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On Duistermaat-Heckman localisation Theorem II

Here we will give a formulation (with supermathematics flavor), the proof and concrete
calculations for DH (Dustermaat-Heckman) localisation formula. This etude is essentially
based on the papers of Armen Nersessian [1], and of Oleg Zaboronsky and Albert Schwarz
[2], my etude [4] (see the previous etude on this topic) which was based on calculations of
A.Belavin.) It is interesting also to note the paper [3]. This etude is a developed exposition
of my talk on the Geometry seminars in Manchester (17 October and 23 October, 2013).

If a form, is invariant with respect to odd vector field
Q = d+ ιK =

√
LK where LK is Lie derivative

with respect to U(1)-vector field K, then integral of this
form over manifold M is localised at the zero locus
of vector fied K. This is the meaning.
of Dustermaat-Heckman localisation formula.

§0 Recallings
Recall briefly the DH (Duistermaat-Heckman) localisation formula and perform some

calculations based on calculations in [4].
Let (M,Ω) be compact symplectic supermanifold (Ω is non-degenerate closed two

form, dimM = 2n). Let H be a Hamiltonian and K = DH : dH = −ιKΩ, its Hamiltonian
vector field. Let vector field K obeys the following conditions:

K = DH is compact vector field, i.e. it defines U(1)-action on M1) (0.1)

Zero locus of vector field K, K(xi) = 0, is a set {xi} of isolated points (0.2)

DH-localisation formula states that if conditions (0.1) and (0.2) are obeyed then∫
eiHdVΩ =

∫
ei(H+Ω) =

∑
xi

eiH
√

det Ωik√
det HessH

∣∣
xi

=
∑
xi

eiH(xi)√
det
(

∂K(x)
∂x

∣∣
x=xi

) . (0.3)

Comments to this formula:
1. Here and later we often omit all the coefficients proportional to πa, n!, in,
2. xi: K(xi) = 0, is a locus (zero locus) of Hamiltonian vector field K, i.e. stationary

points of Hamiltonian H,
3. dVΩ is invariant volume form:

dVΩ = Ωn = Ω ∧ . . . ∧ Ω︸ ︷︷ ︸
n-times

is Lioville volume form ,
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in local coordinates dVΩ = Pfaf Ωd2nx =
√

det Ωd2nx, HessH = ∂2H
∂xi∂xk

is bilinear form at

stationary points; as well as ∂K
∂x is linear operator at zero locus of vector field K.

Shortly show how to calculate (0.3) using ideas of [4].
Let ω be an arbitrary K-invariant 1-form:

LKω = d ◦ ιKω + ιK ◦ dω = 0 . (0.4)

Consider ‘partition function

Z(t) =

∫
M

ei((H+Ω)+tdKω) , (0.5)

where dK = d+ ιK. One can see that condition (0.4) and condition dK(H + Ω) = 0 imply
that this partition function does not depend on t:

dZ(t)

dt
= i

∫
M

dK

(
ωei((H+Ω)+tdKω)

)
= 0 , (0.6)

because for an arbitrary differential form F ,
∫
M
dF = 0 (Stokes Theorem) and

∫
M
ιKF = 0

also, since form ιKF has order less than equal 2n (2n is the dimension of M is an order of
top form.)

Partition function Z(t) at t = 0 is the left hand side of equation (0.3), the initial
integral; this function at t → ∞ can be calculated using stationary phase method. So
using (0.6) we reduce calculations of the integral to quasiclassical calculations for t→∞:

Z(0) = lim
t→∞

Z(t) =
∑
k,r

tr

k!r!

