Applying Galois Theory to Elementary Problems. Examples

§ 1. How to calculate $\sin 6^{\circ}$

First of all try to find polynomial (with rational coefficients) such that $\sin 6^{\circ}$ is its root. Notice that $6 \cdot 5=30$ and $\sin 30^{\circ}=\frac{1}{2}$. Hence express $\sin 30^{\circ}$ via $\sin 6^{\circ}$:

$$
\begin{equation*}
\sin 5 \varphi=\sin 3 \varphi \cos 2 \varphi+\cos 3 \varphi \sin 2 \varphi=16 \sin ^{5} \varphi-20 \sin ^{3} \varphi+5 \sin \varphi \tag{1}
\end{equation*}
$$

We come to the polynomial equation for $u=\sin 6^{\circ}$:

$$
\begin{equation*}
16 u^{5}-20 u^{3}+5 u=\sin 30^{\circ}=\frac{1}{2} \tag{2}
\end{equation*}
$$

(We use here trigonometric formulae: $\sin 3 \varphi=3 \sin \varphi-4 \sin ^{3} \varphi$ and $\cos 3 \varphi=4 \cos ^{3} \varphi-$ $3 \cos \varphi$.)

We do not hope to solve it in radicals straightforwardly. Try to attack it using elementary tools of Galois theory. It is evident from (1) and (2) that if $u=\sin \varphi$ is a root of (2) then $u^{\prime}=\sin \left(\varphi+\frac{2 \pi}{5}\right)$ is a root of this equation too: $\sin 5\left(\varphi+\frac{2 \pi}{5}\right)=\sin (5 \varphi+2 \pi)=\sin 5 \varphi$. Hence it is easy to find all five roots of the polynomial (2) using trigonometric functions:

$$
\begin{gather*}
u_{1}=\sin 6^{\circ}, \\
u_{2}=\sin \left(6^{\circ}+\frac{360^{\circ}}{5}\right)=\sin 78^{\circ}=\cos 12^{\circ}, \\
u_{3}=\sin \left(6^{\circ}+2 \cdot \frac{360^{\circ}}{5}\right)=\sin 150^{\circ}=\frac{1}{2}, \tag{3}\\
u_{4}=\sin \left(6^{\circ}+3 \cdot \frac{360^{\circ}}{5}\right)=\sin 222^{\circ}=-\cos 48^{\circ}, \\
u_{5}=\sin \left(6^{\circ}+4 \cdot \frac{360^{\circ}}{5}\right)=\sin 294^{\circ}=-\cos 24^{\circ} .
\end{gather*}
$$

One of the roots of this polynomial is a rational number, hence the polynomial $16 u^{5}-$ $20 u^{3}+5 u-\frac{1}{2}$ in (2) is reducible over \mathbf{Q} : it has linear factor $u-\frac{1}{2}$.

It is more convenient (for calculations) to consider a new variable $t=2 u$. We rewrite our polynomial as

$$
\begin{equation*}
\frac{1}{2} t^{5}-\frac{5}{2} t^{3}+\frac{5}{2} t-\frac{1}{2}=\frac{1}{2}\left(t^{5}-5 t^{3}+5 t-1\right) . \tag{4}
\end{equation*}
$$

This polynomial has a root $t=2 u=1$. Thus it contains the linear factor $t-1$:

$$
\frac{1}{2}\left(t^{5}-5 t^{3}+5 t-1\right)=\frac{1}{2}(t-1) P_{4}(t)
$$

where

$$
\begin{equation*}
P_{4}(t)=t^{4}+t^{3}-4 t^{2}-4 t+1 \tag{5a}
\end{equation*}
$$

We come to a four order equation:

$$
\begin{equation*}
P_{4}(t)=t^{4}+t^{3}-4 t^{2}-4 t+1=0 \tag{5b}
\end{equation*}
$$

for $t=2 \sin 6^{\circ}$. It follows from (3) that its roots $t_{1}, t_{2}, t_{3}, t_{4}$ are

$$
\begin{equation*}
<2 \sin 6^{\circ}, 2 \cos 12^{\circ},-2 \cos 24^{\circ},-2 \cos 48^{\circ}> \tag{6}
\end{equation*}
$$

It can be straightforwardly checked that the polynomial $P_{4}(t)$ is irreducible over \mathbf{Q}.
A splitting field of the polynomial P_{4} (a minimal field that contains all the roots of this polynomial) is $\Sigma\left(P_{4}\right)=\mathbf{Q}\left(\sin 6^{\circ}, \cos 12^{\circ}, \cos 24^{\circ}, \cos 48^{\circ}\right)$.

