$$
\tilde{\mathbf{Z}}_{10}=\mathbf{Z}_{2} \oplus \mathbf{Z}_{5}
$$

It is very natural to consider 10 -adic numbers in spite of the fact that 10 is not prime. The simplest way to define the ring $\tilde{\mathbf{Z}}_{10}$ is the following: The set $\tilde{\mathbf{Z}}_{10}$ is the set of formal series $\sum_{n=0}^{\infty} a_{n} 10^{n}$ where a_{n} are numbers $\{0,1,2,3,4,5,6,7,8,9\}$. One can naturally introduce ring structure mimicking addition and multiplication rules, so called "slozhenije i umnozhenije stolbikom". E.g. If $x=\sum_{n=0}^{\infty} a_{n} 10^{n}, y=\sum_{n=0}^{\infty} b_{n} 10^{n}$ then $x+y=\sum_{n=0}^{\infty} c_{n} 10^{n}$, where c_{n} are defined by

$$
c_{n}=\left\{\begin{array}{l}
a_{n}+b_{n}+r_{n} \text { if } a_{n}+b_{n}+r_{n}<10 \\
a_{n}+b_{n}+r_{n}-10 \text { if } a_{n}+b_{n}+r_{n} \geq 10
\end{array} \quad n=0,1,2, \ldots\right.
$$

and

$$
r_{0}=0, r_{k+1}=\left\{\begin{array}{l}
0 \text { if } a_{n}+b_{n}+r_{k}<10 \\
1 \text { if } a_{n}+b_{n}+r_{n} \geq 10
\end{array} \text { for } k \geq 0\right.
$$

To be more precise consider presentation of p-adic numbers by infinite sequence: $x=$ $\left(x_{0}, x_{1}, x_{2}, \ldots, x_{n}\right)$ where $x_{0}=a_{0}, x_{1}=a_{0}+10 a_{1}, \ldots, x_{k}=\sum_{n=0}^{k} a_{n} 10^{n}, \ldots$ if $x=$ $\sum_{n=0}^{\infty} a_{n} 10^{n}$. The natural projection $P_{k}: \sum_{n=0}^{\infty} a_{n} 10^{n} \rightarrow \sum_{n=0}^{k} a_{n} 10^{n}$ projects x_{k+1} on x_{k}. One can see that if $x=\sum_{n=0}^{\infty} a_{n} 10^{n}=\left(x_{0}, x_{1}, x_{2}, x_{3}, \ldots\right), y=\sum_{n=0}^{\infty} b_{n} 10^{n}=$ $\left(y_{0}, y_{1}, y_{2}, y_{3}, \ldots\right)$ then

$$
x+y=z=\left(z_{0}, z_{1}, z_{2}, z_{3}, \ldots\right)
$$

where $z_{k}=P_{k}\left(x_{k}+y_{k}\right)$ and

$$
x y=w=\left(w_{0}, w_{1}, w_{2}, w_{3}, \ldots\right)
$$

where $w_{k}=P_{k}\left(x_{k} y_{k}\right)$ This ring is not integral domain: (see examples below).
It is well=known that If integer N is product of different primes then $\mathbf{Z} / N \mathbf{Z}$ is direct sum of fields. In particular $\mathbf{Z} / 10 \mathbf{Z}=\mathbf{F}_{\mathbf{2}}+\mathbf{F}_{\mathbf{5}}$, (here as always $\mathbf{F}_{\mathbf{p}}=\mathbf{Z} / \mathbf{p z}$ prime field of characteristic p for prime p) - The China's algorithm establish the isomorphism between $\mathbf{F}_{\mathbf{p}_{1}} \oplus \mathbf{F}_{\mathbf{p}_{\mathbf{2}}}$ and $\mathbf{Z} / p_{1} p_{2} \mathbf{Z}$ if $p_{1} \neq p_{2}$.

