Cubic and quadric equations; Galois theory for pedestrians

H.M. Khudaverdian

This étude is written on the base of the book of A. Khovansky "Galois Theory" and it is inspired by the lecture 'Galois Lecture' for students on 4 th march 2016 and by the discussion with R. Mkrtchyan in December 2015 of quantum mechanical interpretation of roots of Lie algebra,

The content of this étude is the following: Let H be an abelian normal subgroup of group S_{n} of permutations of n elements. (Instead S_{n} one may consider an arbitrary Galois group G, but for clarity we consider just a group S_{n}.) We suppose that S_{n} acts on the space of polynomials $\Sigma^{(n)}$ of n variables $x_{1}, x_{2}, \ldots, x_{n}$.)

$$
\Sigma^{(n)}=\mathbf{C}\left[x_{1}, \ldots, x_{n}\right] .
$$

Then we can perform the following constructions.
Consider an arbitrary element $h \in H$ of this group. The corresponding linear operator acting on space $\Sigma^{(n)}$ is diagonalisable, since $h^{N}=1$. Moreover all elements of the group H can be diagonalised simultaneously since H is an abelian group. More precisely this means that one can consider the decomposition of space $\Sigma=\Sigma^{(n)}$ of polynomials on n variables on linear subspaces over characters of group H :

$$
\Sigma=\oplus_{\lambda \in \hat{H}} \Sigma_{\lambda}^{(n)}
$$

such that if $\lambda \in \hat{H}$ is an arbitrary character of H, then an arbitrary polynomial $P \in \Sigma_{\lambda}^{(n)}$ is an eignevector of all elements of h with eigenvalues $\lambda(h)$,

$$
h P=\lambda(h) P
$$

(Here \hat{H} is a dual group of group H. it is a group of characters of group $H^{1)}$). One can say that all elements of group H are commuting observables, and they are simultaneously measurable.

Denote by $\Sigma_{H}^{(n)}$ the subspace of H-invariant polynomials (this is subspace corresponding to character $\lambda \equiv 1$.). All characters are taking values in roots of unity, i.e. for an arbitrary polynomial $P \in \Sigma_{\lambda}^{(n)}$, there exists an integer N such that the polynomial P^{N} belongs to the space Σ_{H}. Thus we come to conclusion:

An arbitrary polynomial in $\Sigma^{(n)}$ is a sum of roots of polynomials in Σ_{H}.
${ }^{1)}$ Groups \hat{H} and H are both abelian groups with same numebr of elements, but in general they are not isomorphic.

Now concetrate on the question how to calculate H-invariant polynomials, ie. polybnomials in Σ_{H}.

Now suppose that H is an invariant subgroup in group S_{n}. In this case the smaller group $S_{n} \backslash H$ acts on the space Σ_{H}, i.e. H-invariant polynomials are roots of polynomial with smaller Galois group; if S_{n} is Galois group of initial polynbomial, then Galois group acting on H-invariant polynomials becomes $G=S_{n} \backslash H$. These considerations explain why if Galois group is solvable, then the roots of polynomial are expressed by taking operation of roots ${ }^{2}$. In particular for $n=2,3,4$ symmetric groups (groups of all permutations) S_{2}, S_{3}, S_{4} are solvable ${ }^{3)}$. We come to the formulae which express polynomials in S_{n} via S_{n}-invariant polynomials for $n=2,3,4$, i.e., solving cubic and quartic equations in radicals.

We will perform the scheme described above for quadratic, cubic and quatric polynomials. quadratic equation $n=2$
Group S_{2} is abelian $S_{2}=\{1, \sigma\}, \sigma^{2}=1$. It has two characters:

$$
\begin{array}{cc}
\lambda_{I} \equiv 1 \\
\lambda_{I I}: & \lambda_{I}(1)=1, \lambda_{I I}(\sigma)=-1
\end{array}, \quad \hat{S}_{2}=\left\{\lambda_{I}, \lambda_{I I}\right\} .
$$