First calculate the degree of extension $\left[\Sigma\left(P_{4}\right): \mathbf{Q}\right]$. Notice that $\cos 12^{\circ}=1-2 \sin ^{2} 6^{\circ}$, $\cos 24^{\circ}=2 \cos ^{2} 12^{\circ}-1, \cos 48^{\circ}=2 \cos ^{2} 24^{\circ}-1,-\sin 6^{\circ}=2 \cos ^{2} 48^{\circ}-1$.

We see that rational transformation

$$
\begin{equation*}
t \mapsto 2-t^{2} \tag{7}
\end{equation*}
$$

transforms roots of P_{4} to another roots. This transformation defines \mathbf{Q}-automorphism σ of the field $\Sigma\left(P_{4}\right)$ such that:

$$
\begin{equation*}
\sigma\left(t_{1}\right)=t_{2}, \quad \sigma\left(t_{2}\right)=t_{3}, \quad \sigma\left(t_{3}\right)=t_{4}, \quad \sigma\left(t_{4}\right)=t_{1} \tag{8}
\end{equation*}
$$

From (7) and (8) it is evident that all roots belong to field $\mathbf{Q}\left(t_{1}\right)=\mathbf{Q}\left(\sin 6^{\circ}\right)\left(t_{3}=\sigma^{2}(t)=\right.$ $\left.2-(2-t)^{2}, t_{4}=2-\left(2-(2-t)^{2}\right)^{2}\right)$. Hence splitting field $\Sigma\left(P_{4}\right)$ for irreducible polynomial $P_{4}(t)\left(\Sigma\left(P_{4}\right)=\mathbf{Q}\left(t_{1}, t_{2}, t_{3}, t_{4}\right)\right)$ is nothing but simple extension $\mathbf{Q}\left(\sin 6^{\circ}\right): \mathbf{Q}$:

$$
\begin{equation*}
\Sigma\left(P_{4}\right)=\mathbf{Q}\left(t_{1}, t_{2}, t_{3}, t_{4}\right)=\mathbf{Q}\left(\sin 6^{\circ}\right) \quad \text { and } \quad\left[\Sigma\left(P_{4}\right): \mathbf{Q}\right]=\left[\mathbf{Q}\left(\sin 6^{\circ}\right): \mathbf{Q}\right]=4 \tag{9}
\end{equation*}
$$

This extension is normal extension of degree 4. Hence Galois group of polynomial (5) (group of automorphisms of the field $\mathbf{Q}\left(\sin 6^{\circ}\right)=\Sigma\left(P_{4}(t)\right)$ contains precisely 4 elements:

$$
\begin{equation*}
G=\Gamma(\Sigma: \mathbf{Q})=\left\{1, \sigma, \sigma^{2}, \sigma^{3}\right\} \tag{10}
\end{equation*}
$$

where σ is automorphism (8).
This group is abelian cyclic group: $\sigma^{4}=1$. It contains only one proper subgroup H $(H \neq 1, H \neq G)$:

$$
H=\left\{1, \sigma^{2}\right\}, \quad|H|=2 .
$$

To subgroup H corresponds intermediate field $M=H^{\dagger}: M=H^{\dagger}$ is maximal subfield in $Q\left(\sin 6^{\circ}\right)$ such that its elements are invariant under transformations from H, i.e. under transformation σ^{2} :

$$
\begin{gather*}
\mathbf{Q} \subset M \subset \mathbf{Q}\left(\sin 6^{\circ}\right), \quad M=\left\{a \in \mathbf{Q}\left(\sin 6^{\circ}\right) \text { such that } \sigma^{2}(a)=a\right\}, \\
{\left[\mathbf{Q}\left(\sin 6^{\circ}\right): M\right]=2, \quad[M: \mathbf{Q}]=2} \tag{11}
\end{gather*}
$$

Intermediate extensions are quadratic (degree is equal to 2). Hence every element of field $\mathbf{Q}\left(\sin 6^{\circ}\right)$ and in particularly $\sin 6^{\circ}$ is a root of quadratic polynomial with coefficients in M. This quadratic polynomial is reducible over M iff the element belongs to the intermediate field $M^{1)}$. In the same way coefficients of this quadratic polynomial are roots of quadratic polynomials with rational coefficients. Hence we can calculate every element of the field $\mathbf{Q}\left(\sin 6^{\circ}\right)$ and in particularly $\sin 6^{\circ}$ solving two quadratic equations.

