A number such that its square finishes on it and Veselov's comment on it

Find a number x such that its square, a number x^{2} finishes with it. More precisely this means the following: We say that a number x has m-digits and it is finished with it if

$$
\begin{equation*}
10^{m} \leq x<10^{m+1}, \text { and } \quad x^{2}-x \text { divides } 10^{m} . \tag{1}
\end{equation*}
$$

Remark E.g. a number $x=0625$ has 4 digits and it is finished with it:

$$
625<10^{4} 625^{2}-625=390000,390000 \text { divides } 10.000
$$

This is very old problem for me ${ }^{1}$) About five years ago Sasha Veselov made very beatuiful comment on this. It follows from the Theorem below that 10 is not a prime number!

Indeed, suppose that 10 is prime. Then 10 -adic is a field and in the field there is no solutions of equation

$$
x^{2}=x
$$

except trivial: $x=0$. This contradicts the statement of the theorem.
One can say that Veselov's statement is very sophisticated way to prove that a number 10 is not a prime.

Theorem There are two exactly two sequences

$$
a_{1}, a_{2}, \ldots, a_{n}, \ldots=5,25,625,0625,90625,890625,2890625, \ldots
$$

and

$$
b_{1}, b_{2}, \ldots, b_{n}, \ldots=6,76,376, \ldots
$$

such that

1) all the numbers in these sequences obey the condition, that their squares are finished by them.
2) Any number a_{n} in the first sequence possesses not more than n digits: $a_{n}<10^{n}$, respectively any number b_{n} in the second sequence possesses not more than n digits: $a_{n}<$ 10^{n}.
3) Any number such that its square finish by it belongs to the first or to the second sequence

This follows from the following inductive statement

Lemma

Suppose by induction that a number a_{n} contains n digits (zeroes are permitted (see the Remark)), and it is finished by it. Then there is exists a number a_{n+1} which contains $n+1$ digits (zeroes are permitted (see the Remark)) and it is finished by it.

$$
a_{n}<10^{n}, a_{n}^{2}-a_{n}=0\left(\bmod 10^{n}\right) \Rightarrow \text { there exists a number } a_{n+1} \text { such that }
$$

[^0]\[

$$
\begin{equation*}
a_{n+1}: a_{n+1}<10^{n}, a_{n+1}^{2}-a_{n+1}=0\left(\bmod 10^{n+1}\right), \tag{4}
\end{equation*}
$$

\]

where $a_{n+1}=10^{n} x_{n}+a_{n}(x=0,1, \ldots, 9)$ (if $x=0$ then a number a_{n+1} may "slip" a digit. (see the remark after equation (1).)) First note that

$$
a_{n}^{2}-a_{n}=10^{n} s_{n},
$$

and

$$
b_{m}^{2}-b_{m}=10^{m} t_{m},
$$

with s_{n} and t_{m} which are integers. Hence

$$
a_{n+1}^{2}-a_{n+1}=\left(10^{n} x_{n}+a_{n}\right)^{2}-\left(10^{n} x_{n}+a_{n}\right)=10^{n}\left(10^{n} x^{2}+2 x_{n} a_{n}+s_{n}-x\right) .
$$

and respectively

$$
b_{m+1}^{2}-b_{m+1}=\left(10^{m} x+b_{m}\right)^{2}-\left(10^{m} x+b_{m}\right)=10^{m}\left(10^{m} x^{2}+2 x_{m} b_{m}+t_{m}-x\right) .
$$

We see that expressions $10^{n}\left(10^{n} x^{2}+2 x a_{n}+s_{n}-x\right)$ and $\left(10^{m}\left(10^{m} x^{2}+2 x_{m} b_{m}+t_{m}-x\right)\right.$ has to be divisible on 10^{n+1}. Hence one has to choose x_{n} such that

$$
\begin{equation*}
x_{n}\left(2 a_{n}-1\right)+s_{n}=0(\bmod 10), \tag{5}
\end{equation*}
$$

where

$$
\begin{equation*}
a_{n+1}=10^{n} x_{n}+a_{n} \tag{6}
\end{equation*}
$$

or respectively

$$
y_{m}\left(2 b_{m}-1\right)+t_{m}=0(\bmod 10),
$$

where

$$
b_{n+1}=10^{n} x_{n}+b_{n}
$$

Solve equation (5) or equation (5')