This can be be prolonged:
Proposition The ring $\tilde{\mathbf{Z}}_{10}$ is isomorphic to the direct sum of the rings \mathbf{Z}_{2} and \mathbf{Z}_{5}.
Present explicitly the maps $\phi: \mathbf{Z}_{10} \rightarrow \mathbf{Z}_{2} \oplus \mathbf{Z}_{5}$ and inverse map $\psi: \mathbf{Z}_{2} \oplus \mathbf{Z}_{5} \rightarrow \mathbf{Z}_{10}$ which establish this isomorphism. If $x=\sum_{n=0}^{\infty} a_{n} 10^{n} \in \mathbf{Z}_{10}$ then

$$
\psi(x)=\left(\sum_{n=0}^{\infty}\left(5^{n} a_{n}\right) 2^{n}, \sum_{n=0}^{\infty}\left(2^{n} a_{n}\right) 5^{n}\right) \in \mathbf{Z}_{2} \oplus \mathbf{Z}_{5}
$$

Note that this map sends rational integrals on the diagonal: Image of ϕ on \mathbf{Z} is diagonal in $\mathbf{Z} \oplus \mathbf{Z}$.

The inverse map is little bit not so obvious:

Let $(x, y) \in \mathbf{Z}_{2} \oplus \mathbf{Z}_{5}$ where $x=\left(x_{0}, x_{1}, x_{2}, \ldots,\right)$ with $x_{k}=\sum_{n=0}^{k} a_{n} 2^{n}$ and $y=$ $\left(y_{0}, y_{1}, y_{2}, \ldots,\right)$ with $y_{k}=\sum_{n=0}^{k} b_{n} 5^{n}$. Show that there exists $z=\left(x_{0}, x_{1}, x_{2}, \ldots,\right)$ with $z_{k}=\sum_{n=0}^{k} c_{n} 10^{n}$ which obeys the conditions:

$$
z_{k}=x_{k}\left(\bmod 2^{k+1}\right), z_{k}=y_{k}\left(\bmod 5^{k+1}\right), k=0,1,2,3, \ldots
$$

and z_{k} are uniquely defined by these conditions. It follows from this statement that map $\psi=\phi^{-1}$ is defined by equation $\psi(x, y)=z$

For $k=0$ this is obvious. Suppose we proved it for $k \leq l$. For $k=l+1$ we have equations

$$
z_{l+1}=z_{l}+c_{l+1} 10^{l+1}=x_{l+1}=x_{l}+a_{l+1} 2^{l+1}\left(\bmod 2^{l+2}\right)
$$

and

$$
z_{l+1}=z_{l}+c_{l+1} 10^{l+1}=y_{l+1}=y_{l}+b_{l+1} 5^{l+1}\left(\bmod 5^{l+2}\right)
$$

on unknowns $a_{l+1}, b_{l+1} \in\{0,1,2,3,4,5,6,7,8,9\}$. These equations have solutions and these solution is unique because due to inductive hypothesis for $k=l z_{l}=x_{l}+\delta^{(2)} 2^{l+1}$ and $z_{l}=x_{l}+\delta^{(5)} 5^{l+1}$.

Remark The maps ϕ, ψ are "lifting" of the maps establishing isomorphism between ring $\mathbf{Z} / 10 \mathbf{Z}$ and direct sum of the fields $\mathbf{F}_{\mathbf{2}}$ and $\mathbf{F}_{\mathbf{5}}$.

Example. Consider an elements $(1,0) \in \mathbf{Z}_{2} \oplus \mathbf{Z}_{5}$. Find an element $z=\sum_{n=0}^{\infty} c_{n} 10^{n}$ such that $\phi(z)=(1,0)$. If $z=\left(z_{0}, z_{1}, z_{2}, z_{3}, \ldots\right)$ then one can see that

$$
z_{0}=5, z_{1}=25, z_{2}=625, \ldots
$$

we come to.... Yes! you are right we come to the sequence which we know very well from the school: sequence $5,25,625, \ldots$-sequence of numbers such that final digits of their squares coicide with these numbers: $5^{2}=25,25^{2}=6 \mathbf{2 5}, .$. In the language of 10 -adic numbers $z=\psi(1.0)$ is 10 -adic number $(5,25,625, \ldots)$ such that $x^{2}=x$. It is because

