$$
\operatorname{Sum} 1+2+3+\ldots=-\frac{1}{12}
$$

Yesterday David showed me the file in 'Youtube' where it is given very elegant 'proof' of this relation (see http://goo.gl/bYh4DL) I decided to write down here the standard calculations which lead to this result. Here they are

We present here calculation of analytical continuation of Riemann ζ-function. In particular we come to Euler formula of calculation of ζ-function at negative integers. The title of this étude $=$ value of ζ-function at $s=-1$.

Recall that for Γ-function

$$
\begin{equation*}
\Gamma(s)=\int_{0}^{\infty} t^{s-1} e^{-t} d t \tag{1a}
\end{equation*}
$$

It obeys the relation

$$
\begin{equation*}
\Gamma(s+1)=s \Gamma(s) \tag{1b}
\end{equation*}
$$

These relations define Γ-function for all complex plane. Since $\Gamma(1)=1$ hence due to (1b) $\Gamma(n+1)=n$!. One can see that that Γ-function has poles at all non-positive integers. Indeed

$$
\Gamma(s)=\frac{s(s+1)(s+2) \ldots(s+n) \Gamma(s)}{s(s+1) \ldots(s+n)}=\frac{\Gamma(s+n+1)}{s(s+1) \ldots(s+n)} .
$$

Hence in a vicinity of an arbitrary point s, for $s=-n+\varepsilon(n=0,-1,-2, \ldots)$

$$
\begin{equation*}
\Gamma(s)=\Gamma(-n+\varepsilon)=\frac{\Gamma(1+\varepsilon)}{(-n+\varepsilon)(-n+1+\varepsilon) \ldots(-1+\varepsilon) \varepsilon}=\frac{(-1)^{n}}{n!}\left(\frac{1}{\varepsilon}+\ldots\right) \tag{1c}
\end{equation*}
$$

Express ζ-function, $\zeta(s)=\sum_{n=1}^{\infty} \frac{1}{n^{s}}$ in terms of Γ-function.
It follows from (1a) that

$$
\begin{equation*}
\zeta(s)=\sum_{n=1}^{\infty} \frac{1}{n^{s}}=\sum_{n=1}^{\infty}\left(\frac{1}{\Gamma(s)} \int_{0}^{\infty} t^{s-1} e^{-n t} d t\right)=\frac{1}{\Gamma(s)} \int_{0}^{\infty} t^{s-1} \frac{e^{-t} d t}{1-e^{-t}} \tag{2}
\end{equation*}
$$

Consider an expansion of function $\frac{e^{-t}}{1-e^{-t}}$ in a vicinity of point $t=0$:

$$
\begin{equation*}
\frac{e^{-t}}{1-e^{-t}}=\sum_{k=-1}^{\infty} \Psi_{k} t^{k}=\frac{1}{t}-\frac{1}{2}+\frac{t}{12}-\frac{t^{3}}{720}+\ldots \tag{3}
\end{equation*}
$$

Remark Notice that all coefficients $\Psi_{2 k}$ in this expansion vanish for $k \geq 1$ since

$$
\begin{equation*}
\frac{e^{-t}}{1-e^{-t}}=-\frac{1}{2}+\underbrace{\frac{1}{2} \operatorname{cotan} \frac{t}{2}}_{\text {even function }} . \tag{3b}
\end{equation*}
$$

Now using expansion (3) we see that right hand side in (2) is convergent for $\Re s>2$:

$$
\begin{gathered}
\zeta(s)=\frac{1}{\Gamma(s)} \int_{0}^{\infty} t^{s-1} \frac{e^{-t} d t}{1-e^{-t}}=\frac{1}{\Gamma(s)} \int_{0}^{1} t^{s-1} \frac{e^{-t} d t}{1-e^{-t}}+\frac{1}{\Gamma(s)} \int_{1}^{\infty} t^{s-1} \frac{e^{-t} d t}{1-e^{-t}}= \\
=\frac{1}{\Gamma(s)} \sum_{k \geq-1} \int_{0}^{1} \Psi_{k} t^{s+k-1} d t+\frac{1}{\Gamma(s)} \int_{1}^{\infty} t^{s-1} \frac{e^{-t} d t}{1-e^{-t}}
\end{gathered}
$$

For $\Re s>2^{*}$

$$
\begin{equation*}
\zeta(s)=\sum \frac{1}{n^{s}}=\sum_{k=-1}^{\infty} \frac{\Psi_{k}}{(k+s) \Gamma(s)}+\frac{1}{\Gamma(s)} \int_{1}^{\infty} t^{s-1} \frac{e^{-t} d t}{1-e^{-t}} \tag{4}
\end{equation*}
$$

Now note that the integral in this expression is analytical function for all s. Hence equation (4) defines analytical continuation, meromorphic ζ-function for all s.

