
Applying Galois Theory to Elementary Problems. Examples

§ 1. How to calculate sin 6◦

First of all try to find polynomial (with rational coefficients) such that sin 6◦ is its

root. Notice that 6 · 5 = 30 and sin 30◦ = 1
2 . Hence express sin 30◦ via sin 6◦:

sin 5ϕ = sin 3ϕ cos 2ϕ + cos 3ϕ sin 2ϕ = 16 sin5 ϕ− 20 sin3 ϕ + 5 sin ϕ . (1)

We come to the polynomial equation for u = sin 6◦:

16u5 − 20u3 + 5u = sin 30◦ =
1
2

. (2)

(We use here trigonometric formulae: sin 3ϕ = 3 sinϕ − 4 sin3 ϕ and cos 3ϕ = 4cos3ϕ −
3 cos ϕ.)

We do not hope to solve it in radicals straightforwardly. Try to attack it using elemen-

tary tools of Galois theory. It is evident from (1) and (2) that if u = sin ϕ is a root of (2)

then u′ = sin(ϕ+ 2π
5 ) is a root of this equation too: sin 5(ϕ+ 2π

5 ) = sin(5ϕ+2π) = sin 5ϕ.

Hence it is easy to find all five roots of the polynomial (2) using trigonometric functions:

u1 = sin 6◦ ,

u2 = sin(6◦ + 360◦
5 ) = sin 78◦ = cos 12◦ ,

u3 = sin(6◦ + 2 · 360◦
5 ) = sin 150◦ = 1

2 ,

u4 = sin(6◦ + 3 · 360◦
5 ) = sin 222◦ = − cos 48◦ ,

u5 = sin(6◦ + 4 · 360◦
5 ) = sin 294◦ = − cos 24◦ .

(3)

One of the roots of this polynomial is a rational number, hence the polynomial 16u5−
20u3 + 5u− 1

2 in (2) is reducible over Q: it has linear factor u− 1
2 .

It is more convenient (for calculations) to consider a new variable t = 2u. We rewrite

our polynomial as

1
2
t5 − 5

2
t3 +

5
2
t− 1

2
=

1
2

(
t5 − 5t3 + 5t− 1

)
. (4)
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This polynomial has a root t = 2u = 1. Thus it contains the linear factor t− 1:

1
2

(
t5 − 5t3 + 5t− 1

)
=

1
2
(t− 1)P4(t) ,

where

P4(t) = t4 + t3 − 4t2 − 4t + 1 . (5a)

We come to a four order equation:

P4(t) = t4 + t3 − 4t2 − 4t + 1 = 0 . (5b)

for t = 2 sin 6◦. It follows from (3) that its roots t1, t2, t3, t4 are

< 2 sin 6◦, 2 cos 12◦,−2 cos 24◦,−2 cos 48◦ > . (6)

It can be straightforwardly checked that the polynomial P4(t) is irreducible over Q.

A splitting field of the polynomial P4 (a minimal field that contains all the roots of

this polynomial) is Σ(P4) = Q(sin 6◦, cos 12◦, cos 24◦, cos 48◦).

First calculate the degree of extension [Σ(P4) : Q]. Notice that cos 12◦ = 1−2 sin2 6◦,

cos 24◦ = 2 cos2 12◦ − 1, cos 48◦ = 2 cos2 24◦ − 1, − sin 6◦ = 2 cos2 48◦ − 1.

We see that rational transformation

t 7→ 2− t2 (7)

transforms roots of P4 to another roots. This transformation defines Q-automorphism

σ of the field Σ(P4) such that:

σ(t1) = t2, σ(t2) = t3, σ(t3) = t4, σ(t4) = t1 . (8)

From (7) and (8) it is evident that all roots belong to field Q(t1) = Q(sin 6◦) (t3 = σ2(t) =

2− (2− t)2, t4 = 2− (2− (2− t)2)2). Hence splitting field Σ(P4) for irreducible polynomial

P4(t) (Σ(P4) = Q(t1, t2, t3, t4)) is nothing but simple extension Q(sin 6◦) : Q:

Σ(P4) = Q(t1, t2, t3, t4) = Q(sin 6◦) and [Σ(P4) : Q] = [Q(sin 6◦) : Q] = 4 . (9)

This extension is normal extension of degree 4. Hence Galois group of polynomial (5)

(group of automorphisms of the field Q(sin 6◦) = Σ(P4(t)) contains precisely 4 elements:

G = Γ(Σ : Q) = {1, σ, σ2, σ3} , (10)
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where σ is automorphism (8).