∫
M

ei(H+th)Ω̃rΩm , (0.7)

where Ω̃ = dω, h = ιKω. Now calculate partition function at t → ∞. dh = d(ιKω) =
−ιKΩ̃. Hence at zero locus of K, i.e. dh = 0 we have

HessH
∣∣
xi

=
∂2H

∂xm∂xn
∣∣
xi

= Ω̃mn

∣∣
xi
. (0.8)

Hence using the fact that for symmetric bilinear form A(x,x) in k-dimensional Euclidean
space Rk ∫

Rk

eitA(x,x)dkx =

∫
Rk

eitAijx
ixjdkx =

e
iπk
4

√
πk

t
k
2

√
detA

,

we obtain that at the quasiclassical limit for partition function Z(t) in (0.7) is equal to

lim
t→∞

Z(t) =

n∑
r=0

tr

(n− r)!r!

∫
M

ei(H+th)Ω̃rΩn−r =

lim
t→∞

n∑
r=0

∑
xi

tr

(n− r)!r!
eiH
√

det Ω̃ik

tn
√

det HessH

∣∣
xi

=
∑
xi

eiH
√

det Ω̃ik√
det HessH

∣∣
xi
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Now choose ω such that Ω̃ = dω is non-degenerate at locus of K. We have dh = ιKΩ̃.
Hence at locus of K

HessH =
∂2H(x)

∂xmxn
= Ω̃mr

∂Kr

∂xn
,

and we have finally that

lim
t→∞

Z(t) =
∑
xi

eiH
√

det Ω̃ik√
det HessH

∣∣
xi

∑
xi

eiH√
det ∂K

∂x

∣∣
xi

Thus due to relation (0.6) leads to (0.3).
Remark 1 The form Ω̃ = dω and new Hamiltonian h = ιKω define the same Hamil-

tonian vector field K as a pair (Ω, H). On the other hand the pair (Ω̃, ω) is more suitable
for calculation of quasiclassical approximation. The U(1)-vector field K is fundamental
object of DH-localisation formula, not the pair which produces this field (see in detail §2).

Remark 2
One of the way to produce K-invariant form ω is the following: One can take ω-

covector K with respect to U(1)-invariant metric: ω = ωidx
i, wi = gikK

k and gik is U(1)-
invariant Riemannian metric (average over group U(1)). It is crucial for calculation that
Ω̃ = dω is non-degenerate at zero locus of K. Is it an additional condition, or it follows from
the fact that vector field K generates U(1)-action (and M is even-dimensional manifold)?
On one hand I cannot prove this completely, on the other hand natural counterexamples
deal with non-compact vector field.

§1 DH-formula and supersymmetric mechanics. Nersessian’s approach.
The considerations of this paragraph are based on the work [2]

The calculations above can be put in supersymmetric framework. Differential form on
M can be considered as a function on ΠTM—tangent bundle to M with reversed parity
of fibers wi(x)dxi → wi(x)ξi, . . .. Integral of form over M is the integral of a function over
supermanifold ΠTM with invariant volume form dx1 . . . dx2ndξ1 . . . dξ2n.

In the very nice paper [1] Armen Nersessian suggested the supersymmetric framework
of the calculations above. I will try to explain it here. Recall that for an arbitrary Poisson
manifold M (manifold with Poisson bracket { , }) one can consider odd Koszul bracket
[ , ] on ΠTM such that for arbitrary functions f, g on M we have that

[f, g] = 0 , [f, dg] = {f, g} [df, dg] = d{f, g} . (1.1)

In local coordinates [xi, xk] = 0, [xi, ξk] = Ωik, [ξi, ξk] = ξr∂rΩik.
If Poisson structure is symplectic one then

[Ω, F ] = dF , (Ω = Ωikξ
iξk) (1.2)

If H is an arbitrary Hamiltonian on M and K = DH Hamiltonian vector field then

[H,F ] = ιKF (1.3)
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We see that
(d+ ιk)F = [Ω +H,F ]

and
LKF = (d+ ιK)2 = [H + Ω, [H + Ω, F ]] = [[H,Ω], F ] .

Thus we come to core of Dustermaat-Heckman formalism:
Form F is invariant with respect to odd vector field dK = d + ιK if it is integral of

motion of ’Hamiltonian’ H + Ω, form F is invariant with respect to Hamiltonian vector
field K = DH if it is integral of motion of ’Hamiltonian’ G = [H,F ].