For an arbitrary polynomial $P \in \Sigma^{(2)}, P=P\left(x_{1}, x_{2}\right)$, we have

$$
P=P_{I}+P_{I I}=\underbrace{\frac{P+\sigma P}{2}}+\underbrace{\frac{P+\sigma P}{2}}
$$

even polynomial odd polynomial
$\left((\sigma P)\left(x_{1}, x_{2}\right)=P\left(x_{2}, x_{1}\right)\right)$,
The decomposition of the space of polynomials is

$$
\Sigma^{(2)}=\Sigma_{\lambda_{I}}^{(2)}+\Sigma_{\lambda_{I I}}^{(2)}
$$

If $x_{1}+x_{2}=-p, x_{1} x_{2}=q\left(x_{1}, x_{2}\right.$ are roots of polynomial $\left.x^{2}+p x+q\right)$ then every even polynomial is S_{2}-invariant, i.e. it is polynomial on p, q. For every odd polynomial its square is S_{2}-invariant also, i.e. and odd polynomial is square root of polynomial on p, q. In particular for polynomial $P=x_{1}$ we have

$$
x_{1}=\frac{x_{1}+x_{2}}{2}+\frac{x_{1}-x_{2}}{2}=\frac{x_{1}+x_{2}}{2} \pm \sqrt{\left(\frac{x_{1}-x_{2}}{2}\right)^{2}}=
$$

${ }^{2)}$ here the word 'root' I use in two different meanings: 'root of polynomial' and 'operation of taking root'.
${ }^{3)}$ The abelian group is solvable. The group G is solvable if it possesses abelian normal subgroup such that factor is solvable. In particular S_{3} is solvable since $S_{3} \backslash C_{3}=S_{2}$ is abelian, where C_{3} is cyclic subgroup. For S_{4} one can consider abelian normal subgroup $K I$ generated by permutations $(12)(34)$ and $(13)(24)$ (see details later in the text). The factor is group S_{3}. Hence $S-4$ is solvable also.

$$
\frac{x_{1}+x_{2}}{2} \pm \sqrt{\left(\frac{x_{1}+x_{2}}{2}\right)^{2}-x_{1} x_{2}}=-\frac{p}{2}+\sqrt{\frac{p^{2}}{4}-q}
$$

Cubic equation $n=3$
Group S_{3} contains abelian normal subgroup $C_{3}=\left\{1, s, s^{2}\right\}$, where $s=(123)$.
Abelian subgroup C_{3} has following three characters:

$$
\begin{array}{cc}
\lambda_{0} \equiv 1 \\
\lambda_{I}: & \lambda_{I}(1)=1, \lambda_{I}(s)=\varepsilon, \lambda_{I}\left(s^{2}\right)=\varepsilon^{2} \quad, \quad \text { where } \varepsilon=e^{\frac{2 \pi i}{3}} . \\
\lambda_{I I}: & \lambda_{I I}(1)=1, \lambda_{I I}(s)=\varepsilon^{2}, \lambda_{I I}\left(s^{2}\right)=\varepsilon
\end{array}
$$

that is the group \hat{C}_{3} of characters is $\hat{C}_{3}=\left\{\lambda_{0}, \lambda_{I}, \lambda_{I I}\right\}$.
For an arbitrary polynomial $P \in \Sigma^{(3)}, P=P\left(x_{1}, x_{2}, x_{3}\right)$ we have

$$
P=P_{0}+P_{I}+P_{I I}=\underbrace{\frac{P+(s P)+\left(s^{2} P\right)}{3}}_{\text {eigenvalues }(1,1,1)}+\underbrace{\frac{P+\varepsilon^{2}(s P)+\varepsilon\left(s^{2} P\right)}{3}}_{\text {eigenvalues }\left(1, \varepsilon, \varepsilon^{2}\right)}+\underbrace{\frac{P+\varepsilon s P+\varepsilon^{2}\left(s^{2} P\right)}{3}}_{\text {eigenvalues }\left(1, \varepsilon^{2}, \varepsilon\right)}
$$

In details: $(s P)\left(x_{1}, x_{2}, x_{3}\right)=P\left(x_{2}, x_{3}, x_{1}\right)$, the polynomials $P_{I}, P_{I I}$ are eigenvectors such that

$$
\begin{gathered}
s P_{I}=\lambda_{I}(s) P_{I}=\varepsilon P_{I}, s^{2} P_{I}=\lambda_{I}\left(s^{2}\right) P_{I}=\varepsilon^{2} P_{I} \\
s P_{I I}=\lambda_{I I}(s) P_{I}=\varepsilon^{2} P_{I I}, s^{2} P_{I I}=\lambda_{I I}\left(s^{2}\right) P_{I I}=\varepsilon P_{I I}
\end{gathered}
$$

The decomposition of spaces is:

$$
\Sigma^{(3)}=\Sigma_{\lambda_{0}}^{(3)}+\Sigma_{\lambda_{I}}^{(3)}+\Sigma_{\lambda_{I I}}^{(3)}
$$

The subspace $\Sigma_{\lambda_{0}}$ is subspace of C_{3}-invariant polynomials.
The cube of every polynomial in $\Sigma_{I}^{(3)}$ or in $\Sigma_{I I}^{(3)}$ is C_{3}-invariant polynomial. Hence every polynomial can be expressed via C_{3}-invariant polynomials with use of operation of taking cubic roots.