Perform these calculations.
Find first quadratic polynomial with coefficients in M such that $\sin 6^{\circ}$ is its root. Consider elements α and β in $\mathbf{Q}\left(\sin 6^{\circ}\right)$ such that

$$
\begin{gather*}
\alpha=t_{1}+t_{3}=t_{1}+\sigma^{2} t_{1} \tag{12}\\
\beta=t_{1} \cdot t_{3}=t_{1} \cdot \sigma^{2} t_{1}
\end{gather*}
$$

where $t_{1}, t_{2}, t_{3}, t_{4}$ are roots (6) of polynomial $P_{4}(t)$.
It is evident from (12) that $t_{1}=2 \sin 6^{\circ}$ and $t_{3}=-2 \cos 24^{\circ}$ are roots of the following quadratic polynomial

$$
\begin{equation*}
P_{2}(t)=t^{2}-\alpha t+\beta \tag{13}
\end{equation*}
$$

[^0]On the other hand one can see from (8) that $\sigma^{2}(\alpha)=\alpha$ and $\sigma^{2}(\beta)=\beta$. Hence elements α and β belong to intermediate field M, because they do not change under the action of automorphism σ^{2}.

We see that quadratic polynomial (13) with coefficients α and β in the field M is just required quadratic polynomial with coefficients in $M: P_{2}\left(\sin 6^{\circ}\right)=0$.

It remains to calculate α and β which belong to field $M . M$ is quadratic extension of $\mathbf{Q}([M: \mathbf{Q}]=2)$. Thus $\alpha \in M$ and $\beta \in M$ are roots of quadratic polynomial with rational coefficients.

It follows from (6) and (12) and elementary stuff of trigonometric formulae that

$$
\begin{align*}
& \alpha=t_{1}+t_{3}=2 \sin 6^{\circ}-2 \cos 24^{\circ}= \\
& =2 \sin 6^{\circ}-2 \sin 66^{\circ}=4 \sin \frac{6-66}{2} \cos \frac{6+66}{2}=-2 \cos 36=4 \sin ^{2} 18^{\circ}-2 \tag{14a}
\end{align*}
$$

and $\beta=t_{1} \cdot t_{3}=$

$$
\begin{equation*}
2 \sin 6^{\circ} \cdot(-2 \cos 24)=-4\left(\sin 6^{\circ} \cos 24^{\circ}\right)=-2\left(\sin 30^{\circ}-\sin 18^{\circ}\right)=2 \sin 18^{\circ}-1 \tag{14b}
\end{equation*}
$$

We see from these relations that

$$
M=\mathbf{Q}\left(\sin 18^{\circ}\right)
$$

In particularly this means that $\sin 18^{\circ}$ is a root of quadratic polynomial with rational coefficients. So instead calculating α and β as roots of quadratic polynomials we calculate just $\sin 18^{\circ}$ as a root of quadratic polynomial and express α and β via $\sin 18^{\circ}$.

Find this quadratic polynomial with rational coefficients for $\sin 18^{\circ}$. One can see that $\sin 18^{\circ}$ is a root of polynomial $4 t^{2}+2 t-1$:

$$
\begin{equation*}
4 \sin ^{2} 18^{\circ}+2 \sin 18^{\circ}-1=0 \tag{15}
\end{equation*}
$$

