On Duistermaat-Heckman localisation Theorem II

Here we will give a formulation (with supermathematics flavor), the proof and concrete calculations for DH (Dustermaat-Heckman) localisation formula. This etude is essentially based on the papers of Armen Nersessian [1], and of Oleg Zaboronsky and Albert Schwarz [2], my etude [4] (see the previous etude on this topic) which was based on calculations of A.Belavin.) It is interesting also to note the paper [3]. This etude is a developed exposition of my talk on the Geometry seminars in Manchester (17 October and 23 October, 2013).

If a form, is invariant with respect to odd vector field $Q=d+\iota_{\mathbf{K}}=\sqrt{\mathcal{L}_{\mathbf{K}}}$ where $\mathcal{L}_{\mathbf{K}}$ is Lie derivative with respect to $U(1)$-vector field \mathbf{K}, then integral of this form over manifold M is localised at the zero locus of vector fied K. This is the meaning. of Dustermaat-Heckman localisation formula.

§0 Recallings

Recall briefly the DH (Duistermaat-Heckman) localisation formula and perform some calculations based on calculations in [4].

Let (M, Ω) be compact symplectic supermanifold (Ω is non-degenerate closed two form, $\operatorname{dim} M=2 n)$. Let H be a Hamiltonian and $\mathbf{K}=D_{H}: d H=-\iota_{\mathbf{K}} \Omega$, its Hamiltonian vector field. Let vector field K obeys the following conditions:

$$
\begin{equation*}
\mathbf{K}=D_{H} \text { is compact vector field, i.e. it defines } U(1) \text {-action on } M^{1)} \tag{0.1}
\end{equation*}
$$

Zero locus of vector field $\mathbf{K}, \mathbf{K}\left(x_{i}\right)=0$, is a set $\left\{x_{i}\right\}$ of isolated points
DH -localisation formula states that if conditions (0.1) and (0.2) are obeyed then

$$
\begin{equation*}
\int e^{i H} d V_{\Omega}=\int e^{i(H+\Omega)}=\left.\sum_{x_{i}} \frac{e^{i H} \sqrt{\operatorname{det} \Omega_{i k}}}{\sqrt{\operatorname{det} \operatorname{Hess} H}}\right|_{x_{i}}=\sum_{x_{i}} \frac{e^{i H\left(x_{i}\right)}}{\sqrt{\operatorname{det}\left(\left.\frac{\partial K(x)}{\partial x}\right|_{x=x_{i}}\right)}} . \tag{0.3}
\end{equation*}
$$

Comments to this formula:

1. Here and later we often omit all the coefficients proportional to $\pi^{a}, n!, i^{n}$,
2. $x_{i}: \mathbf{K}\left(x_{i}\right)=0$, is a locus (zero locus) of Hamiltonian vector field \mathbf{K}, i.e. stationary points of Hamiltonian H,
3. $d V_{\Omega}$ is invariant volume form:

$$
d V_{\Omega}=\Omega^{n}=\underbrace{\Omega \wedge \ldots \wedge \Omega}_{n \text {-times }} \text { is Lioville volume form }
$$

in local coordinates $d V_{\Omega}=\operatorname{Pfaf} \Omega d^{2 n} x=\sqrt{\operatorname{det} \Omega} d^{2 n} x$, Hess $H=\frac{\partial^{2} H}{\partial x^{i} \partial x^{k}}$ is bilinear form at stationary points; as well as $\frac{\partial K}{\partial x}$ is linear operator at zero locus of vector field \mathbf{K}.

Shortly show how to calculate (0.3) using ideas of [4].
Let ω be an arbitrary \mathbf{K}-invariant 1-form:

$$
\begin{equation*}
\mathcal{L}_{\mathbf{K}} \omega=d \circ \iota_{\mathbf{K}} \omega+\iota_{\mathbf{K}} \circ d \omega=0 . \tag{0.4}
\end{equation*}
$$