Now concetratae on C_{3}-invariant polynomials. On the space $\Sigma_{C_{3}}^{(3)}$ of C_{3}-invariant polynomials acts factor-group

$$
S_{3} \backslash C_{3}=S_{2}
$$

i.e. C_{3} invariant polynomials are roots of quadratic equation!

Now if we consider polynomial $P=x_{1}$ we come to the formula for cubic roots.
Perform calulations
Suppose that $x_{1}+x_{2}+x_{3}=-a, x_{1} x_{2}+x_{1} x_{3}+x_{2} x_{3}=p$ and $x_{1} x_{2} x_{3}=-q$ i.e. x_{1}, x_{2}, x_{3} are roots of polynomial $x^{3}+a x^{2}+p x+q$. According to decomposition formula we have:

$$
x_{1}=\left(x_{1}\right)_{0}+\left(x_{1}\right)_{I}+\left(x_{1}\right)_{I I}=\underbrace{\frac{x_{1}+x_{2}+x_{3}}{3}}_{\text {eigenvalue 1 }}+\underbrace{\frac{x_{1}+\varepsilon^{2} x_{2}+\varepsilon x_{3}}{3}}_{\text {eigenvalue } \varepsilon}+\underbrace{\frac{x_{1}+\varepsilon x_{2}+\varepsilon^{2} x_{3}}{3}}_{\text {eigenvalue } \varepsilon^{2}}+
$$

(We write down here eigenvalue of operator s.) The first expression is obviously not only C_{3}-invariant but it is S_{3}-invariant also: $\left(x_{1}\right)_{0}=\frac{x_{1}+x_{2}+x_{3}}{3}=-\frac{a}{3}$. Later for simplicity without loss of generality we assume later than $a=x_{1}+x_{2}+x_{3}=0$ (changing $x_{i} \mapsto x_{i}-\frac{a}{3}$).

Denote $w_{I}=\left(x_{1}\right)_{I}$ and $w_{I I}=\left(x_{2}\right)_{I I}$. The cubes of expressions $w_{I}=\left(x_{1}\right)_{I}$ and $w_{I I}=\left(x_{2}\right)_{I I}$ are eigenvectors with eigenvalue 1 , hence they are C_{3}-invariant. Hence the group $S_{3} \backslash C_{3}=S_{2}$ acts on these numbers, i.e. they are roots of quadratic equation: $[(12)] w_{I}^{3}=w_{I I}^{3}$.
C_{3}-invariant polynomails $w_{I}^{3}+w_{I I}^{3}$ and $w_{I}^{3} w_{I I}^{3}$ are invariant with respect to the action of factorgroup $S_{2}=S_{3} \backslash C_{3}$, i.e. these polynomials are S_{3} invariant polynomials, i.e. they are expressed via coefficients: we have after long but simple calculations that

$$
w_{I}^{3}+w_{I I}^{3}=\left(\frac{x_{1}+\varepsilon^{2} x_{2}+\varepsilon x_{3}}{3}\right)^{3}+\left(\frac{x_{1}+\varepsilon x_{2}+\varepsilon^{2} x_{3}}{3}\right)^{3}=-q
$$

and

$$
w_{I}^{3} \cdot w_{I I}^{3}=\left(\frac{x_{1}+\varepsilon^{2} x_{2}+\varepsilon x_{3}}{3}\right)^{3}\left(\frac{x_{1}+\varepsilon x_{2}+\varepsilon^{2} x_{3}}{3}\right)^{3}=-27 p^{6}
$$

Hence

$$
x_{1}=w_{0}+w_{I}+w_{I I}=\sqrt[3]{w_{1}}+\sqrt[3]{w_{2}}=\sqrt[3]{-\frac{q}{2}+\sqrt{\frac{q^{2}}{4}+\frac{p^{3}}{27}}}+\sqrt[3]{-\frac{q}{2}-\sqrt{\frac{q^{2}}{4}+\frac{p^{3}}{27}}}
$$

Remark The question what branch of cubic root to choose can be answered if we note that $w_{I} w_{I I}$ is S_{3} invariant under the action of S_{3}.

$$
\text { Quartic equations } n=4
$$

First explain why and how we choose ableian subbgroup in S_{4}.
Consider platonic body, tetrahedron $A_{1} A_{2} A_{3} A_{4}$. On vertices of this tetrahedron acts group S_{4}.