Hence

$$
\sin 18^{\circ}=\frac{\sqrt{5}-1}{4}
$$

Remark 1 There are many ways to obtain relation (15). Not the most beautiful one but right one is the following:

$$
\begin{aligned}
& 0=\cos 36^{\circ}-\sin 54^{\circ}=\left(1-2 \sin ^{2} 18\right)-\left(3 \sin 18^{\circ}-4 \sin ^{3} 18^{\circ}\right)= \\
& 4 \sin ^{3} 18^{\circ}-2 \sin ^{2} 18^{\circ}-3 \sin 18^{\circ}+1=\left(\sin 18^{\circ}-1\right)\left(4 \sin ^{2} 18^{\circ}+2 \sin 18^{\circ}-1\right) .
\end{aligned}
$$

Remark 2. The number $\tau=2 \sin 18^{\circ}=\frac{\sqrt{5}-1}{2}$ is so called "golden ratio". It has many wonderful properties... One of the ways to obtain relation (15) straightforwardly as relation for golden ratio is to consider triangle with angles $\left(72^{\circ}, 72^{\circ}, 36^{\circ}\right)$ and bisect the angle 72°.

Now from (14) and (15) it follows that

$$
\begin{gather*}
\alpha=4 \sin ^{2} 18^{\circ}-2=-2 \sin 18^{\circ}-1=-\frac{1+\sqrt{5}}{2} . \\
\beta=2 \sin 18^{\circ}-1=\frac{\sqrt{5}-3}{2} \tag{16}
\end{gather*}
$$

So from (13) and (16) it follows that $t_{1}=2 \sin 6^{\circ}$ and $t_{3}=-2 \cos 24^{\circ}$, are roots of quadratic equation

$$
\begin{align*}
& t^{2}+\frac{1+\sqrt{5}}{2} t-\frac{3-\sqrt{5}}{2}=0 \tag{17}\\
& t_{1,2}=\frac{ \pm \sqrt{30-6 \sqrt{5}}-\sqrt{5}-1}{4}
\end{align*}
$$

Positive root of this equation is equal just to $t_{1}=2 \sin 6^{\circ}$ and

$$
\begin{equation*}
\sin 6^{\circ}=\frac{\sqrt{30-6 \sqrt{5}}-\sqrt{5}-1}{8} \tag{18}
\end{equation*}
$$

$$
\text { We calcualted } \sin 6^{\circ}!
$$

$\S 2$.Angles that can be constructed by ruler and compass. Why 50 pence coin has 7 edges?

We see from (18) that $\sin 6^{\circ}$ (so and $\cos 6^{\circ}$) is expressed trough rational numbers with additional operation $\sqrt{ }$ of taking square root. It means that we can construct by ruler and compass the angle 6°, i.e. we can divide the circle by ruler and compass on 60 equal arcs. ${ }^{2)}$

The reason why it happens is obvious. The degree of normal extension $\mathbf{Q}\left(\sin 6^{\circ}\right): \mathbf{Q}$ is equal to $4=2 \times 2$. Hence elements of intermediate field M in (11) are expressed through

[^1]elements of field \mathbf{Q} with square root operation and elements of $\mathbf{Q}\left(\sin 6^{\circ}\right)$ are expressed through elements of field M with square root operation.

Now we consider a more general situation.
Definition We say that complex number a is quadratic irrationalityit is better to call iteraed quadratic irrationalityf it belongs to the field L such that it can be included in a tower of quadratic extensions:

$$
\begin{equation*}
\mathbf{Q}=M_{0} \subseteq M_{1} \subseteq M_{2} \subset \ldots \subseteq M_{n}=L, \quad\left[M_{k+1}: M_{k}\right] \leq 2 \text { for every } k=0,1, \ldots, n-1 \tag{2.1}
\end{equation*}
$$

It is evident that the set of quadratic irrationalities (including usual rational numbers) is a field.

For example the number $\alpha=\sqrt{3}+\sqrt{2+\sqrt{5+\sqrt{7}}}$ is quadratic irrationality because the field $\mathbf{Q}(\alpha)$ can be included in the following tower

$$
\begin{equation*}
\mathbf{Q} \subseteq \mathbf{Q}(\sqrt{7}) \subseteq \mathbf{Q}(\sqrt{5+\sqrt{7}}) \subseteq \mathbf{Q}(\sqrt{2+\sqrt{5+\sqrt{7}}}) \subseteq \mathbf{Q}(\sqrt{3}, \sqrt{2+\sqrt{5+\sqrt{7}}}) \tag{2.2}
\end{equation*}
$$

and all these extensions are evidently quadratic.
The number $\sin 6^{\circ}$ is quadratic irrationality because for the tower (11) extensions $M: \mathbf{Q}$ and $\mathbf{Q}: \mathbf{Q}\left(\sin 6^{\circ}\right)$ are quadratic.