$$
x^{2}=(1,0)^{2}=(1,0)=x
$$

Now we see that the second non-trivial solution of the equation $x^{2}=x$ in the $\operatorname{ring} \mathbf{Z}_{2} \oplus \mathbf{Z}_{5}$ is $w=(0,1)$. One can see that

$$
\psi(0,1)=(6,76,376, \ldots)
$$

Remark The following simple and beautiful interpretation : equation $x^{2}=x$ has more than one solution since 10 is not a prime number*: \mathbf{Z}_{10} is not an integral domain; e.g. $(a, 0)(0, b)=(0,0)=0 .(1,0)(0,1)=0$

PseudoTeichmullers for \mathbf{Z}_{10}

[^0]Recall standard facts about Teichmuller map. If p is prime then the ring \mathbf{Z}_{p} possesses all roots of degree $p-1$ of unity, i.e. there exist a map $T: \mathbf{F}_{\mathbf{p}} \rightarrow \mathbf{Z}_{\mathbf{p}}$ (Teihmuller map) such that

$$
T^{p}(\bar{a})=T(a)
$$

One can see that $T(\bar{a} \bar{b})=T(\bar{a}) T(\bar{b})$ and $T(\overline{+} a \bar{b})=T(\bar{a})+T(\bar{b})=p \mathbf{Z}_{p}$ Here $\mathbf{F}_{\mathbf{p}}=$ $\{\overline{\mathbf{0}}, \overline{\mathbf{1}}, \overline{\mathbf{2}}, \ldots\}$ is a prime field of characteristic p.

Roughly speaking for any $a \in 1,2, \ldots, p-1$ there is p-adic number, i.e. a sequence $\left\{x_{0}, x_{1}, x_{2}\right\}$ such that $x_{k+1}=x_{k}\left(\bmod p^{k}\right)$ and $x_{k}^{p}=x_{k}+\ldots$. One can see that

$$
T(\bar{a})=\lim _{n \rightarrow \infty} a^{p^{n}}=\left(a, a^{p}, a^{p^{2}}, \ldots, a^{p^{n}}, \ldots\right)
$$

because $a^{p^{n+1}}=a^{p^{n+1}-p^{n}} a^{p^{n}}$ and $a^{p^{n+1}-p^{n}}=a^{\varphi\left(p^{n}\right)}=1+\ldots p^{n+1}$
What happens in $\tilde{\mathbf{Z}}_{10}$? We already know that for $\bar{a}=5,6 \in \mathbf{Z} / 10 \mathbf{Z} \tilde{T}(\overline{5})=(5,25, \ldots)$ and $\tilde{T}(6)=(6,76, \ldots)$ the order of these elements is equal to 2 .

Now look for all elements
$\bar{a}=1 \tilde{T}(\overline{1})=1$. Order is equal to $2\left(1^{2}=1\right)$
$\bar{a}=\overline{2}$. We have that $\overline{2}=(\overline{0}, \overline{2})$ in $\mathbf{F}_{\mathbf{2}} \oplus \mathbf{F}_{\mathbf{5}}$. We see that $\tilde{T}(\overline{2})=\left(0, T_{5}(\overline{2})=\left(0,2^{5^{\infty}}\right)\right.$. $2^{5^{\infty}}=(2,32$,$) Its image in \tilde{\mathbf{Z}}_{10}$ is equal to $2^{5^{\infty}}$