Let
E_{1} be a middle point of the segment $A_{1} A_{2}$,
F_{1} be a middle point of the segment $A_{3} A_{4}$
E_{2} be a middle point of the segment $A_{1} A_{3}$
F_{2} be a middle point of the segment $A_{2} A_{4}$
E_{3} be a middle point of the segment $A_{1} A_{4}$
F_{3} be a middle point of the segment $A_{2} A_{3}$
Consider the cross formed by segments $l_{1}=E_{1} F_{1}, l_{2}=E_{2} F_{2}, l_{3}=E_{3} F_{3}$, and consider the subgroup of all permutations of vertices of the tetrahedron, such that the cross remains
intact: They will be permuttions $a=(12)(34), b=(13(24)$ and permutation $a b=(14)(23)$. We come to abelian group:

$$
K I=\{1, a, b, a b\}
$$

It is normal subgroup since it preserves the cross $l_{1} l_{2} l_{3}$ in tetraedron $A_{1} A_{2} A_{3} A_{4}$ Factorgroup $S_{4} \backslash K I$ acts on the cross. It is group of permutations of edges of CROSS, i.e. it is S_{3}. We come to

$$
S_{4} \backslash K I=S_{3} .
$$

Since we know that group S_{3} is solvable ($S_{3} \backslash C_{3}=C_{2}$), hence S_{4} is also solvable. Now perform calculations according our scheme.

Abelian subgroup $K I$ of S_{4} has following four characters:

$$
\begin{array}{cc}
\lambda_{0} \equiv 1 \\
\lambda_{I}: & \lambda_{I}(1)=1, \lambda_{I}(a)=1, \lambda_{I}(b)=-1, \lambda_{I}(a b)=-1 \\
\lambda_{I I}: & \lambda_{I I}(1)=1, \lambda_{I I}(a)=-1, \lambda_{I I}(b)=1, \lambda_{I I}(a b)=-1 \\
\lambda_{I I I}: & \lambda_{I I I}(1)=1, \lambda_{I I I}(a)=-1, \lambda_{I I I}(b)=-1, \lambda_{I I I}(a b)=1
\end{array} \quad \text { since } a^{2}=b^{2}=1 .,
$$

i.e. group of characters of $K I$ is $\hat{K} I=\left\{\lambda_{0}, \lambda_{I}, \lambda_{I I}, \lambda_{I I I}\right\}$. Respectively for an arbitrary polynomial of roots, $P \in \Sigma^{(4)}$, $P=P\left(x_{1}, x_{2}, x_{3}, x_{4}\right)$ we have

$$
\begin{gathered}
P=P_{0}+P_{I}+P_{I I}+P_{I I I}= \\
\underbrace{\frac{P+(a P)+(b P)+(a b P)}{4}}_{\text {eigenvalues }(1,1,1,1)}+\underbrace{\frac{P+(a P)+(b P)+(a b P)}{4}}_{\text {eigenvalues }(1,1,-1,-1)}+ \\
\underbrace{\frac{P-(a P)+(b P)-(a b P)}{4}}_{\text {eigenvalues }(1,1,-1,-1)}+\underbrace{\frac{P-(a P)-(b P)+(a b P)}{4}}_{\text {eigenvalues }(1,-1,-1,-1)}+
\end{gathered}
$$

