
On one triple

Let M be a (super)manifold, and M = C∞(M) be an algebra of functions on this

manifold. Consider the triple (1):

Poisson bracket on C∞(M)→ Homotopy Poisson bracket on C∞(M)→ Vector field on C∞(M)

Where it comes from?:

Let H be an arbitrary even Hamiltonian on ΠT ∗M (arbitrary odd Hamiltonian on

T ∗M). It defines homotopy even Poisson bracket on M , the series of bracets: for every n

{f1, . . . , fn} = [. . . [H, f1], f2] . . . , fn]
∣∣
M
, (2a)

where [ , , , ] is canonical odd Poisson bracket on ΠT ∗M . (Respectively in the case if H is

an odd Hamiltonian on T ∗M we come to homotopy odd Poisson bracket

{f1, . . . , fn} = (. . . (H, f1), f2) . . . , fn)M , (2b)

where ( , , , ) is canonical even Poisson bracket on ΠT ∗M .)

The Jacobi identity for the series of homotopy even Poisson brackets (2a) is provided

with master-equation

[H,H] = 0 (3a)

(Respectively the Jacobi identity for the series of homotopy odd Poisson brackets (2b) is

provided with master-equation

(H,H) = 0 (3b)

) If Hamiltonian H is quadratic in fibers, then we come to usual Poisson bracket. If H is

an arbitrary function we come to homotopy Poisson bracket, and if H is the linear over

fibers we come to vector field.

We see that usual Poisson bracket and vector field are related with each other being

the special cases of homotopy Poisson bracket. All three structures are represented by

homological vector field on infinite-dimensional manifold M = C∞(M)

f 7→ f + τH

(
x,
∂f

∂x

)
, Q =

∫
dxH

(
x,
δf

δx

)
δ

δx
(4)

In the case of linear Hamiltonian vector field (4) is just the image of vector field generated

by the linear Hamiltonian:

xi 7→ xi + τKi −→ f 7→ f(xi + τKi)

I cannot avoid the temptation to compare this triple whith another triple:
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Many years ago I learned from the book of Polia about the triple

square→ polygon→ trianlge

it can be used for the very elegant proof of Pythagorean Theorem:

Let 4ACB be rectangular triangle, 6 C = π
2 . We denote a = |BC|, b = |AC|, c =

|AB|
Consider the following three statements

I. Let α4, β4, γ4 be three squares such that the square α4 is the square on

the side BC, i.e. its side is equal to a, the square β4 is the square on the

side AC, i.e. its side is equal to b, and the square γ4 is the square on the

side AB, i.e. its side is equal to c, then

a2 + b2 = c2 , Pythagorean Theorem

which is nothing but the statement

Area of the square α4 + Area of the square β4 = Area of the square γ4 (∗)

II. Consider three similar n-gones, (polygones with n sides), αn, βn, γn,

such that one of the sights of polygon αn is equal to a, the corresponding side

of the similar polygon βn is equal to b and the corresponding side of the sim-

ilar polygon γn is equal to c.

Then

Area of the polygon αn + Area of the polygon βn = Area of the polygonγn
(∗∗)

III. Consider three similar rectangular α3, β3 and γ3, 4α3 ∼ 4β3 ∼ 4γ3
such that hypothenuse of the triangle α3 is equal to a, hypothenuse of the tri-

angle β3 is equal to b, and hypothenuse of the triangle γ3 is equal to c then

Area of 4α3 + Area of 4βn = Area of 4γ3 (∗ ∗ ∗)

The statements I, II and III are equivalent. since Area of every poly-

gon is proportional to the square of the side. This means that prove the Pytha-

goeran Teorem it suffices to prove just one of these statements. Prove the

statement (***).

Let CD be the height of the triangle ACB, CD ⊥ AB and D ∈ AB.
Triangles ACD and BCD are rectangular triangles, they are similar to

the triangle ABC. Hypothenuse of triangle ACD is equal to a hypothenuse
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of triangle BCD is equal to b Hypothenuse of triangle ACB is equal to c.

We have that

Area(4ACD) + Area(4BCD) = Area(4ACB)

This proves (***). This proves Pythagorean Theorem.

To prove this theorem we first generalise the statement from suqre to ar-

bitrary polygon, then specify the special type of polygon--- rectangular tri-

angle.
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