Consider 'partition function

$$
\begin{equation*}
Z(t)=\int_{M} e^{i\left((H+\Omega)+t d_{\mathbf{K}} \omega\right)}, \tag{0.5}
\end{equation*}
$$

where $d_{\mathbf{K}}=d+\iota_{\mathbf{K}}$. One can see that condition (0.4) and condition $d_{\mathbf{K}}(H+\Omega)=0$ imply that this partition function does not depend on t :

$$
\begin{equation*}
\frac{d Z(t)}{d t}=i \int_{M} d_{K}\left(\omega e^{i\left((H+\Omega)+t d_{\mathbf{K}} \omega\right)}\right)=0 \tag{0.6}
\end{equation*}
$$

because for an arbitrary differential form $F, \int_{M} d F=0$ (Stokes Theorem) and $\int_{M} \iota_{\mathbf{K}} F=0$ also, since form $\iota_{\mathbf{K}} F$ has order less than equal $2 n$ ($2 n$ is the dimension of M is an order of top form.)

Partition function $Z(t)$ at $t=0$ is the left hand side of equation (0.3), the initial integral; this function at $t \rightarrow \infty$ can be calculated using stationary phase method. So using (0.6) we reduce calculations of the integral to quasiclassical calculations for $t \rightarrow \infty$:

$$
\begin{equation*}
Z(0)=\lim _{t \rightarrow \infty} Z(t)=\sum_{k, r} \frac{t^{r}}{k!r!} \int_{M} e^{i(H+t h)} \tilde{\Omega}^{r} \Omega^{m} \tag{0.7}
\end{equation*}
$$

where $\tilde{\Omega}=d \omega, h=\iota_{\mathbf{K}} \omega$. Now calculate partition function at $t \rightarrow \infty . d h=d\left(\iota_{\mathbf{K}} \omega\right)=$ $-\iota_{\mathbf{K}} \tilde{\Omega}$. Hence at zero locus of \mathbf{K}, i.e. $d h=0$ we have

$$
\begin{equation*}
\left.\operatorname{Hess} H\right|_{x_{i}}=\left.\frac{\partial^{2} H}{\partial x^{m} \partial x^{n}}\right|_{x_{i}}=\left.\tilde{\Omega}_{m n}\right|_{x_{i}} \tag{0.8}
\end{equation*}
$$

Hence using the fact that for symmetric bilinear form $A(\mathbf{x}, \mathbf{x})$ in k-dimensional Euclidean space \mathbf{R}^{k}

$$
\int_{\mathbf{R}^{k}} e^{i t A(\mathbf{x}, \mathbf{x})} d^{k} x=\int_{\mathbf{R}^{k}} e^{i t A_{i j} x^{i} x^{j}} d^{k} x=\frac{e^{\frac{i \pi k}{4}} \sqrt{\pi^{k}}}{t^{\frac{k}{2}} \sqrt{\operatorname{det} A}}
$$

we obtain that at the quasiclassical limit for partition function $Z(t)$ in (0.7) is equal to

$$
\begin{gathered}
\lim _{t \rightarrow \infty} Z(t)=\sum_{r=0}^{n} \frac{t^{r}}{(n-r)!r!} \int_{M} e^{i(H+t h)} \tilde{\Omega}^{r} \Omega^{n-r}= \\
\left.\lim _{t \rightarrow \infty} \sum_{r=0}^{n} \sum_{x_{i}} \frac{t^{r}}{(n-r)!r!} \frac{e^{i H} \sqrt{\operatorname{det} \tilde{\Omega}_{i k}}}{t^{n} \sqrt{\operatorname{det} \operatorname{Hess} H}}\right|_{x_{i}}=\left.\sum_{x_{i}} \frac{e^{i H} \sqrt{\operatorname{det} \tilde{\Omega}_{i k}}}{\sqrt{\operatorname{det} \operatorname{Hess} H}}\right|_{x_{i}}
\end{gathered}
$$

Now choose ω such that $\tilde{\Omega}=d \omega$ is non-degenerate at locus of K. We have $d h=\iota_{\mathbf{K}} \tilde{\Omega}$. Hence at locus of \mathbf{K}

$$
\text { Hess } H=\frac{\partial^{2} H(x)}{\partial x^{m} x^{n}}=\tilde{\Omega}_{m r} \frac{\partial K^{r}}{\partial x^{n}},
$$

and we have finally that

$$
\lim _{t \rightarrow \infty} Z(t)=\left.\left.\sum_{x_{i}} \frac{e^{i H} \sqrt{\operatorname{det} \tilde{\Omega}_{i k}}}{\sqrt{\operatorname{det} \operatorname{Hess} H}}\right|_{x_{i}} \sum_{x_{i}} \frac{e^{i H}}{\sqrt{\operatorname{det} \frac{\partial K}{\partial x}}}\right|_{x_{i}}
$$