If number is quadratic irrationality then from (2.1) it follows that it can be expressed via rational numbers with taking square root operation: every number in M_{n} is a root of quadratic equation with coefficients in M_{n-1}, coefficients in M_{n-1} are roots of quadratic equation with coefficients in M_{n-2} and so on.

We say that angle φ is constructive if it can be constructed by ruler and compass. Angle φ is constructive if and only if $\sin \varphi$ is quadratic irrationality. (Evidently $\cos \varphi=$ $\pm \sqrt{1-\sin ^{2} \varphi}$ is quadratic irrationality iff $\sin \varphi$ is quadratic irrationality.) The circle can be divided on N equal arcs by ruler and compass if and only if the angle $\frac{2 \pi}{N}$ is constructive.

We know from school that for $N=2,3,4,6, N=2^{k}$ circle can be divided on N equal parts by ruler and compass. $\left(\sin 45^{\circ}=\frac{\sqrt{2}}{2}, \sin 60^{\circ}=\frac{\sqrt{3}}{2}, \sin \frac{2 \pi}{2^{k+1}}=\sqrt{\frac{1-\cos \frac{2 \pi}{2 k}}{2}}\right.$ are quadratic irrationalities).

In the previous Section we proved in fact that for all N such that N divides 60 , circle can be divided on N equal parts by ruler and compass: If $N k=60$ then $\sin \frac{2 \pi}{N}$ is quadratic irrationality because $\sin \frac{2 \pi}{N}=\sin \frac{2 \pi}{60} k=\sin k \cdot 6^{\circ}$.

Now we describe all N such that $\sin \frac{2 \pi}{N}$ is quadratic irrationality, i.e. all N such that circle can be divided on N equal arcs by ruler and compass ${ }^{3)}$.

Consider the complex number

$$
\begin{equation*}
\varepsilon_{N}=\exp \left(\frac{2 \pi i}{N}\right) \tag{2.3}
\end{equation*}
$$

where $N=1,2,3, \ldots$ is an arbitrary positive integer.
We study this complex number instead $\sin \frac{2 \pi}{N}$. The number ε_{N} is quadratic irrationality if and only if $\sin \frac{2 \pi}{N}$ is quadratic irrationality $\left(\sin \varphi=\frac{\exp (i \varphi)-\exp (-i \varphi)}{2 i}, \exp (i \varphi)=\right.$ $\cos \varphi+i \sin \varphi)$.

The field extension $\mathbf{Q}\left(\varepsilon_{N}\right)$: \mathbf{Q} is finite normal extension, because it is splitting field for polynomial $t^{N}-1$. (The roots of this polynomial are $\left\{1, \varepsilon_{N}, \varepsilon_{N}^{2}, \ldots, \varepsilon_{N}^{N-1}\right\}$.) So from fundamental theorem of Galois theory it follows that number of elements in Galois group of field extension $\mathbf{Q}\left(\varepsilon_{n}\right)$: \mathbf{Q} is equal to the degree of this extension:

$$
\begin{equation*}
\left|\Gamma\left(\mathbf{Q}\left(\varepsilon_{N}\right): \mathbf{Q}\right)\right|=\left[\mathbf{Q}\left(\varepsilon_{N}\right): \mathbf{Q}\right] . \tag{2.4}
\end{equation*}
$$

For the considerations below we need the following two lemmas.
Lemma 1 Consider the decomposition of N in prime factors:

$$
\begin{equation*}
N=p_{1}^{n_{1}} p_{2}^{n_{2}} \ldots p_{k}^{n_{k}} . \tag{2.5}
\end{equation*}
$$

