
Two words about values of sin 18◦, sin 6◦, sin 20◦ and in general sin k◦

§0. Dieu ex machina

Calculation of sin 6◦ and sin 18◦:

There are different ways of calculation of sin 18◦. The most beautiful one is considering

triangle with angles 72◦, 72◦, 36◦. We only represent the result

sin 18◦ =
√

5− 1
4

(0.1)

and note that u = 2 sin 18◦ is the golden ratio:

u2 + u = 1 (0.2)

Using this result it is easy to calculate sin 6◦. Indeed it is evident that

sin 6◦ · cos 24◦ =
1
2

sin 18◦ +
1
2

sin 30◦ =
1
2

sin 18◦ +
1
4

On other hand

cos 24◦ − sin 6◦ = cos(30− 6)− sin 6 = cos(30 + 6) = 1− 2 sin2 18.

We come to simultaneous equations:
{

cos 24◦ − sin 6◦ = 1− 2 sin2 18
sin 6◦ · cos 24◦ = 1

2 sin 18◦ + 1
4

This system is quadratic equation on sin 6 and coefficients we know from (0.1).

Everything alright except how we guess about this anzatz?

We try to explain it in next 2 sections in the 3 Section we briefly show that sin 20 and

cos 20 is not expressible in square radicals and in the fourth section we show that angle

(and its sinus and cosinus of angle k are expressible in square radicals if and only if this

angle is divisble on 3).

We formulate by the way the most beautiful result of geometry about dividing the

circle on equal parts using ruler and compass.

§1. Model example

We use in fact Galois theory for pedestrians.
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Statement.1 sin 18◦ is a root of quadratic polynomial with integer coefficients.

Consider equation

sin 5ϕ = sin ϕ0 (1)

and obvious identity

sin 5ϕ = 16 sin5 ϕ− 20 sin ϕ + 5 sin ϕ (2)

It follows from (1) and (2) that equation

16t5 − 20t3 + 5t− a = 0, |a| ≤ 1 (3)

has five real roots (in general not distinct):

tk = sin(ϕ0 + 72◦k), k = 0, 1, 2, 3, 4 ,where ϕ0: a = sin 5ϕ0 (4)

because 5× 72◦ = 360◦.

Conisider a = 1. Then a = 1 = sin(5 · 18◦) and from (3) it follows that for this case

equation (3) has following roots:

< sin 18◦, 1, sin 18◦, sin 54◦, sin 54◦ > (5)

Polynomial (3) has one rational root (at least) Hence

P5(t) = 16t5 − 20t3 + 5t− 1 = (t− 1)P4(t) = (t− 1)(16t4 + at3 + bt2 + ct + d) (6)

where a, b, c, d are rational numbers.

Sure we can calcualte a, b, c, d but at this step we do not care about their values.

We try to find information as much as possible without bothering about these values!

Polynomial P4(t) has four roots but they are not distinct. It is easy to see that from

this fact follows that polynomial P4(t) in (6) is in fact square of quadratic polynomial

with rational coefficients Indeed from (5) it follows that

P4(t) = 16t4 + at3 + bt2 + ct + d = P2(t)2 = (4t2 + pt + q)2 (7)

where sin 18◦ and sin 54◦ are roots of polynomial P2(t) (P2(t) = 4(t− sin 18◦)(t− sin 54◦))

On other hand opening brackets in (4) we see that

16t4 + at3 + bt2 + ct + d = 16t4 + 8pt3 + (p2 + 8q)t2 + 2pqt + q2 (8)
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Comparing coefficients at t3 and t2 we see that p and q are rational numbers.

This persuades us to find quadratic equation such that sin 18◦ and sin 54◦ are its roots.

(We just proved existence of this equation).

Now denote u = sin 18◦. It is easy to see that

sin 54◦ = 3t− 4t3 = cos 36◦ = 1− 2t2 (9)

Hence u is a root of equation 3t− 4t3 = 1− 2t2, or 4t3 − 2t2 − 3t + 1 = 0. This equation

has obvious root 1. Hence

4t3 − 2t2 − 3t + 1 = 4t3 − 4t2 + 2t2 − 2t− t + 1 = (t− 1)(4t2 + 2t− 1) = 0 (10)

We came to quadratic polynomial 4t2 + 4t + 1 such that sin 18 is its root (compare with

(0.2)). Thus u is positive root of square equation 4t2 + 4t + 1 = 0 Hence

sin 18◦ =
√

5− 1
4

(11)

It is natural to ask me: what for we did all this analysis. We can from beginning to

guess right equation (9) (Or even (10)). In this case I have not much to argue with you

but in the next section we see how useful becomes arguments before (9) to find sin 6◦.