This group is abelian cyclic group: σ4 = 1. It contains only one proper subgroup H

(H 6= 1, H 6= G):

H = {1, σ2}, |H| = 2 .

To subgroup H corresponds intermediate field M = H†: M = H† is maximal subfield

in Q(sin 6◦) such that its elements are invariant under transformations from H, i.e. under

transformation σ2:

Q ⊂ M ⊂ Q(sin 6◦), M = {a ∈ Q(sin 6◦) such that σ2(a) = a} ,

[Q(sin 6◦) : M ] = 2, [M : Q] = 2 . (11)

Intermediate extensions are quadratic (degree is equal to 2). Hence every element of field

Q(sin 6◦) and in particularly sin 6◦ is a root of quadratic polynomial with coefficients

in M . This quadratic polynomial is reducible over M iff the element belongs to the

intermediate field M 1). In the same way coefficients of this quadratic polynomial are

roots of quadratic polynomials with rational coefficients. Hence we can calculate every

element of the field Q(sin 6
◦
) and in particularly sin 6

◦
solving two quadratic equations.

Perform these calculations.

Find first quadratic polynomial with coefficients in M such that sin 6
◦

is its root.

Consider elements α and β in Q(sin 6
◦
) such that

α = t1 + t3 = t1 + σ2t1 ,

β = t1 · t3 = t1 · σ2t1 ,
(12)

where t1, t2, t3, t4 are roots (6) of polynomial P4(t).

It is evident from (12) that t1 = 2 sin 6◦ and t3 = −2 cos 24◦ are roots of the following

quadratic polynomial

P2(t) = t2 − αt + β . (13)

1) If [L : K] = 2 then for arbitrary a ∈ L elements 1, a, a2 are linear dependent over field

K, hence there exist coefficients p, q, r,∈ K such that not all are equal to zero and relation

p + qa + ra2 = 0 is obeyed.
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On the other hand one can see from (8) that σ2(α) = α and σ2(β) = β. Hence

elements α and β belong to intermediate field M , because they do not change under the

action of automorphism σ2.

We see that quadratic polynomial (13) with coefficients α and β in the field M is just

required quadratic polynomial with coefficients in M : P2(sin 6
◦
) = 0.

It remains to calculate α and β which belong to field M . M is quadratic extension of

Q ([M : Q] = 2). Thus α ∈ M and β ∈ M are roots of quadratic polynomial with rational

coefficients.

It follows from (6) and (12) and elementary stuff of trigonometric formulae that

α = t1 + t3 = 2 sin 6◦ − 2 cos 24◦ =

= 2 sin 6◦ − 2 sin 66◦ = 4 sin
6− 66

2
cos

6 + 66
2

= −2 cos 36 = 4 sin2 18◦ − 2 (14a)

and β = t1 · t3 =

2 sin 6◦ · (−2 cos 24) = −4(sin 6◦ cos 24◦) = −2(sin 30◦ − sin 18◦) = 2 sin 18◦ − 1 . (14b)

We see from these relations that

M = Q(sin 18◦) .

In particularly this means that sin 18◦ is a root of quadratic polynomial with rational

coefficients. So instead calculating α and β as roots of quadratic polynomials we calculate

just sin 18
◦

as a root of quadratic polynomial and express α and β via sin 18
◦
.

Find this quadratic polynomial with rational coefficients for sin 18◦. One can see that

sin 18◦ is a root of polynomial 4t2 + 2t− 1:

4 sin2 18◦ + 2 sin 18◦ − 1 = 0 . (15)

Hence

sin 18◦ =
√

5− 1
4

.

Remark 1 There are many ways to obtain relation (15). Not the most beautiful one but

right one is the following:

0 = cos 36◦ − sin 54◦ = (1− 2 sin2 18)− (3 sin 18◦ − 4 sin3 18◦) =

4 sin3 18◦ − 2 sin2 18◦ − 3 sin 18◦ + 1 = (sin 18◦ − 1)(4 sin2 18◦ + 2 sin 18◦ − 1) .
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Remark 2. The number τ = 2 sin 18◦ =
√

5−1
2 is so called ”golden ratio”. It has

many wonderful properties... One of the ways to obtain relation (15) straightforwardly as

relation for golden ratio is to consider triangle with angles (72◦, 72◦, 36◦) and bisect the

angle 72◦.

Now from (14) and (15) it follows that

α = 4 sin2 18◦ − 2 = −2 sin 18◦ − 1 = −1 +
√

5
2

.