Then for normal extension $\Gamma\left(\mathbf{Q}\left(\varepsilon_{N}\right)\right.$: $\left.\mathbf{Q}\right)$ the degree of this extension and correspondingly the number of elements in Galois group $\Gamma\left(\mathbf{Q}\left(\varepsilon_{N}\right): Q\right)$ are given by the following formula:

$$
\begin{equation*}
\left|\Gamma\left(\mathbf{Q}\left(\varepsilon_{N}\right): Q\right)\right|=\left[\mathbf{Q}\left(\varepsilon_{N}\right): Q\right]=\left(p_{1}-1\right) p_{1}^{n_{1}-1}\left(p_{2}-1\right) p_{2}^{n_{2}-1} \ldots\left(p_{k}-1\right) p_{k}^{n_{k}-1} \tag{2.6}
\end{equation*}
$$

${ }^{3)}$ The problem of dividing of circle on N equal arcs with ruler and compass was posed by ancient Greeks. They knew the answer for $N=3,5,15$. Also they knew the answer for $N=2 k$ provided there exists an answer for $N=k$ (obvious method of bisecting the angle). For about two thousands year little progress was made beyond the Greeks. On 30 March 1796, Gauss made the remarkable discovery: he solved this problem for $N=17$. He was nineteen years old at the time. So pleased was he with this discovery that he resolved to dedicate the rest of his life to mathematics.

Lemma 2 If finite group G contains 2^{k} elements then for this group there always exists the sequence $\left\{G_{0}, G_{1}, \ldots, G_{k}\right\}$ of subgroups such that $G_{k}=G, G_{0}=1$ and G_{i} is subgroup of the index 2 in the subgroup $G_{i+1}(i=0,1,2, \ldots, k-1)$:

$$
\begin{equation*}
1=G_{0}<G_{1} \ldots<G_{k}=G, \quad\left|G_{k+1}\right|:\left|G_{k}\right|=2 \tag{2.7}
\end{equation*}
$$

We prove these lemmas in the end. Now we use these lemmas for studying necessary and sufficient conditions for ε_{N} be quadratic irrationality.

If ε_{n} is quadratic irrationality then from definition (2.1) and "Tower Law" it follows that degree of normal extension $\mathbf{Q}\left(\varepsilon_{n}\right): Q$ is equal to the $\left[\mathbf{Q}\left(\varepsilon_{n}\right): M_{n-1}\right] \cdot\left[M_{n-1}\right.$: $\left.M_{n-2}\right] \cdots\left[M_{1}: \mathbf{Q}\right]=2^{k}$ for some positive integer k. On the other hand from Lemma 2 it follows that if degree (2.6) of normal extension $\mathbf{Q}\left(\varepsilon_{N}\right): Q$ is equal to the power of 2 $\left(\left[\mathbf{Q}\left(\varepsilon_{N}\right): Q\right]=2^{k}\right)$ then ε_{N} is quadratic irrationality. Namely consider the sequence of subgroups (2.7). The extension $\mathbf{Q}\left(\varepsilon_{N}\right)$: \mathbf{Q} is normal extension and according to Fundamental theorem of Galois theory to this sequence of subgroups correspond the tower of field extensions:

$$
\begin{equation*}
\mathbf{Q}=G^{\dagger}=G_{k}^{\dagger} \subset G_{k-1}^{\dagger} \subset \ldots \Gamma_{1}^{\dagger} \subset G_{0}^{\dagger}=\mathbf{Q}\left(\varepsilon_{N}\right) \tag{2.8}
\end{equation*}
$$

Here we denote by G the Galois group $\Gamma\left(\mathbf{Q}\left(\varepsilon_{N}\right): \mathbf{Q}\right)$, for the subgroup G_{i} as usually we denoted by G_{i}^{\dagger} the subfield of all elements of the field $\mathbf{Q}\left(\varepsilon_{n}\right)$ that do not change under the action of elements of subgroup $G_{i}\left(G_{i}^{\dagger}=\left\{a: \quad \forall g \in G_{i} g(a)=a\right\}\right)$.