Thus due to relation (0.6) leads to (0.3).
Remark 1 The form $\tilde{\Omega}=d \omega$ and new Hamiltonian $h=\iota_{\mathbf{K}} \omega$ define the same Hamiltonian vector field \mathbf{K} as a pair (Ω, H). On the other hand the pair $(\tilde{\Omega}, \omega)$ is more suitable for calculation of quasiclassical approximation. The $U(1)$-vector field \mathbf{K} is fundamental object of DH -localisation formula, not the pair which produces this field (see in detail §2).

Remark 2

One of the way to produce \mathbf{K}-invariant form ω is the following: One can take ω covector \mathbf{K} with respect to $U(1)$-invariant metric: $\omega=\omega_{i} d x^{i}, w_{i}=g_{i k} K^{k}$ and $g_{i k}$ is $U(1)$ invariant Riemannian metric (average over group $U(1)$). It is crucial for calculation that $\tilde{\Omega}=d \omega$ is non-degenerate at zero locus of \mathbf{K}. Is it an additional condition, or it follows from the fact that vector field \mathbf{K} generates $U(1)$-action (and M is even-dimensional manifold)? On one hand I cannot prove this completely, on the other hand natural counterexamples deal with non-compact vector field.

§1 DH-formula and supersymmetric mechanics. Nersessian's approach.

The considerations of this paragraph are based on the work [2]
The calculations above can be put in supersymmetric framework. Differential form on M can be considered as a function on $\Pi T M$-tangent bundle to M with reversed parity of fibers $w_{i}(x) d x^{i} \rightarrow w_{i}(x) \xi^{i}, \ldots$. Integral of form over M is the integral of a function over supermanifold $\Pi T M$ with invariant volume form $d x^{1} \ldots d x^{2 n} d \xi^{1} \ldots d \xi^{2 n}$.

In the very nice paper [1] Armen Nersessian suggested the supersymmetric framework of the calculations above. I will try to explain it here. Recall that for an arbitrary Poisson manifold M (manifold with Poisson bracket $\{$,$\}) one can consider odd Koszul bracket$ $[$,$] on \Pi T M$ such that for arbitrary functions f, g on M we have that

$$
\begin{equation*}
[f, g]=0,[f, d g]=\{f, g\}[d f, d g]=d\{f, g\} . \tag{1.1}
\end{equation*}
$$

In local coordinates $\left[x^{i}, x^{k}\right]=0,\left[x^{i}, \xi^{k}\right]=\Omega^{i k},\left[\xi^{i}, \xi^{k}\right]=\xi^{r} \partial_{r} \Omega^{i k}$.
If Poisson structure is symplectic one then

$$
\begin{equation*}
[\Omega, F]=d F, \quad\left(\Omega=\Omega_{i k} \xi^{i} \xi^{k}\right) \tag{1.2}
\end{equation*}
$$

If H is an arbitrary Hamiltonian on M and $\mathbf{K}=D_{H}$ Hamiltonian vector field then

$$
\begin{equation*}
[H, F]=\iota_{\mathbf{K}} F \tag{1.3}
\end{equation*}
$$

We see that

$$
\left(d+\iota_{k}\right) F=[\Omega+H, F]
$$

and

$$
\mathcal{L}_{\mathbf{K}} F=\left(d+\iota_{\mathbf{K}}\right)^{2}=[H+\Omega,[H+\Omega, F]]=[[H, \Omega], F] .
$$

Thus we come to core of Dustermaat-Heckman formalism:
Form F is invariant with respect to odd vector field $d_{\mathbf{K}}=d+\iota_{\mathbf{K}}$ if it is integral of motion of 'Hamiltonian' $H+\Omega$, form F is invariant with respect to Hamiltonian vector field $\mathbf{K}=D_{H}$ if it is integral of motion of 'Hamiltonian' $G=[H, F]$.