β = 2 sin 18◦ − 1 =
√

5− 3
2

(16) .

.

So from (13) and (16) it follows that t1 = 2 sin 6◦ and t3 = −2 cos 24◦, are roots of

quadratic equation

t2 +
1 +

√
5

2
t− 3−√5

2
= 0 . (17)

t1,2 =
±

√
30− 6

√
5−√5− 1

4

Positive root of this equation is equal just to t1 = 2 sin 6◦ and

sin 6◦ =

√
30− 6

√
5−√5− 1
8

(18)

We calcualted sin 6◦ !

§ 2.Angles that can be constructed by ruler and compass.

Why 50 pence coin has 7 edges?

We see from (18) that sin 6◦ (so and cos 6◦) is expressed trough rational numbers with

additional operation √ of taking square root. It means that we can construct by ruler and

compass the angle 6◦, i.e. we can divide the circle by ruler and compass on 60 equal arcs.2)

The reason why it happens is obvious. The degree of normal extension Q(sin 6◦) : Q is

equal to 4 = 2× 2. Hence elements of intermediate field M in (11) are expressed through

2) Operations with rational numbers: multiplication, addition substraction and division

and operation of taking of square root are possible with ruler and compass: If a and b are

segments on the line and c is segment corresponding to unity then one can construct by

ruler and compass the segments a + b, a− b, ab
c , ac

b and
√

ab.
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elements of field Q with square root operation and elements of Q(sin 6◦) are expressed

through elements of field M with square root operation.

Now we consider a more general situation.

Definition We say that complex number a is quadratic irrationality it is better to call

iteraed quadratic irrationalityf it belongs to the field L such that it can be included in a

tower of quadratic extensions:

Q = M0 ⊆ M1 ⊆ M2 ⊂ . . . ⊆ Mn = L , [Mk+1 : Mk] ≤ 2 for every k = 0, 1, . . . , n− 1 .

(2.1)

It is evident that the set of quadratic irrationalities (including usual rational numbers) is

a field.

For example the number α =
√

3 +
√

2 +
√

5 +
√

7 is quadratic irrationality because

the field Q(α) can be included in the following tower

Q ⊆ Q
(√

7
)
⊆ Q

(√
5 +

√
7
)
⊆ Q

(√
2 +

√
5 +

√
7

)
⊆ Q

(√
3,

√
2 +

√
5 +

√
7

)

(2.2)

and all these extensions are evidently quadratic.

The number sin 6◦ is quadratic irrationality because for the tower (11) extensions

M : Q and Q : Q(sin 6◦) are quadratic.

If number is quadratic irrationality then from (2.1) it follows that it can be expressed

via rational numbers with taking square root operation: every number in Mn is a root of

quadratic equation with coefficients in Mn−1, coefficients in Mn−1 are roots of quadratic

equation with coefficients in Mn−2 and so on.

We say that angle ϕ is constructive if it can be constructed by ruler and compass.

Angle ϕ is constructive if and only if sinϕ is quadratic irrationality. (Evidently cos ϕ =

±
√

1− sin2 ϕ is quadratic irrationality iff sin ϕ is quadratic irrationality.) The circle can

be divided on N equal arcs by ruler and compass if and only if the angle 2π
N is constructive.

We know from school that for N = 2, 3, 4, 6, N = 2k circle can be divided on N

equal parts by ruler and compass. (sin 45◦ =
√

2
2 , sin 60◦ =

√
3

2 , sin 2π
2k+1 =

√
1−cos 2π

2k

2 are

quadratic irrationalities).

it is better to call iteraed quadratic irrationality i
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In the previous Section we proved in fact that for all N such that N divides 60, circle

can be divided on N equal parts by ruler and compass: If Nk = 60 then sin 2π
N is quadratic

irrationality because sin 2π
N = sin 2π

60 k = sin k · 6◦.
Now we describe all N such that sin 2π

N is quadratic irrationality, i.e. all N such that

circle can be divided on N equal arcs by ruler and compass3).

Consider the complex number

εN = exp
(

2πi

N

)
, (2.3)

where N = 1, 2, 3, . . . is an arbitrary positive integer.

We study this complex number instead sin 2π
N . The number εN is quadratic irra-

tionality if and only if sin 2π
N is quadratic irrationality (sin ϕ = exp(iϕ)−exp(−iϕ)

2i , exp(iϕ) =

cos ϕ + i sin ϕ).