$$
\begin{array}{ccc}
a=1, & x+s=0, & x=9 s(\bmod 10) \\
a=2, & 3 x+s=0, & x=3 s(\bmod 10) \\
a=3, & 5 x+s=0, & \text { no solutions } \\
a=4, & 7 x+s=0, & x=7 s(\bmod 10) \\
a=5, & 9 x+s=0, & x=s(\bmod 10) \tag{7}\\
a=6, & x+s=0, & x=9 s(\bmod 10) \\
a=7, & 3 x+s=0, & x=3 s(\bmod 10) \\
a=8, & 5 x+s=0, & \text { no solutions } \\
a=9, & 7 x+s=0, & x=7 s(\bmod 10)
\end{array}
$$

We see that system (5) has no solutions if $a=3$ or if $a=8$. On the other hand in the equation (5) when we change a_{n} on a_{n+1} then according equation (6) the multiplier $2 a_{n}-1$ is changed on the $2 a_{n+1}-1=2\left(10^{n} x+a_{n}\right)-1$. We see that the multiplier $(2 a-1)$ remains the same modulo 10 This means that the multiplier $(2 a-1)$ never will be equal to 5 .

Lemma is proved.
Consider examples.
1 Take $N=1$ and $a_{1}=5,\left(10^{n_{1}}=10\right)$,
$a_{1}^{2}-a_{1}=20, s_{1}=\frac{a_{1}^{2}-a_{1}}{10}=2$. Choose x_{2} in (5). We have
$\left(2 a_{1}-1\right) x_{2}+2=0(\bmod 10), 9 x_{2}+2=0 \Rightarrow x_{2}=2(\bmod 10), a_{2}=10 \cdot 2+5=25$.
Respectively take $M=1$ and $b_{1}=6,\left(10^{m_{1}}=10\right)$, $b_{1}^{2}-b_{1}=30, t_{1}=\frac{b_{1}^{2}-b_{1}}{10}=3$. Choose y_{2} in (5^{\prime}).
We have

$$
\left(2 b_{1}-1\right) y_{2}+3=0 \Rightarrow y_{2}=7(\bmod 10), b_{2}=10 \cdot 7+6=76 .
$$

Thus we have two sequences

$$
\{5,25, \ldots\} ;\{6,76, \ldots\}
$$

2 Take $N=2$ and $a_{2}=25,\left(10^{n_{2}}=100\right)$, $a_{2}^{2}-a_{2}=600, s_{2}=\frac{a_{2}^{2}-a_{2}}{100}=6$. Choose x in (5). We have $\left(2 a_{2}-1\right) x_{2}+s_{2}=0(\bmod 10), 49 x_{2}+6=(\bmod 10), x_{2}=6(\bmod 10), a_{3}=100 \cdot 6+25=625$.

Respectively take $M=2$ and $b_{2}=76,\left(10^{n_{2}}=100\right)$,

$$
b_{2}^{2}-b_{2}=5700, t_{2}=\frac{b_{2}^{2}-b_{2}}{100}=57 . \text { Choose } x \text { in (5). We have }
$$

$151 x+57=0(\bmod 10), x+7=0(\bmod 10), x=3(\bmod 10), b_{3}=100 \cdot 3+76=376$.
Thus we have two sequences

$$
\{5,25,625 \ldots\} ;\{6,76,376 \ldots\}
$$

3 Take $N=3$ and $a_{3}=625,\left(10^{n_{3}}=1000\right)$,
$a_{3}^{2}-a_{3}=390.000, s_{3}=\frac{a_{3}^{2}-a_{3}}{1000}=390$. Choose x in (5). We have

$$
\left(2 a_{3}-1\right) x_{3}+s_{3}=0(\bmod 10), 1249 x+390=0(\bmod 10), 9 x=0(\bmod 10), x=0(\bmod 10),
$$

$$
a_{4}=100 \cdot 0+25=0625 .
$$

Respectively take $M=3$ and $b_{3}=376,\left(10^{n_{3}}=1000\right)$,

$$
\begin{aligned}
& b_{3}^{2}-b_{3}=141000, t_{3}=\frac{a_{3}^{2}-a_{3}}{1000}=141 . \text { Choose } x \text { in }(5) . \text { We have } \\
& \left(2 b_{3}-1\right) y_{3}+t_{3}=0(\bmod 10), 751 y_{3}+141=0(\bmod 10), y_{3}+1=0(\bmod 10), y_{3}=9
\end{aligned}
$$