The partition function (0.5) can be rewritten as

$$
Z(t)=\int e^{i(H-\Omega-t[H+\Omega, \tilde{G}])}
$$

Remark 3 Hamiltonians $\{H+\Omega, H-\Omega, \Omega\}$ form superalgebra.

§2Schwarz-Zaboronsky supersymmetric formalism

In this paragraph we will speak about approach developed in the paper [2], where supergeometry is powerfully used for formulating localisation formula in a more general case.

It will always be assumed that M is compact manifold and \mathbf{K} is compact vector field on it, i.e. vector field which generates $U(1)$ action. We denote by

$$
Q_{\mathbf{K}}=d+\iota_{\mathbf{K}}, \quad \text { in "supernotations" } Q_{\mathbf{K}}=\xi^{i} \frac{\partial}{\partial x^{i}}+K^{i}(x) \frac{\partial}{\partial \xi^{i}}
$$

where $x^{i}, \xi^{i}=d x^{i}$ are local coordinates on ПTM.
Odd vector field $Q_{\mathbf{K}}$ is a "square root" of a Lie derivative $\mathcal{L}_{K}=\iota_{\mathbf{K}} \circ d+d \circ \iota_{\mathbf{K}}$:

$$
\begin{equation*}
\mathcal{L}_{\mathbf{K}}=Q_{\mathbf{K}}^{2}=\left(\xi^{i} \frac{\partial}{\partial x^{i}}+K^{i}(x) \frac{\partial}{\partial \xi^{i}}\right)^{2}=K^{i}(x) \frac{\partial}{\partial x^{i}}+\xi^{r} \frac{\partial K^{i}}{\partial \xi^{r}} \frac{\partial}{\partial \xi^{i}} \tag{1}
\end{equation*}
$$

or in classical notations

$$
\mathcal{L}_{\mathbf{K}}=Q_{\mathbf{K}}^{2}=\left(d+\iota_{k}\right)^{2}=d \circ \iota_{\mathbf{K}}+\iota_{\mathbf{K}} \circ d .
$$

We formulate the following version of DH localisation theorem:
Theorem Let $H=H(x, d x)$ be a $Q_{\mathbf{K}}$-invariant form on M, i.e.

$$
\begin{equation*}
d H+\iota_{\mathbf{K}} H=0 . \tag{2}
\end{equation*}
$$

Then the integral $\int_{M} H(x, d x)$ is localised at locus of K. This means follows: let U_{K} be an arbitrary $U(1)$-invariant* tubular neighborhood of locus of K and let $G_{U}=G_{U}(x, d x)$ be a

[^0]$Q_{\mathbf{K}}$-invariant form such that it is equal to 1 at the locus of vector field \mathbf{K} and it vanishes out of neighborhood $U_{\mathbf{K}}$:
\[

$$
\begin{equation*}
\left.Q_{\mathbf{K}} G_{U}=0, \text { (i.e. } d G_{U}+\iota_{\mathbf{K}} G_{U}=0\right),\left.\quad G_{U}\right|_{\text {locus of } \mathbf{K}}=1,\left.\quad G_{U}\right|_{M \backslash U_{K}}=0 \tag{3}
\end{equation*}
$$

\]

(Bump-form of zero locus of \mathbf{K}.) (We will prove the existence of such a bump-form)
Then

$$
\begin{equation*}
\int_{M} H=\int_{M} H G_{U} \tag{4}
\end{equation*}
$$

Example Let M be a symplectic manifold, i.e. non-degenerate closed two-form Ω is defined on M (M is even-dimensional). Let $h=h(x)$ be a Hamiltonian such that its Hamiltonian vector field $D_{h}\left(D_{h}: \quad \iota_{D_{h}} \Omega=-d h\right)$ is compact, i.e. it defines $U(1)$ action. Consider the form

$$
\begin{equation*}
H(x, d x)=\exp i(\Omega+h) . \tag{5}
\end{equation*}
$$

This form is $Q_{\mathbf{K}}$-invariant. Indeed since K is Hamiltonian vector field D_{h} hence

$$
\iota_{\mathbf{K}} \Omega+d h=0 . \text { i.e. } Q_{\mathbf{K}}(h+\Omega)=0 \Rightarrow Q_{\mathbf{K}} H=0 .
$$