The field extension Q(εN ) : Q is finite normal extension, because it is splitting field

for polynomial tN − 1. (The roots of this polynomial are {1, εN , ε2
N , . . . , εN−1

N }.) So from

fundamental theorem of Galois theory it follows that number of elements in Galois group

of field extension Q(εn) : Q is equal to the degree of this extension:

|Γ(Q(εN ) : Q)| = [Q(εN ) : Q] . (2.4)

For the considerations below we need the following two lemmas.

Lemma 1 Consider the decomposition of N in prime factors:

N = pn1
1 pn2

2 . . . pnk

k . (2.5)

Then for normal extension Γ(Q(εN ) : Q) the degree of this extension and correspondingly

the number of elements in Galois group Γ(Q(εN ) : Q) are given by the following formula:

|Γ(Q(εN ) : Q)| = [Q(εN ) : Q] = (p1 − 1)pn1−1
1 (p2 − 1)pn2−1

2 . . . (pk − 1)pnk−1
k . (2.6)

3) The problem of dividing of circle on N equal arcs with ruler and compass was posed

by ancient Greeks. They knew the answer for N = 3, 5, 15. Also they knew the answer

for N = 2k provided there exists an answer for N = k (obvious method of bisecting the

angle). For about two thousands year little progress was made beyond the Greeks. On 30

March 1796, Gauss made the remarkable discovery: he solved this problem for N = 17. He

was nineteen years old at the time. So pleased was he with this discovery that he resolved

to dedicate the rest of his life to mathematics.
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Lemma 2 If finite group G contains 2k elements then for this group there always

exists the sequence {G0, G1, . . . , Gk} of subgroups such that Gk = G, G0 = 1 and Gi is

subgroup of the index 2 in the subgroup Gi+1 (i = 0, 1, 2, . . . , k − 1):

1 = G0 < G1 . . . < Gk = G, |Gk+1| : |Gk| = 2 . (2.7)

We prove these lemmas in the end. Now we use these lemmas for studying necessary and

sufficient conditions for εN be quadratic irrationality.

If εn is quadratic irrationality then from definition (2.1) and ”Tower Law” it fol-

lows that degree of normal extension Q(εn) : Q is equal to the [Q(εn) : Mn−1] · [Mn−1 :

Mn−2] · · · [M1 : Q] = 2k for some positive integer k. On the other hand from Lemma 2

it follows that if degree (2.6) of normal extension Q(εN ) : Q is equal to the power of 2

([Q(εN ) : Q] = 2k) then εN is quadratic irrationality. Namely consider the sequence of

subgroups (2.7). The extension Q(εN ) : Q is normal extension and according to Funda-

mental theorem of Galois theory to this sequence of subgroups correspond the tower of

field extensions:

Q = G† = G†k ⊂ G†k−1 ⊂ . . . Γ†1 ⊂ G†0 = Q(εN ) (2.8)

Here we denote by G the Galois group Γ(Q(εN ) : Q), for the subgroup Gi as usually we

denoted by G†i the subfield of all elements of the field Q(εn) that do not change under the

action of elements of subgroup Gi (G†i = {a: ∀g ∈ Gi g(a) = a}).
Note that all subgroups Gi are normal subgroups in Gi+1 because their index is

equal to 2. This corresponds to the fact that every extension of degree 2 is normal 3).

The Galois correspondence gives that all extensions G†i−1 : G†i are quadratic extensions:

[G†i−1 : G†i ] = |Gi/Gi−1| = |Gi| : |Gi−1| = 2. Hence εN is quadratic irrationality.

3) We note that in the case if σ is an automorphism of field L such that σ 6= 1 and σ2 = 1

and K is subfield of elements that do not change under σ (Galois group of extension L : K

contains exactly two elements {1, σ}) then one can explicitly describe the field L in terms

of field K: Consider arbitrary a ∈ L/K and element s = a − σ(a). σ(s) = −s, s2 ∈ K

and s 6= 0. For every element x in L x1 = x + σ(x) ∈ K and x2 = s(x − σ(x)) ∈ K

because σ(x1) = x1, σ(x2) = x2. Hence x = x1/2 + s−1x2/2. L = K(s), where s a square

of polynomial t− s2.
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We see that εN is quadratic irrationality if and only if the degree (2.6) of normal

extension Q(εN ) : Q is equal to the power of 2 ([Q(εN ) : Q] = 2k). To find such N we

apply Lemma 1.

It is obvious that the right hand side of (2.6) is equal to the power of 2 if and only if

the following conditions hold:

1) all ni ≤ 1 for pi 6= 2, i.e. N is a product of power of 2 on the different odd prime

numbers.