$$
b_{4}=1000 y_{3}+b_{3}=9376
$$

Thus we have two sequences

$$
\{5,25,625,0625 \ldots\} ;\{6,76,376,9376 \ldots\}
$$

4 Take $N=4$ and $a_{4}=0625,\left(10^{n_{4}}=10.000\right)$,
$a_{4}^{2}-a_{4}=390.000, s_{4}=\frac{a_{4}^{2}-a_{4}}{10.000}=39$. Choose x in (5). We have

$$
\begin{gathered}
\left(2 a_{4}-1\right) x_{4}+39=0(\bmod 10), 1249 x_{4}+39=0(\bmod 10) 9 x_{4}+9=0(\bmod 10), x_{4}=9, \\
a_{5}=10.000 \cdot 9+0625=90625
\end{gathered}
$$

Respectively take $M=4$ and $b_{4}=9376,\left(10^{n_{4}}=10.000\right)$, $b_{4}^{2}-b_{4}=8.790 .000, t_{4}=\frac{b_{4}^{2}-b_{4}}{10.000}=8790$. Choose y_{4} in $\left(5^{\prime}\right)$. We have

$$
\left(2 b_{4}-1\right) y_{4}+8790=0(\bmod 10), 18751 y_{4}+0=0(\bmod 10), y_{4}=0
$$

$$
b_{5}=09376
$$

Thus we have two sequences

$$
\{5,25,625,0625,90625 \ldots\} ;\{6,76,376,9376,09376 \ldots\}
$$

5 Take $N=5$ and $a_{5}=90625,\left(10^{n_{5}}=100.000\right)$,
$a_{5}^{2}-a_{5}=8212800000, s_{5}=\frac{a_{5}^{2}-a_{5}}{100.000}=82128$. Choose x in (5). We have
$181249 x+82128=0(\bmod 10), 9 x+8=0(\bmod 10), x=8 ., a_{6}=100.000 \cdot 8+90625=890.625$
Respectively take $M=5$ and $b_{5}=09376,\left(10^{n_{5}}=100.000\right)$,
$b_{5}^{2}-b_{5}=87900000, s_{5}=\frac{b_{5}^{2}-b_{5}}{100.000}=879$. Choose y_{5} in (5). We have
$18751 y_{5}+879=0(\bmod 10), y_{5}+9=0(\bmod 10), y_{5}=1 ., b_{6}=100.000 \cdot 1+09376=109.376$
Thus we have two sequences

$$
\{5,25,625,0625,90625,890625, \ldots\} ;\{6,76,376,9376,09376 \ldots\}
$$

6 Take $N=6$ and $a_{5}=890625,\left(10^{n_{5}}=100.000\right)$,
$a_{5}^{2}-a_{5}=793212000000, s_{6}=\frac{a_{6}^{2}-a_{6}}{100.000}=793212$. Choose x in (5). We have

$$
1781249 x_{6}+793212=0(\bmod 10), 9 x_{6}+2=0(\bmod 10), x_{6}=2 .,
$$

$$
a_{7}=100.000 \cdot 2+890625=2.890 .625
$$

Respectively take $M=6$ and $b_{6}=109.376,\left(10^{m_{6}}=100.000\right)$,
$b_{6}^{2}-b_{6}=11.96 .300 .000, s_{5}=\frac{b_{5}^{2}-b_{5}}{100.000}=11.963$. Choose y_{6} in (5). We have $218,751 y_{6}+11.963=0(\bmod 10), y_{6}+3=0(\bmod 10), y_{6}=7 ., b_{7}=100.000 \cdot 1+109376=7.109 .376$ Thus we have two sequences

$$
\begin{gathered}
\{5,25,625,0625,90625,890625,2890625, \ldots\} ; \\
\{6,76,376,9376,09376,109376,7109376 \ldots\}
\end{gathered}
$$

which obey the Theorem ${ }^{2)}$ unfortunately this is the edge of capacities of my calculatrice

[^0]: ${ }^{1}$) It is one of the first problems which I solved when I was a kid