In details:

$$
\begin{aligned}
& \quad(a P)\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=P\left(x_{2}, x_{1}, x_{4}, x_{3}\right) \\
& (b P)\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=P\left(x_{2}, x_{1}, x_{4}, x_{3}\right), \\
& (b P)\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=P\left(x_{3}, x_{4}, x_{1}, x_{2}\right), \\
& a P_{0}=\lambda_{0}(a) P_{0}=P_{0}, b P_{0}=\lambda_{0}(b) P_{0}, a b P_{0}=\lambda_{0}(a b) P_{0}=P_{0} \\
& \quad a P_{I}=\lambda_{I}(a) P_{I}=P_{I}, b P_{I}=\lambda_{I}(b) P_{I}=-P_{I}, a b P_{I}=\lambda_{I}(a b) P_{I}=-P_{I} \\
& a P_{I I}=\lambda_{I I}(a) P_{I I}=-P_{I}, b P_{I I}=\lambda_{I I}(b) P_{I I}=P_{I I}, a b P_{I I}=\lambda_{I I}(a b) P_{I I}=-P_{I I} \\
& a P_{I I I}=\lambda_{I I I}(a) P_{I I I}=-P_{I I I}, b P_{I I I}=\lambda_{I I I}(b) P_{I I I}=-P_{I I I}, a b P_{I I I}=\lambda_{I I I}(a b) P_{I I I}=P_{I}
\end{aligned}
$$

Polynomial P_{0} is $K I$-invariant polynomial, all other polynomials are not $K I$ invariants but their squares are. The decomposition of spaces is:

$$
\Sigma^{(4)}=\Sigma_{\lambda_{0}}^{(4)}+\Sigma_{\lambda_{I}}^{(4)}+\Sigma_{\lambda_{I I}}^{(4)}+\Sigma_{\lambda_{I I I}}^{(4)}
$$

The subspace Σ_{0} is subspace of $K 4$-invariant polynomials.
The square of every polynomial in $\Sigma_{I}^{(4)}$ or in $\Sigma_{I I}^{(4)}$ or in $\Sigma_{I I I}^{(4)}$ is $K I$-invariant polynomial. Hence we see that every polynomial can be expressed via $K I$-invariant polynomials with use of operation of quadratic roots $\sqrt{ }$.

On the space of $K I$-invariant polynomials acts group

$$
S_{4} \backslash C_{3}=S_{3}
$$

i.e. $K I$ invariant polynomials are roots of cubic polynomials.!

Now if we consider polynomial $P=x_{1}$ we come to the formula for roots of quartic polynomials.

Perform calculations
Suppose that $x_{1}+x_{2}+x_{3}+x_{4}=-a, x_{1} x_{2}+x_{1} x_{3}+x_{2} x_{3}+\ldots=p$ and $x_{1} x_{2} x_{3}+d o t s=$ $-q, x_{1} x_{2} x_{3} x_{4}=r$ i.e. x_{1}, x_{2}, x_{3} are roots of polynomial $x^{4}+a x^{3}+p 2+q x+r$. According to decomposition formula we have:

$$
\begin{gathered}
x_{1}=\left(x_{1}\right)_{0}+\left(x_{1}\right)_{I}+\left(x_{1}\right)_{I I}+\left(x_{1}\right)_{I I I}= \\
\underbrace{\frac{x_{1}+x_{2}+x_{3}+x_{4}}{4}}_{\text {all eigenvalues 1 }}+\underbrace{\frac{x_{1}+x_{2}-x_{3}-x_{4}}{4}}_{\text {eigenvalues }(1,1,-1,-1)}+ \\
\underbrace{\frac{x_{1}-x_{2}+x_{3}-x_{4}}{4}}_{\text {eigenvalues }(1,-1,1,-1)}+\underbrace{\frac{x_{1}-x_{2}-x_{3}+x_{4}}{4}}_{\text {eigenvalues }(1,-1,-1,1)}
\end{gathered}
$$

Denote by
$u_{0}=\frac{x_{1}+x_{2}+x_{3}+x_{4}}{4}, u_{I}=\frac{x_{1}+x_{2}-x_{3}-x_{4}}{4}, u_{I I}=\frac{x_{1}-x_{2}+x_{3}-x_{4}}{4}, u_{I I I}=\frac{x_{1}-x_{2}-x_{3}+x_{4}}{4}$.
Polynomial w_{0} is not only $K I$-invariant int is S_{4}-invariant- $u_{0}=-a$. Squares of all other polynomials are $K I$-invarianbt polynomials,i.e. on polynomials $v_{I}=u_{I}^{2}, v_{I I}=u_{I I}^{2}, v_{I I I}=$ $u_{I I I}^{2}$ acts the factor group $S_{4} / K I=S_{3}$. hence they are roots of cubic polynomial (with coefficeints which are polynomials on $a, p . q . r$).