Then

$$
\int H(x, d x)=\int \exp i(\Omega+h)=\frac{i^{n}}{n!} \int \exp i h \underbrace{\Omega \wedge \ldots \wedge \Omega}_{n \text { times }}
$$

is localised.
Remark 4 Note that this example is a basic example in classical background. Compact vector field \mathbf{K} appears naturally in this example as Hamiltonian vector field of Hamiltonin h. In Schwarz-Zaboronsky approach the vector field \mathbf{K} appears independently without symplectic structure and Hamiltonian. In this approach the localisation formula is stated for a function $H(x, d x)$ on ПTM (sum of differential forms of different orders). The classical condition that sum of differential forms is invariant with respect to equivariant differential $d_{\mathbf{K}}=d+\iota_{\mathbf{K}}$ becomes the condition that "function" ${ }^{2}$
$H(x, d x)$ is invariant with respect to odd vector field $Q_{\mathbf{K}}$ which is the square root of Lie derivative along the vector field $\mathbf{K}: Q_{K}^{2}=\mathcal{L}_{\mathbf{K}}$.

Remark 5 'Super-language' becomes essentially important for constructing of partition of unity for forms.

Proof of Theorem First we prove the existence of a form $G_{U}=G_{U}(x, d x)$ which obeys the condition (3), then we will show that an arbitrary $Q_{\mathbf{K}}$-invariant "function" (form) which obeys conditions (3) yields the localisation formula (4).

Using partition of unity arguments consider a function $F=F(x)$ such that

$$
\begin{equation*}
\left.F(x)\right|_{\text {locus of }} \mathbf{K}=0,\left.\quad F(x)\right|_{M \backslash U_{K}}=1 \tag{6}
\end{equation*}
$$

[^1](We may consider partition of unity which is subordinate to covering $V_{1} \cup V_{2}$, where $V_{1}=U_{\mathbf{K}}$ and $V_{2}=M \backslash$ locus of K.

We may assume that $F(x)$ is \mathbf{K}-invariant function. (Here we use the $U(1)$-invariance of neighbourhood of locus (see the footnote.)).

It is useful to consider the differential 1 -form

$$
\begin{equation*}
\omega_{\mathbf{K}}: \omega_{\mathbf{K}}(\mathbf{x})\langle\mathbf{K},, \mathbf{x}\rangle, \omega_{i}=g_{i m} K^{m} d x^{i}, \tag{7}
\end{equation*}
$$

where $\langle\mathbf{K}, \mathbf{x}\rangle$ is $U(1)$-invariant Riemannian metric on M. Now we are ready to define form G_{U} which obeys the condition (3):

$$
\begin{equation*}
G_{U}(x, d x)=1-Q_{\mathbf{K}}\left(\frac{\omega_{\mathbf{K}}(x, d x)}{Q_{\mathbf{K}} \omega_{\mathbf{K}}} F(x)\right) \tag{8}
\end{equation*}
$$

Straightforward calculations show that this function obeys conditions (3). Indeed $F(x)=0$ if x belongs to locus of K (and in a vicinity of the locus), hence the right hand side of equation (8) is well-defined on the locus of \mathbf{K}, where the form $\omega_{\mathbf{K}}$ is not defined. Using the fact that $Q_{\mathbf{K}}\left(\frac{\omega_{\mathbf{K}}(x, d x)}{Q_{\mathbf{K}} \omega_{\mathbf{K}}}\right)=1$ (if $\mathbf{K}(x) \neq 0$) we immediately come to the condition (3).

Let $\tilde{G}_{U}=\tilde{G}_{U}(x, d x)$ be an arbitrary $Q_{\mathbf{K}}$-invariant form which obeys the condition (3). Then consider the difference $L(x, d x)=\tilde{G}_{U}-G_{U}$. The form $L(x, d x)$ is $Q_{\mathbf{K}}$-invariant and it is equal to 0 at the locus of K, Hence

$$
\begin{equation*}
L(x, d x)=Q_{\mathbf{K}}\left(\frac{\omega_{\mathbf{K}}(x, d x)}{Q_{\mathbf{K}} \omega_{\mathbf{K}}} L(x, d x)\right) . \tag{9}
\end{equation*}
$$