§2 Calculation of sin 6◦.

In this case we even are not sure does there exist good equation to solve it for obtaining

sin 6◦.

So analysis becomes important in fact.

Note that 5 · 6 = 30. Hence consider equation (3) with parameter a = 1/2 = sin 30◦.

From (1), (2) (4) and elementary trigonometry it follows that roots of polynomial (3) in

this case are

< sin 6◦, sin 78◦, sin 150◦, sin 222◦, sin 294◦ >=

< sin 6◦, cos 12◦, 1/2,− cos 48◦,− cos 24◦ > (2.1)

In the same way noting that one root is rational we come to the fact that there exist four

order polynomial P4(t) with rational coefficients such that P5 = (t − 1/2)P4. But here

story is more funny because we cannot so simple come to quadratic equations.
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But nevertheless again as in the previous Section we will try to disclose as much

information as possible without considering coefficients of Polynomial P4(t) (only relying

on the fact that they are rational!)

The roots of polynomial P4(t) are

t0 = sin 6◦, t1 = cos 12◦, t2 = − cos 24◦t0 = − cos 48◦ (2.2)

Note that cos 2ϕ = 2 cos2 ϕ− 1 = 1− 2 sin2 ϕ. Hence under transformation

t → 1− 2t2 (2.3)

root of this polynomial transforms to another root!!! : the root t0 transforms to

t1, t1 transforms to t2, t2 transforms to t3 and t3 transforms to t0.

Denote transformation (2.3) by the letter F It is easy to see that F2t0 = t2,F3t1 = t0

e.t.c.

We see that all roots of polynomial P4(t) are rationally expressed via root t0 by the

transformations F , F2 and F3.

Now consider arbitrary combinations of roots t0, t1, t2, t3. and study at what

extent they are invariant under the action of transformations F ,F2,F3. For example

t0 + t2 and t0 · t2 are invariant under transformations F2, t0 + t1 + t2 + t3 are invariant

under all transformations.

Statement (Generalized Vieta Theorem).

Every combination of roots obeys to one of the following conditions

1) is invariant under all transformations F , F2, F3

2) is invariant under transformations F2 but is not invariant under transformation

F , hence the action of transformations F , F2, F3 on every element lead to two distinct

elements.

3) is not invariant under transformation F2

In the first case this combination is root of linear equation with rational coefficients,

i.e. are rational numbers!

In the second case this combination is a root of quadratic polynomial (with rational

coefficients)! (and it is not a rational number)

In the third case this combination is a root of fourth order equation and it is not the

root of third or second order equation!
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From this statement it is easy to see how to find combinations of roots that are roots

of quadratic polynomial! It is evident that

t0 + t2 = sin 6◦ − cos 24◦ (2.4)

and

t0 · t2 = − sin 6◦ cos 24◦

are roots of quadratic polynomial with rational number!!! because

t0 + t2 = t0 + F2t0, t0 · t2 = t0 · F2t0 (2.4)

do not change under transformation F2 and action of transformation F3 coincides with

action of transformation F2.

And just these expressions appeared in the first equation in introduction!

We explain already the anzats of Introduction.

But we continue to calculate sin 6 using polynomial P4(t).

Now encouraging by this remark we understand what is the right anzats for solving

equation P4(t) = 0

Performing all our considerations till now we were very lazy to calculate explcitly

P4(t). But now time came to do it because we now that we are on the right way: Equation

for sin 6 (see (3)):

P5(t) = 16t5 − 20t3 − 5t =
1
2

It is convenient (but not important) to consider variable t 7→ 2t:

P5(t) = t5 − 5t + 5t− 1 = 0 (t = 2 sin 6)

Dividing this polynomial on t− 1 (we change t on 2t) we come to polynomial

t4 + t3 − 4t2 − 4t + 1 = 0 (2.6)

WE ALREADY ARE READY TO ATTACK THIS EQUATION!

As was established above transformation t 7→ Ft = 2− t2 transforms root to the root.

So if t is a root then t + F2t and t · F2t have to be the root of quadratic polynomial!!!

Consider new variables

x = t + F2t = t +
(
2− (

2− t2
)2

)
(2.7)
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and

y = t · F2t = t ·
(
2− (

2− t2
)2

)
(2.8)

Using (2.6) we open brackets in (2.7) and see that

x = t3 − 3t− 1, y = −(t3 − 3t + 1)

x and y are roots of quadratic polynomials.

