Geometrical object (look from outside)

Long ago I red the definiiton of geometrical object in Beklemishev (Manuel on Analytical geometry). I was very happy to know how physisists define vectors, tensors,... and honestly long time did not understand the question: "does it exist"...., and the fact that it is the cocycle condition (see equation (3) below which guarantees it!))

I struggled with this during all my life. My friend Ted Voronov always emphasized the importance of cocycle condition for the existence of object.. The proverb: "vek zhivi, vek uchisj, durakom pomrjoshj" works fine in this case.

Definition We say that at the points of manifold M we define geometrical object if for every point $\mathbf{p t} \in M$ and for every local coordinates $x_{(\alpha)}^{i}$ which are defined in the vicinity of this points we define the sequence Σ^{I} of numbers

$$
\begin{equation*}
\left\{x_{(\alpha)}^{i}\right\} \mapsto \quad \Sigma^{I}=\Sigma^{I}\left(x_{(\alpha)}^{i}\right) \tag{1}
\end{equation*}
$$

such that the following conditions are obeyed:

1) Let $x_{(\alpha)}^{i}$ and $x_{(\beta)}^{i^{\prime}}$ be two arbitrary coordinates which are defined in the vicinity of the point $\mathbf{p t}$, then

$$
\begin{equation*}
\Sigma^{I^{\prime}}\left(x_{(\beta)}^{i^{\prime}}\right)=\Psi_{\beta \alpha}^{I^{\prime}}\left(\Sigma^{I}\left(x_{(\alpha)}^{i}\right)\right) . \tag{2}
\end{equation*}
$$

2) Let $x_{(\alpha)}^{i}, x_{(\beta)}^{i^{\prime}}, x_{(\gamma)}^{i^{\prime \prime}}$ be three arbitrary coordinates which are defined in the vicinity of the point pt, and let object Σ is defined

$$
\begin{aligned}
& \text { in coordinates }\left\{x_{(\alpha)}^{i}\right\} \text { by the sequence } \Sigma_{\alpha}^{I}\left(x_{(\alpha)}^{i}\right) \\
& \text { in coordinates }\left\{x_{(\beta)}^{i^{\prime}}\right\} \text { by the sequence } \Sigma_{\beta}^{I^{\prime}}\left(x_{(\beta)}^{i^{\prime}}\right) \\
& \text { in coordinates }\left\{x_{(\gamma)}^{i^{\prime \prime}}\right\} \text { by the sequence } \Sigma_{\gamma}^{I^{\prime \prime}}\left(x_{(\gamma)}^{i^{\prime \prime}}\right)
\end{aligned}
$$

Then

$$
\begin{equation*}
\Psi_{\alpha \gamma}^{I}\left(\Sigma_{\gamma}^{I^{\prime \prime}}\left(x_{(\gamma)}^{i^{\prime \prime}}\right)\right)=\Psi_{\alpha \beta}^{I}\left(\Psi_{\beta \gamma}^{I^{\prime}}\left(\Sigma^{I^{\prime \prime}}\left(x_{(\gamma)}^{i^{\prime \prime}}\right)\right)\right)= \tag{3}
\end{equation*}
$$

Equation (2) defines transformation of components of geometrical object when we transform coordinates.

Equations (3) (cocycle conditions) guarantee that if you transform coordinates in different ways, the answer is idependent. For example if we have five different local coordinates

$$
x_{(\alpha)}, x_{(\beta)}, x_{(\gamma)}, x_{(\delta)}, x_{(\rho)}, x_{(\omega)},
$$

such that

$$
x_{(\alpha)}\left(x_{(\beta)}\left(x_{(\gamma)}\left(x_{(\delta)}\right)\right)\right)=x_{(\alpha)}\left(x_{(\rho)}\left(x_{(\omega)}\left(x_{(\delta)}\right)\right)\right)
$$

then the coycle condition (3) guqrantees that answer will be the same if you go from coordinates $x_{(\delta)}$ to coordinates $x_{(\alpha)}$ through coordinates $x_{(\gamma)}$ and $x_{(\beta)}$ or if you go from coordinates $x_{(\delta)}$ to coordinates $x_{(\alpha)}$ through coordinates $x_{(\omega)}$ and $x_{(\rho)}$ or if you go.

Cocycle conditions guarantees existence of the object.

Examples? It is crazy easy. Remember how physisists define vectors. The define vector as array of components which transforms in a given way if you change a basis. It is only sometimes very curious students ask question: does at least one vector exist *?

[^0]
[^0]: * the existence is guaranteed by the condition...[try to write it!!!] (Usually this question makes angry a lecturer if his (her) level of mathematical culture is not too high)