2) all odd primes p, factors of N obey to condition that p− 1 is a power of 2.

Prime number p obeying to the condition that p − 1 = 2m is called Fermat prime

numbers (or sometimes they are called Messner prime numbers). It is evident that if p is

prime number and p−1 = 2m then m is also power of 2. (If m = 2rq, where q is odd, then

p contains the factor 22r

+ 1). So Fermat prime number is a prime number p such that

p = 22r

+ 1 . (2.9)

E.g. p = 3, 5, 17, 257 are Fermat prime numbers 4).

Thus we come to Theorem:

Theorem For the integer N the number sin 2π
N is quadratic irrationality and corre-

spondingly circle can be divided on N equal arcs by ruler and compass if and only if the

decomposition of N in prime factors have the following form

N = 2kp1 . . . ps ,

where all p1, . . . , ps are different Fermat prime numbers.

For example circle can be divided on 60 parts. Circle cannot be divided on 7,9,11

parts. (60 = 22 · 3 · 3 · 5, 3 and 5 are Fermat primes, 9 = 32 it is square of odd prime, 7

and 11 are not Fermat primes)

We see that 7 is the smallest number such that circle cannot be divided on the 7 parts

with ruler and compass. May be it is the reason why 50 pence coin has 7 edges?..

Finally we prove the Lemmas.

Proof of the Lemma 1.

4) Fermat conjectured that numbers (2.5) are prime for all n. This is wrong.
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In the case if N = p is simple number then εp is a root of irreducible polynomial

1 + t + . . . + tp−1 of degree p− 1 and we come to (2.6).

In the general case it is easier to calculate Galois group.

Consider the ring Z/NZ corresponding to the roots 1, εN , ε2
N . . . , ε

N−1
N . The Galois

automorphism are in one-one correspondence with invertible elements of this ring: if r is

invertible element of the ring Z/NZ (i.e. r and N are coprime) then transformation εN 7→
εr
N defines automorphism σr ∈ Γ(Q(εN ) : Q). To every automorphism σ ∈ Γ(Q(εN ) : Q)

such that σ(εN ) = εr
N corresponds element r and r is invertible because if σ(ε−1

N ) = εq
N

then rq = 1(modN). Hence the number of elements in Galois group Γ(Q(εN ) : Q) is equal

to number of positive integers r such that r < N and r and N are coprime. This number

is evidently equal to r.h.s. of (2.6). Lemma is proved.

Proof of the Lemma 2

Prove it by induction. For |G| = 2 proof is evident.

Suppose that we already prove the Lemma for m ≤ k (|G| = 2m).

Consider finite group containing 2k+1 elements.

First prove that there exist in G element a such that it commutes with all elements

in G.

Consider for every element h of this group the subgroup Nh stabilizer of this element

and class Oh of all conjugated elements

Nh = {g ∈ G: ghg−1 = h} , Oh = {ghg−1, g ∈ G} .

(Oh is the orbit of h under adjoined action of the group G ).

It is evident that

|Nh| · |Oh| = 2k+1 , (2.7)

i.e. number of elements in the every class is equal to the index of corresponding subgroup.

Let h1, . . . hm are all representatives of all classes of conjugated elements.

It follows from (2.7) that every classOhi contains 2q(hi) elements. 2q(h1)+. . .+2q(hm) =

2k+1 Class of unity contains one element. Hence there exists another class which contains

one element too. Thus there exists an element a such that |Oa| = 1, i.e. ag = ga, ∀g ∈ G.

Considering the set {1, a, a2, . . .} we come to cyclic subgroup 1, a, a2, . . . , ar−1 generated

by a. This subgroup (like every subgroup of G) contains power of 2 (r = 2t) elements.
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Consider element c = a
r
2 . This element obviously commutes with all elements in G and

c2 = 1. Thus we come to the subgroup H = {1, c} such that this subgroup is normal

subgroup. Consider group G′ = G/H. This group contains 2k elements and by inductive

hypothesis there exists the sequence

1 = G′0 < . . . < G′k = G′ = G/H (2.8)

obeying to condition (2.6).

Consider now subgroups Gk in G such that G0 = H , and all Gk (k ≥ 1) are subgroups

of G such that Gk/H = G′k−1. (Gk = G′k−1 ∪ cG′k−1) Then we come to the sequence

1 = G0 < G1 < . . . < Gk+1 = G

which obeys to Lemma 2.

Lemma is proved.
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