There are hundred ways to come to this quadratic equation. May be the easiest one

is again return to trigomnometry: Remembering that t = 2 sin 6 and 4 cos3 ϕ − 3 cos ϕ =

cos 3ϕ it is very easy to see that x and y are just equal to left hand sides of simultaneous

equations of Introduction and from §1 we already now that these numbers are roots of

quadratic polynomials. (Up some integer coefficients x = 1− 2 sin 18 and y = 1 + 2 sin 18

(Compare with Introduction)).

We justified Introduction!!!

§3
Now very very briefly about cos 20◦

Consider equation

t3 − 3t− 1 = 0

It is remarkable cubic equation.

According formula 4 cos3 ϕ − 3 cos ϕ = cos 3ϕ and the first Section it is very easy to

see that roots of this equation are

< 2 cos 20,−2 cos 40,−2 cos 40 >

and transformation F : t 7→ 2− t2 transforms root to the root!!!

In this case there are two not identical transformations: F and F2. cos 20 is a root

of cubic equation and in fact it cannot be expressed as a root and their combinattions of

quadratic equations.

Evidently (according to usual Vieta theorem ) product of its roots is equal to one.

In the school we proved it using ”domino” princip:

8 cos 20 · cos 40 · cos 80 =
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8 sin 20 · cos 20 · cos 40 · cos 80
sin 20

=

4 sin 40 · cos 40 · cos 80
sin 20

=

2 sin 80 · cos 80
sin 20

=

2 sin 160
sin 20

=

1

Long years I enjoyed this example and only after learning elements of Galois theory

understood its real meaning.

§4
We see that sin 18 is root of quadratic equation.

sin 6 is not root of quadratic equation, but can be expressed via quadratic radicals,

because it can be expressed as root of quadratic with coefficients which are rational or

roots of quadratic equation.

On the other hand cos 20 cannot be expressed in this way.

In other words we can construct by ruler and compass the sin 6, cos 6 and hence angle

6◦ and divide the circle on the 60 parts but we cannot divide the circle on the 18 paths

(360:18=20).

Before formulating general result one exercise

Exercise

The number

2k + 1 (4.1)

is prime. Prove that k is power of 2 (k = 2n, n = 0, 1, 2, . . .)

The prime numbers which can be represented in the way (4.1) are called Messner

prime numbers For example 3 = 2 + 1, 5 = 22 + 1 17 = 24 + 1, 257 = 28 + 1 are Messner

prime numbers.

Now I formulate general result without proof.

Theorem The circle can be divided on N equal parts with ruler and compass or in

other words one can construct sin 360/overn, cos 360/overn and the angle 360/overn

if and only if
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in the decomposition of the number N on the prime factors all the prime numbers

except 2 have power 1 or 0, and these prime numbers are Messner prime numbers:

N = 2np1 · . . . · pn (4.2)

where all prime numbers p1, . . . , pn are different Messner prime numbers.

This theorem has remarkable history:

Ancien Greek studied this problem. For N = 2, 3, 4, 6 everything is obvious for N =

5, 15 solution was known to Ancien Greeks.

Problem for N = 7, 9, 17 was open...

Gauss did it for N = 17. Then it was realized general answer...

Galois Theory gives full answer to this problem.

We do not prove here this Theorem.

Only note that for N obeying to above condition we have 2n − 1 transformations

transforming roots to the roots and step by step we can do calcualtion.

It is easy to see that N = 60 = 4 · 3 · 5 obeys to Theorem and N = 18 = 2 · 3 · 3 does

not obey.

From theorem follows answer on the following question: in what case sin k◦ for k

integer is expressed through quadratic radicals? For k = 1 answer NO because N = 360
1 =

360 = 8 ·3 ·3 ·5 does not obey to Theorem. Analogously for k = 2 answer NO too because

N = 360
2 = 180 = 4 · 3 · 3 · 5.

But for k = 3 answer Yes!!! because N = 360
2 = 180 = 4 · 3 · 3 · 5 enjoys the property

Hence for all k that are divisible on 3 (k = 3n) answer is yes:we construct angle 3◦

and multiply on k.

ON other hand for every angle that is not divisible on 3 answer is No: If Yes we come

to contradiction: 3k + p (p=1,2) Yes and 3k Yes hence subtracting angles p Yes too. But

for p = 1, 2 answer is No. Contradiction.
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