In the pedestrians language we come to the sequence:
$(2,32,432, \ldots)$ such that $2^{5}=32,32^{5}=\ldots 432,432^{5}=\ldots 4432$
$\bar{a}=\overline{3}$. We have that $\overline{3}=(\overline{1}, \overline{3})$ in $\mathbf{F}_{\mathbf{2}} \oplus \mathbf{F}_{\mathbf{5}}$. We see that $\tilde{T}(\overline{3})=\left(1, T_{5}(\overline{2})=\left(0,3^{5^{\infty}}\right)\right.$. $\left(T_{2}(1)=1\right) .3^{5^{\infty}}=(3, \ldots 43, \ldots 443, \ldots), 3^{5}=\ldots 43,43^{5}=\ldots 443$

Now we have to calculate the image of $\left(1,3^{5^{\infty}}\right)$ in $\tilde{\mathbf{Z}}_{10}$. Is it equal to $3^{5^{\infty}}$? Yes
In the pedestrians languange we come to the sequence:
$(3,43,443, \ldots)$ such that $3^{5}=43,43^{5}=\ldots 443,443^{5}=\ldots 443$
$\bar{a}=\overline{4}$. We have that $\overline{4}=(\overline{0}, \overline{4})$ in $\mathbf{F}_{\mathbf{2}} \oplus \mathbf{F}_{\mathbf{5}}$. Note that order of $\overline{4}$ in $\mathbf{F}_{\mathbf{5}}$ is equal to 2. We see that $\tilde{T}(\overline{4})=\left(0, T_{5}(\overline{4})=\left(0,4^{5^{\infty}}\right) .4^{5^{\infty}}=(4, \ldots 24, \ldots 624, \ldots), 4^{5}=\ldots 24\right.$, $24^{5}=\ldots 624,624^{5}=\ldots 624 \ldots$ In fact cubes not only fifth orders have the same end: $4^{3}=\ldots 4,24^{5}=\ldots \mathbf{2 4}, 624^{5}=\ldots \mathbf{6 2 4} \ldots$

The image of $\left(0,4^{5^{\infty}}\right)$ in $\tilde{\mathbf{Z}}_{10}$. Is it equal to $4^{5^{\infty}}$? Yes
In the pedestrians languange we come to the sequence:
$(4,24,624, \ldots)$ such that $4^{3}=\ldots 4,24^{3}=\ldots 24, \ldots$ and
$4^{5}=424,24^{5}=\ldots 6243$,
$\bar{a}=\overline{5}$. We have that $\overline{5}=(\overline{1}, \overline{0})$ in $\mathbf{F}_{\mathbf{2}} \oplus \mathbf{F}_{\mathbf{5}}$ We know already that $\tilde{T}(5)=(5,25,625, \ldots)$. 10 -adic number $x=5^{2^{\infty}}=(5,25,625, \ldots)$ obeys the equation $x^{2}=x$
$\bar{a}=\overline{6}$. We have that $\overline{6}=(\overline{0}, \overline{1})$ in $\mathbf{F}_{\mathbf{2}} \oplus \mathbf{F}_{5}$ We know already that $\tilde{T}(6)=(6,76,376, \ldots)$. 10 -adic number $y=6^{5^{\infty}}=(6,76,376, \ldots)$ obeys the equation $x^{2}=x$
$\bar{a}=\overline{7}$. We have that $\overline{6}=(\overline{1}, \overline{2})$ in $\mathbf{F}_{\mathbf{2}} \oplus \mathbf{F}_{5} 10$-adic number $x=7^{5^{\infty}}$ obeys the equation $x^{5}=x$.
$\bar{a}=\overline{8}$. We have that $\overline{6}=(\overline{0}, \overline{3})$ in $\mathbf{F}_{\mathbf{2}} \oplus \mathbf{F}_{5} 10$-adic number $x=8^{5^{\infty}}$ obeys the equation $x^{5}=x$.
$\bar{a}=\overline{9}$. We have that $\overline{9}=(\overline{1}, \overline{4})$ in $\mathbf{F}_{\mathbf{2}} \oplus \mathbf{F}_{\mathbf{5}} 10$-adic number $x=9^{5^{\infty}}$ obeys the equation $x^{3}=x\left(\right.$ and $\left.x^{5}=x\right)$.

[^0]: * This interpretation belongs to A.Veselov.

