Integer points on the ellipse

Consider on \mathbf{R}^{2} an ellipse

$$
\begin{equation*}
a x^{2}+2 b x y+c y^{2}=1, \quad\left(a c-b^{2}>0, a>0\right) \tag{1}
\end{equation*}
$$

such that

$$
a c-b^{2}=1, \text { and } a, c, b \in \mathbf{Z}
$$

i.e. quadratic form $a x^{2}+2 b x y+c y^{2}$ is defined by symmetric matrix in $S L(2, \mathbf{Z})^{*}$.

What about integer points (points with integer coordinates) on this ellipse, in the interior of this ellipse?

Fact 1 The interior of the ellipse (2) possesses 4 points with integer coordinates (except the origin $(0,0)$). All these points are on the ellipse (1).

Remark It is well-known that any domain M of the area 1 possesses at least two points $\mathbf{r}_{1}, \mathbf{r}_{2}$ such that vector $\mathbf{r}_{2}-\mathbf{r}_{1}$ has integer coordinates (Minkovsky lemma). This implies the following

Fact 2 Any central-symmetric convex domain M of the area $S(M)=4$ possesses at least one point with integer coordinates except the point $(0,0)$.

It is evident that for an arbitrary $\varepsilon>0$, there exists central-symmetric convex domain M_{ε} of the area $S(M)=4-\varepsilon$ which does not possess any point with integer coordinates except the point $(0,0)$. On the other hand it follows from the Fact 1 that the ellipse (1) is a central-symmetric convex domain of the area $S(\Delta)=\pi<4$ which possesses 4 integer points.

Proof of the Fact 1.

This is evident in the case if $a=b=1$ and $b=0$. Ellipse becomes circle which possesses exactly four integer points $(1,0),(1,1),(-1,0)$ and $(1,1)$ (on the boundary).

The Fact 1 follows from the following Proposition
Proposition A matrix equation $X^{+} X=B$ has a solution $X \in S L(2, \mathbf{Z})$ if B is symmetric matrix in $S L(2, \mathbf{Z})$.

Indeed let $X=\left(\begin{array}{cc}\alpha & \beta \\ \gamma & \delta\end{array}\right),(\alpha, \beta \gamma, \delta \in \mathbf{Z})$ be a solution of the equation (3) where B is a matrix of quadratic form $a x^{2}+2 b x y+c y^{2}$, which defines an ellipse (1): $B=\left(\begin{array}{ll}a & b \\ b & c\end{array}\right)$. Then linear transformation $\binom{x}{y} \rightarrow\left(\begin{array}{ll}\alpha & \beta \\ \gamma & \delta\end{array}\right)\binom{x}{y}=\binom{\alpha x+\beta y}{\gamma x+\delta y}$ transforms circle $x^{2}+y^{2}=1$ onto the ellipse (1). This linear transformation establishes one-one map of lattice of points

[^0]with integer coordinates onto itself, since $\operatorname{det} X=1$. Points with integer coordinates on the ellipse (1) are images of the points $(1,0),(1,1),(-1,0)$ and $(1,1)$. They are 4 points $(\alpha, \gamma),(\beta, \delta),(-\alpha,-\gamma)$ and (β, δ).

It remains to prove the Proposition.
Proof
Consider matrices $S=\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right)$ and $T=\left(\begin{array}{cc}1 & 1 \\ -1 & 0\end{array}\right)$ in $S L(2, \mathbf{Z}), S^{2}=1$ and $T^{3}=$ 1^{*}. Analyze the action of these matrices T and S on the quadratic form $a x^{2}+2 b x y+c y^{2}$:

$$
B=\left(\begin{array}{ll}
a & b \\
b & c
\end{array}\right) \rightarrow S^{+} B S=\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right)\left(\begin{array}{ll}
a & b \\
b & c
\end{array}\right)\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right)=\left(\begin{array}{cc}
c & -b \\
-b & a
\end{array}\right)
$$

and

$$
B=\left(\begin{array}{ll}
a & b \\
b & c
\end{array}\right) \rightarrow T^{+} B T=\left(\begin{array}{cc}
1 & -1 \\
1 & 0
\end{array}\right)\left(\begin{array}{ll}
a & b \\
b & c
\end{array}\right)\left(\begin{array}{cc}
1 & 1 \\
-1 & 0
\end{array}\right)=\left(\begin{array}{cc}
a+c-2 b & a-b \\
a-b & a
\end{array}\right)
$$

It suffices to show that subsequent actions of these transformations a matrix $B=\left(\begin{array}{ll}a & b \\ b & c\end{array}\right)$ can be transformed to unity matrix $E=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$, i.e.

$$
\begin{equation*}
M^{+} B M=E, \quad \text { where } M=S^{m_{1}} T^{n_{1}} S^{m_{2}} T^{n_{2}} \ldots S^{m_{k-1}} T^{n_{k-1}} S^{m_{k}} T^{n_{k}} \tag{2}
\end{equation*}
$$

In this case matrix $B=X^{+} X$ and the matrix $X=T^{2 n_{k}} S^{m_{k}} T^{2 n_{k-1}} S^{m_{k-1}} \ldots T^{2 n_{2}} S^{m_{2}} T^{2 n_{1}} S^{m_{1}}$ is a solution of equation in Proposition.

To prove the relation (2) note that if $b=0$ (in matrix B) then $B=E$. If $B \rightarrow S^{+} B S$ then $b \rightarrow-b$, if $B \rightarrow T^{+} B T$ then $b \rightarrow a-b$ and if $B \rightarrow T^{+} T^{+} B T T$ then $b \rightarrow c-b$. On the other hand if $b>0$ then $|a-b|<b$ or $|c-b|<b$. Therefore acting on B by one of the matrices T, or $T^{2}, T S T, S T$, or $S T^{2}$ or $S T S T$ we decrease absolute value of b at lest on one. Repeating this procedure we come to $b=0^{* *}$

[^1]
[^0]: * A group $S L(2, \mathbf{Z})$ is a group of 2×2 matrices with integer entries.

[^1]: * Matrices T, S are generators of the group $S L(2, \mathbf{Z})$. The proof of Proposition is in the spirit of the proof of this statement.
 ${ }^{* *}$ More puristic way to say it is following: For a given matrix B consider a set \mathcal{M} of all matrices $K^{+} B K$ where K is a matrix generated by matrices S and $T(K=$ $\left.S^{m_{1}} T^{n_{1}} S^{m_{2}} T^{n_{2}} \ldots S^{m_{k-1}} T^{n_{k-1}} S^{m_{k}} T^{n_{k}}\right)$. Consider in this set the matrix $B_{0}=\left(\begin{array}{cc}a & b \\ b & a\end{array}\right)$ such that entry $b=B_{12}$ is minimal. Show that $b=0$, thus $B_{0}=E$. Suppose that $b \neq 0$, then acting on B by matrices S and T we can decrease the value of $|b|$. Contradiction.