We focus at the values of $\zeta(s)$ at non-positive integers. Non-positive integers are poles of Γ-function (see $1(\mathrm{c})$). Hence the second integral vanishes at these points. Due to relation (1c) we have that all terms which are proportional to $\frac{1}{\Gamma(s)(k+s)}$ for $k \neq m$ vanish too at the point $s=-m$. We have from (1c) that

$$
\zeta(-m)=\left.\sum_{k=1}^{-\infty} \frac{\Psi_{k}}{\Gamma(s)(s+k)}\right|_{s=-m}=\left.\frac{\Psi_{m}}{\Gamma(s)(s+m)}\right|_{s=-m}
$$

Now recall the behaviour of Γ-function in a vicinity of the pole $s=-m$. Due to (1c) $\Gamma(s)=\Gamma(-m+\varepsilon)=\frac{(-1)^{m}}{m!}\left(\frac{1}{\varepsilon}+O(1)\right)$ and

$$
\begin{equation*}
\zeta(-m)=\left.\frac{\Psi_{m}}{\Gamma(s)(s+m)}\right|_{s=-m}=\lim _{\varepsilon \rightarrow 0} \frac{\Psi_{m}}{\Gamma(-m+\varepsilon) \varepsilon}=(-1)^{m} m!\Psi_{m} \tag{5}
\end{equation*}
$$

* To calculate analytical continuation we represented the integral \int_{0}^{∞} as a sum of integrals \int_{0}^{1} and \int_{1}^{∞}. One can show that the function $\frac{e^{-t}}{1-e^{-t}}$ can be replaced under integral \int_{0}^{1} by series $\sum \Psi_{k} t^{k}$ in spite of the fact that there is no convergence at the point $t=1$. To avoid this additional work one may take an arbitrary $a: 0<a<1$ and represent the integral as a sum of integrals \int_{0}^{a} and \int_{a}^{∞}. In this case we have no any problem with series convergence: $\zeta(s)=\frac{1}{\Gamma(s)} \int_{0}^{\infty} t^{s-1} \frac{e^{-t} d t}{1-e^{-t}}=$

$$
=\frac{1}{\Gamma(s)} \int_{0}^{a} t^{s-1} \frac{e^{-t} d t}{1-e^{-t}}+\frac{1}{\Gamma(s)} \int_{a}^{\infty} t^{s-1} \frac{e^{-t} d t}{1-e^{-t}}=\sum_{k=-1}^{\infty} \frac{\Psi_{k} a^{k+s}}{(k+s) \Gamma(s)}+\frac{1}{\Gamma(s)} \int_{a}^{\infty} \frac{t^{s-1} e^{-t} d t}{1-e^{-t}}
$$

One can see that we again come to (5) since only the term which possesses $a^{0}=1$ gives contribution to the integral. (Intersting remark for curious reader that the answer does not depend on a choice of a).

This is the answer. In particular due to (3b)

$$
\begin{equation*}
\zeta(-2 m)=0, \quad \text { for } m \geq 1 \tag{5b}
\end{equation*}
$$

We have
$\zeta(0)=\Psi_{0}=-\frac{1}{2}, \quad \zeta(-1)=-\Psi_{1}=-\frac{1}{12}, \quad \zeta(-2)=0, \quad \zeta(-3)=-6 \Psi(3)=\frac{1}{120}, \zeta(-4)=0$,
and so on,
One can say that in Pickwickian sense

$$
1^{m}+2^{m}+3^{m}+\ldots+k^{m}+\ldots{ }^{\prime}={ }^{\prime} m!(-1)^{m} \Psi_{-m}
$$

in particular we come to very famous in string theory paradox:

$$
1+2+3+\ldots+k+\ldots{ }^{\prime}=^{\prime}-\Psi_{-1}=-\frac{1}{12}
$$

Note that relation (5b) describes all so called trivial zeros of ζ function.

