14 November 2018.
The file below was written more that six years ago. It is about the elegant (at least it seems to me such) way to calculate the number
$S_{k}=\#\{$ number of permutations of k elements which replace every element $\}$.
E.g. $S_{1}=0, S_{2}=1, S_{3}=2$.

Few days ago I realise that the Z_{2}-verion of the file (that is information about that S_{2} is odd or even) has a meaning for calculating determinants (see the etude linearalgebr.tex). I present it here as the addendum to the main text.

One combinatorial problem

Autumn, 2012
It was long long long ago when I solved the following exercise: Denote by S_{k} a number of sequences of n natural numbers $\{1,2,3, \ldots, k\}$ such that all the numbers are on the wrong places, i.e. the first number is not 1, the second number is not 2, e.t.c.

I forget the calculations. I just rememeber that they were not nice, but the answer was beautiful, something like $S_{k} \approx k!/ e$. Two months ago I found a following beautiful solution. Here it is:

$$
\begin{equation*}
\text { One can see that } \quad \sum_{k=1}^{n} C_{n}^{k} S_{k}=n! \tag{1}
\end{equation*}
$$

where $C_{n}^{k}=\binom{n}{k}=\frac{n!}{k!(n-k)!}$. (The right hand sight of equation (1) is the number of all permutations of the set with n elements. The summand $C_{n}^{k} S_{k}$ in the left hand side is the number of permutations such that exactly $n-k$ elements are fixed*.)

Recall that the n-th derivative of the product $F G$ of two functions F and G is given by the formula

$$
\left(\frac{d^{n}}{d x^{n}}\right)(F(x) G(x))=\sum_{k=1}^{n} C_{n}^{k}\left(\frac{d}{d x}\right)^{k}(F(x))\left(\frac{d}{d x}\right)^{n-k}(G(x))
$$

Comparing this formula with relation (1) we see that if we choose

$$
F=\sum \frac{S_{k}}{k!} x^{k}, \quad \text { and } G=e^{x}
$$

then

$$
\left(\frac{d^{n}}{d x^{n}}\right)(F(x) G(x))_{x=0}=\left(\frac{d^{n}}{d x^{n}}\right)\left(F(x) e^{x}\right)_{x=0}=\sum_{k=1}^{n} C_{n}^{k} S_{k}=n!.
$$

[^0]Hence

$$
F(x) e^{x}=\frac{1}{1-x}=1+x+x^{2}+x^{3}+\ldots
$$

in a vicinity of $x=0$. We come to the answer: the sequence S_{k} is such that

$$
F=\sum_{k=0}^{\infty} \frac{S_{k}}{k!}=\frac{e^{-x}}{1-x}
$$

Using this formula we write down the explicit formula for S_{k}. Denote by $s_{k}=\frac{S_{k}}{k!}$. We have that
$\sum_{k=0}^{\infty} \frac{S_{k}}{k!} x^{k}=\sum_{k=0}^{\infty} s_{k} x^{k}=\frac{e^{-x}}{1-x}=\left(1-x+\frac{x^{2}}{2}-\frac{x^{3}}{3!}+\frac{x^{4}}{4!}-\frac{x^{5}}{5!}+\ldots\right)\left(1+x+x^{2}+x^{3}+\ldots\right)$
$=1+(1-1) x+\left(1-1+\frac{1}{2!}\right) x^{2}+\left(1-1+\frac{1}{2!}-\frac{1}{3!}\right) x^{3}+\left(1-1+\frac{1}{2!}-\frac{1}{3!}+\frac{1}{4!}\right) x^{4}+\ldots$
i.e.

$$
\begin{equation*}
s_{k}=\frac{S_{k}}{k!}=\sum_{p=0}^{k} \frac{(-1)^{p}}{p!}, \text { and } S_{k}=k!\sum_{p=0}^{k} \frac{(-1)^{p}}{p!} . \tag{2}
\end{equation*}
$$

In particular

$$
\begin{equation*}
s_{\infty}=\lim _{k \rightarrow \infty}=\sum_{p=0}^{\infty} \frac{(-1)^{p}}{p!}=\frac{1}{e} \tag{3}
\end{equation*}
$$

i.e. the probability that all terms of the sequence $\{1,2,3, \ldots, N\}$ are on the wrong places equals to $\approx \frac{1}{e}$ when $N \rightarrow \infty$.

$$
\text { Is } S_{k} \text { even or odd? }
$$

This question is in particular important e.g. in linear algebra
We can straightforwardly answer this question, analyzing the formula (2):
S_{k} is even if k is odd, and S_{k} is odd if k is even

This is much better to come to the answer just analyzing the formula (1) over the field Z_{2}. Notice that

$$
\begin{equation*}
\sum_{\text {even } k} C_{n}^{k}=\sum_{\text {odd } k} C_{n}^{k}=2^{n-1} \tag{5}
\end{equation*}
$$

Now it has just to check that the sequence (4) obeys the equations

It is evident that for every N, the sysem of $N+1$ equations

$$
\sum_{i=0}^{n} C_{n}^{i} S_{i}=n \text { !, i.e. }\left\{\begin{array}{l}
C_{0}^{0} S_{0}=S_{0}=1 \tag{5}\\
C_{1}^{0} S_{0}+C_{1}^{1} S_{1}=S_{0}+S_{1}=1 \\
C_{2}^{0} S_{0}+C_{2}^{1} S_{1}+C_{2}^{2} S_{2}=S_{0}+3 S_{1}+S_{2}=2 \\
C_{3}^{0} S_{0}+C_{3}^{1} S_{1}+C_{3}^{2} S_{2}+C_{3}^{3} S_{3}=S_{0}+3 S_{1}+3 S_{2}+S_{3}=6 \\
\ldots
\end{array}\right.
$$

on $N+1$ variables $S_{0}, S_{1}, S_{2}, \ldots S_{N}$ has unique solution $S_{0}=1, S_{1}=0, S_{2}=1, S_{3}=3, \ldots$. Hence it has unique solution in the field Z_{2}. On the other hand the sequence identity (5) implies that the sequence (4) is the solution of equations (5). This proves that all S_{k} have parity $k+1$.

[^0]: * One can see that it is reasonable to assume that $S_{0}=1$

