26 July 2014
Sum 1+2+4+3+...=—3%

Yesterday David showed me the file in "Youtube’ where it is given very elegant ‘proof’
of this relation (see hitp://goo.gl/bYh)DL) I decided to write down here the standard cal-
culations which lead to this result. Here they are

We present here calculation of analytical continuation of Riemann (-function. In
particular we come to Euler formula of calculation of (-function at negative integers. The
title of this étude = value of (-function at s = —1.

Recall that for I'-function

I'(s) :/ ts e tdt . (la)
0
It obeys the relation
I(s+1) =sI'(s). (1b)

These relations define I'-function for all complex plane. Since I'(1) = 1 hence due to (1b)
I'(n 4+ 1) = n!. One can see that that I'-function has poles at all non-positive integers.
Indeed

I(s) = s(s+1)(s+2)...(s+n)I'(s)  T(s+n+1)
s(s+1)...(s+n) s(s+1)...(s+n)
Hence in a vicinity of an arbitrary point s, for s = —n+¢ (n=0,—1,-2,...)

B B I'(1+e¢) (= /1
F(S)_F(_n+€)_(—n+5)(—n+1+6)...(—1+8)5_ n! <E+“')' (1c)

Express ¢-function, ((s) = Y., - in terms of I'-function.
It follows from (1a) that

((s) = i % — Ool (ﬁ /OOO ts_le_”tdt) = ﬁ /OOO g1 f:tjft 2)
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Consider an expansion of function £_— in a vicinity of point ¢ = 0:

Remark Notice that all coefficients Woy, in this expansion vanish for & > 1 since
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Now using expansion (3) we see that right hand side in (2) is convergent for s > 2:

(s) 1 /"Ots_l e tdt 1 /lts—l e tdt L /“ts_l e tdt
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For Rs > 2*
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Now note that the integral in this expression is analytical function for all s. Hence equation
(4) defines analytical continuation, meromorphic (-function for all s.

We focus at the values of ((s) at non-positive integers. Non-positive integers are poles
of I'-function (see 1(c)). Hence the second integral vanishes at these points. Due to relation
(1c) we have that all terms which are proportional to m for k # m vanish too at

the point s = —m. We have from (1c) that
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G=m) = ; I(s)(s+ k) o= = I'(s)(s+m) P
Now recall the behaviour of I'-function in a vicinity of the pole s = —m. Due to (1c)
[(s) =T(-m+¢e) = SN (L + 0(1)) and
v v
¢(=m) F(S)(S—I—m)L:*m El_r% T(—m+¢)e (=1)"m (5)

* To calculate analytical continuation we represented the integral fooo as a sum of

integrals fol and floo. One can show that the function 13—;; can be replaced under integral

fol by series > W, t* in spite of the fact that there is no convergence at the point ¢ = 1.
To avoid this additional work one may take an arbitrary a:0 < a < 1 and represent the

integral as a sum of integrals foa and f °°_ In this case we have no any problem with series

s—1e 'dt _
convergence: ((s) = F(S fo i =
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One can see that we again come to (5) since only the term which possesses a® = 1 gives
contribution to the integral. (Intersting remark for curious reader that the answer does
not depend on a choice of a).




This is the answer. In particular due to (3b)

¢(—2m) =0, form>1

We have

1 1
(O)=To=—3. ()= =—" (D=0, ((~3)=6¥(3)
and so on,

One can say that in Pickwickian sense
1™+ 2"+ 3"+ .+ k" = (=),

in particular we come to very famous in string theory paradox:

1

1+2+3+...+k+...‘:’—\If_lz—ﬁ.

Note that relation (5b) describes all so called trivial zeros of ¢ function.