The partition function (0.5) can be rewritten as

Z(t) =

∫
ei(H−Ω−t[H+Ω,G̃]) .

Remark 3 Hamiltonians {H + Ω, H − Ω,Ω} form superalgebra.

§2Schwarz-Zaboronsky supersymmetric formalism

In this paragraph we will speak about approach developed in the paper [2], where
supergeometry is powerfully used for formulating localisation formula in a more general
case.

It will always be assumed that M is compact manifold and K is compact vector field
on it, i.e. vector field which generates U(1) action. We denote by

QK = d+ ιK , in “supernotations” QK = ξi
∂

∂xi
+Ki(x)

∂

∂ξi
,

where xi, ξi = dxi are local coordinates on ΠTM .
Odd vector field QK is a “square root” of a Lie derivative LK = ιK ◦ d+ d ◦ ιK:

LK = Q2
K =

(
ξi

∂

∂xi
+Ki(x)

∂

∂ξi

)2

= Ki(x)
∂

∂xi
+ ξr

∂Ki

∂ξr
∂

∂ξi
, (1)

or in classical notations

LK = Q2
K = (d+ ιk)2 = d ◦ ιK + ιK ◦ d .

We formulate the following version of DH localisation theorem:
Theorem Let H = H(x, dx) be a QK-invariant form on M , i.e.

dH + ιKH = 0 . (2)

Then the integral
∫
M
H(x, dx) is localised at locus of K. This means follows: let UK be an

arbitrary U(1)-invariant∗ tubular neighborhood of locus of K and let GU = GU (x, dx) be a

∗ the condition to be U(1)-invariant may be is not necessary. We will use it for con-
structing U(1)-invariant partition of unity. This condition is absent in the paper [1].
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QK-invariant form such that it is equal to 1 at the locus of vector field K and it vanishes
out of neighborhood UK:

QKGU = 0, (i.e. dGU + ιKGU = 0), GU

∣∣
locus of K = 1, GU

∣∣
M\UK

= 0 . (3)

(Bump-form of zero locus of K.) (We will prove the existence of such a bump-form)

Then ∫
M

H =

∫
M

HGU . (4)

Example Let M be a symplectic manifold, i.e. non-degenerate closed two-form Ω
is defined on M (M is even-dimensional). Let h = h(x) be a Hamiltonian such that its
Hamiltonian vector field Dh (Dh: ι

Dh
Ω = −dh) is compact, i.e. it defines U(1) action.

Consider the form
H(x, dx) = exp i (Ω + h) . (5)

This form is QK-invariant. Indeed since K is Hamiltonian vector field Dh hence

ιKΩ + dh = 0.i.e. QK(h+ Ω) = 0⇒ QKH = 0 .

Then ∫
H(x, dx) =

∫
exp i (Ω + h) =

in

n!

∫
exp ihΩ ∧ . . . ∧ Ω︸ ︷︷ ︸

n times

is localised.

Remark 4 Note that this example is a basic example in classical background. Com-
pact vector field K appears naturally in this example as Hamiltonian vector field of Hamil-
tonin h. In Schwarz-Zaboronsky approach the vector field K appears independently with-
out symplectic structure and Hamiltonian. In this approach the localisation formula is
stated for a function H(x, dx) on ΠTM (sum of differential forms of different orders). The
classical condition that sum of differential forms is invariant with respect to equivariant
differential dK = d+ ιK becomes the condition that “function” 2

H(x, dx) is invariant with respect to odd vector field QK which is the square root of
Lie derivative along the vector field K :Q2

K = LK.
Remark 5 ’Super-language’ becomes essentially important for constructing of parti-

tion of unity for forms.

Proof of Theorem First we prove the existence of a form GU = GU (x, dx) which obeys
the condition (3), then we will show that an arbitrary QK-invariant “function” (form)
which obeys conditions (3) yields the localisation formula (4).

