
14 November 2018.

The file below was written more that six years ago. It is about the el-

egant (at least it seems to me such) way to calculate the number

Sk = #{number of permutations of k elements which replace every element} .

E.g. S1 = 0,S2 = 1, S3 = 2.

Few days ago I realise that the Z2-verion of the file (that is informa-

tion about that S2 is odd or even) has a meaning for calculating determinants

(see the etude linearalgebr.tex). I present it here as the addendum to the

main text.

One combinatorial problem

Autumn, 2012

It was long long long ago when I solved the following exercise: Denote by Sk a number

of sequences of n natural numbers {1, 2, 3, . . . , k} such that all the numbers are on the

wrong places, i.e. the first number is not 1, the second number is not 2, e.t.c.

I forget the calculations. I just rememeber that they were not nice, but the answer was

beautiful, something like Sk ≈ k!/e. Two months ago I found a following beautiful solution.

Here it is:

One can see that

n∑
k=1

Ck
nSk = n! , (1)

where Ck
n =

(
n
k

)
= n!

k!(n−k)! . (The right hand sight of equation (1) is the number of all

permutations of the set with n elements. The summand Ck
nSk in the left hand side is the

number of permutations such that exactly n− k elements are fixed∗.)

Recall that the n-th derivative of the product FG of two functions F and G is given

by the formula(
dn

dxn

)
(F (x)G(x)) =

n∑
k=1

Ck
n

(
d

dx

)k

(F (x))

(
d

dx

)n−k

(G(x)) .

Comparing this formula with relation (1) we see that if we choose

F =
∑ Sk

k!
xk , and G = ex ,

then (
dn

dxn

)
(F (x)G(x))x=0 =

(
dn

dxn

)
(F (x)ex)x=0 =

n∑
k=1

Ck
nSk = n! .

∗ One can see that it is reasonable to assume that S0 = 1
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Hence

F (x)ex =
1

1− x
= 1 + x + x2 + x3 + . . .

in a vicinity of x = 0. We come to the answer: the sequence Sk is such that

F =

∞∑
k=0

Sk

k!
=

e−x

1− x
.

Using this formula we write down the explicit formula for Sk. Denote by sk = Sk

k! . We

have that

∞∑
k=0

Sk

k!
xk =

∞∑
k=0

skx
k =

e−x

1− x
=

(
1− x +

x2

2
− x3

3!
+

x4

4!
− x5

5!
+ . . .

)(
1 + x + x2 + x3 + . . .

)

= 1+(1− 1)x+

(
1− 1 +

1

2!

)
x2+

(
1− 1 +

1

2!
− 1

3!

)
x3+

(
1− 1 +

1

2!
− 1

3!
+

1

4!

)
x4+. . .

i.e.

sk =
Sk

k!
=

k∑
p=0

(−1)p

p!
, and Sk = k!

k∑
p=0

(−1)p

p!
. (2)

In particular

s∞ = lim
k→∞

=
∞∑
p=0

(−1)p

p!
=

1

e
, (3)

i.e. the probability that all terms of the sequence {1, 2, 3, . . . , N} are on the wrong places

equals to ≈ 1
e when N →∞.

Is Sk even or odd?

.

This question is in particular important e.g. in linear algebra

We can straightforwardly answer this question, analyzing the formula (2):

Sk is even if k is odd, and Sk is odd if k is even (4)

This is much better to come to the answer just analyzing the formula (1) over the field Z2.

Notice that ∑
even k

Ck
n =

∑
odd k

Ck
n = 2n−1 . (5)

Now it has just to check that the sequence (4) obeys the equations
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It is evident that for every N , the sysem of N + 1 equations

n∑
i=0

Ci
nSi = n! , i.e.


C0

0S0 = S0 = 1
C0

1S0 + C1
1S1 = S0 + S1 = 1

C0
2S0 + C1

2S1 + C2
2S2 = S0 + 3S1 + S2 = 2

C0
3S0 + C1

3S1 + C2
3S2 + C3

3S3 = S0 + 3S1 + 3S2 + S3 = 6
. . .

(5)

on N +1 variables S0, S1, S2, . . . SN has unique solution S0 = 1, S1 = 0, S2 = 1,S3 = 3,. . ..

Hence it has unique solution in the field Z2. On the other hand the sequence identity (5)

implies that the sequence (4) is the solution of equations (5). This proves that all Sk have

parity k + 1.
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