Note that all subgroups G_{i} are normal subgroups in G_{i+1} because their index is equal to 2 . This corresponds to the fact that every extension of degree 2 is normal ${ }^{3)}$. The Galois correspondence gives that all extensions $G_{i-1}^{\dagger}: G_{i}^{\dagger}$ are quadratic extensions: $\left[G_{i-1}^{\dagger}: G_{i}^{\dagger}\right]=\left|G_{i} / G_{i-1}\right|=\left|G_{i}\right|:\left|G_{i-1}\right|=2$. Hence ε_{N} is quadratic irrationality.
3) We note that in the case if σ is an automorphism of field L such that $\sigma \neq 1$ and $\sigma^{2}=1$ and K is subfield of elements that do not change under σ (Galois group of extension $L: K$ contains exactly two elements $\{1, \sigma\}$) then one can explicitly describe the field L in terms of field K : Consider arbitrary $a \in L / K$ and element $s=a-\sigma(a) . \sigma(s)=-s, s^{2} \in K$ and $s \neq 0$. For every element x in $L x_{1}=x+\sigma(x) \in K$ and $x_{2}=s(x-\sigma(x)) \in K$ because $\sigma\left(x_{1}\right)=x_{1}, \sigma\left(x_{2}\right)=x_{2}$. Hence $x=x_{1} / 2+s^{-1} x_{2} / 2 . L=K(s)$, where s a square of polynomial $t-s^{2}$.

We see that ε_{N} is quadratic irrationality if and only if the degree (2.6) of normal extension $\mathbf{Q}\left(\varepsilon_{N}\right): \mathbf{Q}$ is equal to the power of $2\left(\left[\mathbf{Q}\left(\varepsilon_{N}\right): \mathbf{Q}\right]=2^{k}\right)$. To find such N we apply Lemma 1.

It is obvious that the right hand side of (2.6) is equal to the power of 2 if and only if the following conditions hold:

1) all $n_{i} \leq 1$ for $p_{i} \neq 2$, i.e. N is a product of power of 2 on the different odd prime numbers.

2) all odd primes p, factors of N obey to condition that $p-1$ is a power of 2 .
Prime number p obeying to the condition that $p-1=2^{m}$ is called Fermat prime numbers (or sometimes they are called Messner prime numbers). It is evident that if p is prime number and $p-1=2^{m}$ then m is also power of 2 . (If $m=2^{r} q$, where q is odd, then p contains the factor $2^{2^{r}}+1$). So Fermat prime number is a prime number p such that

$$
\begin{equation*}
p=2^{2^{r}}+1 \tag{2.9}
\end{equation*}
$$

E.g. $p=3,5,17,257$ are Fermat prime numbers ${ }^{4)}$.

Thus we come to Theorem:
Theorem For the integer N the number $\sin \frac{2 \pi}{N}$ is quadratic irrationality and correspondingly circle can be divided on N equal arcs by ruler and compass if and only if the decomposition of N in prime factors have the following form

$$
N=2^{k} p_{1} \ldots p_{s}
$$

where all p_{1}, \ldots, p_{s} are different Fermat prime numbers.

For example circle can be divided on 60 parts. Circle cannot be divided on $7,9,11$ parts. $\left(60=2^{2} \cdot 3 \cdot 3 \cdot 5,3\right.$ and 5 are Fermat primes, $9=3^{2}$ it is square of odd prime, 7 and 11 are not Fermat primes)

We see that 7 is the smallest number such that circle cannot be divided on the 7 parts with ruler and compass. May be it is the reason why 50 pence coin has 7 edges?..

Finally we prove the Lemmas.
Proof of the Lemma 1.

[^2]In the case if $N=p$ is simple number then ε_{p} is a root of irreducible polynomial $1+t+\ldots+t^{p-1}$ of degree $p-1$ and we come to (2.6).

In the general case it is easier to calculate Galois group.
Consider the ring $\mathbf{Z} / N \mathbf{Z}$ corresponding to the roots $1, \varepsilon_{N}, \varepsilon_{N}^{2} \ldots, \varepsilon_{N}^{N_{-1}}$. The Galois automorphism are in one-one correspondence with invertible elements of this ring: if r is invertible element of the ring $\mathbf{Z} / N Z$ (i.e. r and N are coprime) then transformation $\varepsilon_{N} \mapsto$ ε_{N}^{r} defines automorphism $\sigma_{r} \in \Gamma\left(\mathbf{Q}\left(\varepsilon_{N}\right): \mathbf{Q}\right)$. To every automorphism $\sigma \in \Gamma\left(\mathbf{Q}\left(\varepsilon_{N}\right): \mathbf{Q}\right)$ such that $\sigma\left(\varepsilon_{N}\right)=\varepsilon_{N}^{r}$ corresponds element r and r is invertible because if $\sigma\left(\varepsilon_{N}^{-1}\right)=\varepsilon_{N}^{q}$ then $r q=1(\bmod N)$. Hence the number of elements in Galois $\operatorname{group} \Gamma\left(\mathbf{Q}\left(\varepsilon_{N}\right): \mathbf{Q}\right)$ is equal to number of positive integers r such that $r<N$ and r and N are coprime. This number is evidently equal to r.h.s. of (2.6). Lemma is proved.