Using partition of unity arguments consider a function F = F (x) such that

F (x)
∣∣
locus of K = 0, F (x)

∣∣
M\UK

= 1 . (6)

2 H(x, dx) is non-homogeneous differential form on M . It is a function on tangent
bundle ΠTM with reversed parity of fibers.
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(We may consider partition of unity which is subordinate to covering V1 ∪ V2, where
V1 = UK and V2 = M\locus of K.

We may assume that F (x) is K-invariant function. (Here we use the U(1)-invariance
of neighbourhood of locus (see the footnote.)).

It is useful to consider the differential 1-form

ωK:ωK(x)〈K, ,x〉 , ωi = gimK
mdxi , (7)

where 〈K, ,x〉 is U(1)-invariant Riemannian metric on M . Now we are ready to define
form GU which obeys the condition (3):

GU (x, dx) = 1−QK

(
ωK(x, dx)

QKωK
F (x)

)
(8)

Straightforward calculations show that this function obeys conditions (3). Indeed F (x) = 0
if x belongs to locus of K (and in a vicinity of the locus), hence the right hand side of
equation (8) is well-defined on the locus of K, where the form ωK is not defined. Using

the fact that QK

(
ωK(x,dx)
QKωK

)
= 1 (if K(x) 6= 0) we immediately come to the condition (3).

Let G̃U = G̃U (x, dx) be an arbitrary QK-invariant form which obeys the condition
(3). Then consider the difference L(x, dx) = G̃U −GU . The form L(x, dx) is QK-invariant
and it is equal to 0 at the locus of K, Hence

L(x, dx) = QK

(
ωK(x, dx)

QKωK
L(x, dx)

)
. (9)

Thus we see that QK-invariant form GU (x, dx) in (8) which obeys the condition (3) as
well as an arbitrary QK-invariatn form G̃U (x, dx) which obeys the condtion (3) obey the
condition that

GU (x, dx) = 1 +QK(...)
G̃U (x, dx) = 1 +QK(...)

This immediately implies the relation (4):∫
M

H(x, dx)GU (x, dx) =

∫
M

H(x, dx)(1 +QK(. . .)) =

∫
M

H(x, dx)

since
∫
M
QK(. . .) = 0∗∗

Concrete calculations
Now based on the Theorem we present concrete calculations. which are very similar

to calculations in paragraph 0.

∗∗ since QK = d+ ιK , and ιKω ’does not contain’ top form. This follows also from the
vanishing of divergence of odd vector field QK with respect to canonical volume form in
ΠTM
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Let H = H(x, dx) be QK invariant form and locus (zero locus) of U(1)-invariant
vector field K is a set {xi} of isolated points.

Using bump-form GU , the form which vanishes out vicinities of points {xi} (see the
considerations above) we calculate

∫
M
H(x, dx).

Lemma For an arbitrary QK-invariant form H(x, dx) the integral

Z(t) =

∫
H(x, dx)eitQK(ωK) ,

where ωK is U(1)-invariant form (7) does not depend on t.
Proof:

dZ(t)

dt
= i

∫
M

H(x, dx)QKωKe
itQK(ωK) = i

∫
M

QK

(
H(x, dx)eitQK(ωK)

)
= 0 .

Now using lemma and bump-form which localises integrand in vicinity of points {xi} we
come to∫

M

H(x, dx) =

∫
M

H(x, dx)GU (x, dx) =

(∫
M

H(x, dx)GU (x, dx)eitQK(ωK)

) ∣∣
t=0

=

(∫
M

H(x, dx)GU (x, dx)eitQK(ωK)

) ∣∣
t→∞

Using method of stationary phase and assuming that dω is non-degenerate at locus of K∗

we calculate the last integral (see [4]) and come to the answer∫
M

H(x, dx) ==

(∫
M

H(x, dx)GU (x, dx)eitQK(ωK)

) ∣∣
t→∞ =

∑
xi

in

n!

H(x, dx)
∣∣
xi√

∂K
∂x

∣∣
xi

If H(x, dx)
∣∣
xi

= H0(xi), where H(x, dx) = H0(x) +H1(x, dx) + . . . is a sum of differential
forms.
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