} \oplus \mathbf{F_5}$ 10-adic number $x = 7^{5^{\infty}}$ obeys the equation $x^5 = x$.

 $\bar{a} = \bar{8}$. We have that $\bar{6} = (\bar{0}, \bar{3})$ in $\mathbf{F_2} \oplus \mathbf{F_5}$ 10-adic number $x = 8^{5^{\infty}}$ obeys the equation $x^5 = x$.

 $\bar{a} = \bar{9}$. We have that $\bar{9} = (\bar{1}, \bar{4})$ in $\mathbf{F_2} \oplus \mathbf{F_5}$ 10-adic number $x = 9^{5^{\infty}}$ obeys the equation $x^3 = x$ (and $x^5 = x$).