
Integer points on the ellipse

Consider on R2 an ellipse

ax2 + 2bxy + cy2 = 1, (ac− b2 > 0, a > 0) (1)

such that
ac− b2 = 1, and a, c, b ∈ Z,

i.e. quadratic form ax2 + 2bxy + cy2 is defined by symmetric matrix in SL(2,Z)∗.

What about integer points (points with integer coordinates) on this ellipse, in the
interior of this ellipse?

Fact 1 The interior of the ellipse (2) possesses 4 points with integer coordinates
(except the origin (0, 0) ). All these points are on the ellipse (1).

Remark It is well-known that any domain M of the area 1 possesses at least two
points r1, r2 such that vector r2 − r1 has integer coordinates (Minkovsky lemma). This
implies the following

Fact 2 Any central-symmetric convex domain M of the area S(M) = 4 possesses at
least one point with integer coordinates except the point (0, 0).

It is evident that for an arbitrary ε > 0, there exists central-symmetric convex domain
Mε of the area S(M) = 4 − ε which does not possess any point with integer coordinates
except the point (0, 0). On the other hand it follows from the Fact 1 that the ellipse (1)
is a central-symmetric convex domain of the area S(∆) = π < 4 which possesses 4 integer
points.

Proof of the Fact 1.
This is evident in the case if a = b = 1 and b = 0. Ellipse becomes circle which

possesses exactly four integer points (1, 0), (1, 1), (−1, 0) and (1, 1) (on the boundary).
The Fact 1 follows from the following Proposition

Proposition A matrix equation X+X = B has a solution X ∈ SL(2,Z) if B is
symmetric matrix in SL(2,Z).

Indeed let X =
(

α β
γ δ

)
, (α, β γ, δ ∈ Z) be a solution of the equation (3) where B is a

matrix of quadratic form ax2+2bxy+cy2, which defines an ellipse (1): B =
(

a b
b c

)
. Then

linear transformation
(

x
y

)
→

(
α β
γ δ

)(
x
y

)
=

(
αx + βy
γx + δy

)
transforms circle x2+y2 = 1

onto the ellipse (1). This linear transformation establishes one-one map of lattice of points

∗ A group SL(2,Z) is a group of 2× 2 matrices with integer entries.
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with integer coordinates onto itself, since det X = 1. Points with integer coordinates on
the ellipse (1) are images of the points (1, 0), (1, 1), (−1, 0) and (1, 1). They are 4 points
(α, γ), (β, δ), (−α,−γ) and (β, δ).

It remains to prove the Proposition.
Proof

Consider matrices S =
(

0 1
−1 0

)
and T =

(
1 1
−1 0

)
in SL(2,Z), S2 = 1 and T 3 =

1∗. Analyze the action of these matrices T and S on the quadratic form ax2 + 2bxy + cy2:

B =
(

a b
b c

)
→ S+BS =

(
0 −1
1 0

)(
a b
b c

)(
0 1
−1 0

)
=

(
c −b
−b a

)

and

B =
(

a b
b c

)
→ T+BT =

(
1 −1
1 0

)(
a b
b c

) (
1 1
−1 0

)
=

(
a + c− 2b a− b

a− b a

)
.

It suffices to show that subsequent actions of these transformations a matrix B =
(

a b
b c

)

can be transformed to unity matrix E =
(

1 0
0 1

)
, i.e.

M+BM = E, where M = Sm1Tn1Sm2Tn2 . . . Smk−1Tnk−1SmkTnk . (2)

In this case matrix B = X+X and the matrix X = T 2nkSmkT 2nk−1Smk−1 . . . T 2n2Sm2T 2n1Sm1

is a solution of equation in Proposition.
To prove the relation (2) note that if b = 0 (in matrix B) then B = E. If B → S+BS

then b → −b, if B → T+BT then b → a − b and if B → T+T+BTT then b → c − b. On
the other hand if b > 0 then |a− b| < b or |c− b| < b. Therefore acting on B by one of the
matrices T , or T 2, TST , ST , or ST 2 or STST we decrease absolute value of b at lest on
one. Repeating this procedure we come to b = 0 ∗∗

∗ Matrices T, S are generators of the group SL(2,Z). The proof of Proposition is in the
spirit of the proof of this statement.
∗∗ More puristic way to say it is following: For a given matrix B consider a set M

of all matrices K+BK where K is a matrix generated by matrices S and T (K =

Sm1Tn1Sm2Tn2 . . . Smk−1Tnk−1SmkTnk). Consider in this set the matrix B0 =
(

a b
b a

)

such that entry b = B12 is minimal. Show that b = 0, thus B0 = E. Suppose that b 6= 0,
then acting on B by matrices S and T we can decrease the value of |b|. Contradiction.
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