Proof of the Lemma 2
Prove it by induction. For $|G|=2$ proof is evident.
Suppose that we already prove the Lemma for $m \leq k\left(|G|=2^{m}\right)$.
Consider finite group containing 2^{k+1} elements.
First prove that there exist in G element a such that it commutes with all elements in G.

Consider for every element h of this group the subgroup N_{h} stabilizer of this element and class \mathcal{O}_{h} of all conjugated elements

$$
N_{h}=\left\{g \in G: \quad g h g^{-1}=h\right\}, \quad \mathcal{O}_{h}=\left\{g h g^{-1}, g \in G\right\} .
$$

(\mathcal{O}_{h} is the orbit of h under adjoined action of the group G).
It is evident that

$$
\begin{equation*}
\left|N_{h}\right| \cdot\left|\mathcal{O}_{h}\right|=2^{k+1}, \tag{2.7}
\end{equation*}
$$

i.e. number of elements in the every class is equal to the index of corresponding subgroup.

Let $h_{1}, \ldots h_{m}$ are all representatives of all classes of conjugated elements.
It follows from (2.7) that every class $\mathcal{O}_{h_{i}}$ contains $2^{q\left(h_{i}\right)}$ elements. $2^{q\left(h_{1}\right)}+\ldots+2^{q\left(h_{m}\right)}=$ 2^{k+1} Class of unity contains one element. Hence there exists another class which contains one element too. Thus there exists an element a such that $\left|\mathcal{O}_{a}\right|=1$, i.e. $a g=g a, \forall g \in G$. Considering the set $\left\{1, a, a^{2}, \ldots\right\}$ we come to cyclic subgroup $1, a, a^{2}, \ldots, a^{r-1}$ generated by a. This subgroup (like every subgroup of G) contains power of $2\left(r=2^{t}\right)$ elements.

Consider element $c=a^{\frac{r}{2}}$. This element obviously commutes with all elements in G and $c^{2}=1$. Thus we come to the subgroup $H=\{1, c\}$ such that this subgroup is normal subgroup. Consider group $G^{\prime}=G / H$. This group contains 2^{k} elements and by inductive hypothesis there exists the sequence

$$
\begin{equation*}
1=G_{0}^{\prime}<\ldots<G_{k}^{\prime}=G^{\prime}=G / H \tag{2.8}
\end{equation*}
$$

obeying to condition (2.6).
Consider now subgroups G_{k} in G such that $G_{0}=H$, and all $G_{k}(k \geq 1)$ are subgroups of G such that $G_{k} / H=G_{k-1}^{\prime} .\left(G_{k}=G_{k-1}^{\prime} \cup c G_{k-1}^{\prime}\right)$ Then we come to the sequence

$$
1=G_{0}<G_{1}<\ldots<G_{k+1}=G
$$

which obeys to Lemma 2.
Lemma is proved.

[^0]: ${ }^{1)}$ If $[L: K]=2$ then for arbitrary $a \in L$ elements $1, a, a^{2}$ are linear dependent over field K, hence there exist coefficients $p, q, r, \in K$ such that not all are equal to zero and relation $p+q a+r a^{2}=0$ is obeyed.

[^1]: ${ }^{2)}$ Operations with rational numbers: multiplication, addition substraction and division and operation of taking of square root are possible with ruler and compass: If a and b are segments on the line and c is segment corresponding to unity then one can construct by ruler and compass the segments $a+b, a-b, \frac{a b}{c}, \frac{a c}{b}$ and $\sqrt{a b}$.

[^2]: ${ }^{4)}$ Fermat conjectured that numbers (2.5) are prime for all n. This is wrong.