Thus we see that $Q_{\mathbf{K}}$-invariant form $G_{U}(x, d x)$ in (8) which obeys the condition (3) as well as an arbitrary $Q_{\mathbf{K}}$-invariatn form $\tilde{G}_{U}(x, d x)$ which obeys the condtion (3) obey the condition that

$$
\begin{aligned}
& G_{U}(x, d x)=1+Q_{\mathbf{K}}(\ldots) \\
& \tilde{G}_{U}(x, d x)=1+Q_{\mathbf{K}}(\ldots)
\end{aligned}
$$

This immediately implies the relation (4):

$$
\int_{M} H(x, d x) G_{U}(x, d x)=\int_{M} H(x, d x)\left(1+Q_{\mathbf{K}}(\ldots)\right)=\int_{M} H(x, d x)
$$

since $\int_{M} Q_{\mathbf{K}}(\ldots)=0^{* *}$

Concrete calculations

Now based on the Theorem we present concrete calculations. which are very similar to calculations in paragraph 0 .
${ }^{* *}$ since $Q_{K}=d+\iota_{K}$, and $\iota_{K} \omega$ 'does not contain' top form. This follows also from the vanishing of divergence of odd vector field $Q_{\mathbf{K}}$ with respect to canonical volume form in ПТ М

Let $H=H(x, d x)$ be $Q_{\mathbf{K}}$ invariant form and locus (zero locus) of $U(1)$-invariant vector field \mathbf{K} is a set $\left\{x_{i}\right\}$ of isolated points.

Using bump-form G_{U}, the form which vanishes out vicinities of points $\left\{x_{i}\right\}$ (see the considerations above) we calculate $\int_{M} H(x, d x)$.

Lemma For an arbitrary $Q_{\mathbf{K}}$-invariant form $H(x, d x)$ the integral

$$
Z(t)=\int H(x, d x) e^{i t Q_{\mathbf{K}}\left(\omega_{\mathbf{K}}\right)},
$$

where $\omega_{\mathbf{K}}$ is $U(1)$-invariant form (7) does not depend on t.
Proof:

$$
\frac{d Z(t)}{d t}=i \int_{M} H(x, d x) Q_{\mathbf{K}} \omega_{\mathbf{K}} e^{i t Q_{\mathbf{K}}\left(\omega_{\mathbf{K}}\right)}=i \int_{M} Q_{\mathbf{K}}\left(H(x, d x) e^{i t Q_{\mathbf{K}}\left(\omega_{\mathbf{K}}\right)}\right)=0
$$

Now using lemma and bump-form which localises integrand in vicinity of points $\left\{x_{i}\right\}$ we come to

$$
\begin{gathered}
\int_{M} H(x, d x)=\int_{M} H(x, d x) G_{U}(x, d x)=\left.\left(\int_{M} H(x, d x) G_{U}(x, d x) e^{i t Q_{\mathbf{K}}\left(\omega_{\mathbf{K}}\right)}\right)\right|_{t=0} \\
=\left.\left(\int_{M} H(x, d x) G_{U}(x, d x) e^{i t Q_{\mathbf{K}}\left(\omega_{\mathbf{K}}\right)}\right)\right|_{t \rightarrow \infty}
\end{gathered}
$$

Using method of stationary phase and assuming that $d \omega$ is non-degenerate at locus of \mathbf{K}^{*} we calculate the last integral (see [4]) and come to the answer

$$
\int_{M} H(x, d x)==\left.\left(\int_{M} H(x, d x) G_{U}(x, d x) e^{i t Q_{\mathbf{K}}\left(\omega_{\mathbf{K}}\right)}\right)\right|_{t \rightarrow \infty}=\sum_{x_{i}} \frac{i^{n}}{n!} \frac{\left.H(x, d x)\right|_{x_{i}}}{\sqrt{\left.\frac{\partial K}{\partial x}\right|_{x_{i}}}}
$$

If $\left.H(x, d x)\right|_{x_{i}}=H_{0}\left(x_{i}\right)$, where $H(x, d x)=H_{0}(x)+H_{1}(x, d x)+\ldots$ is a sum of differential forms.

References

[1] A. Nersessian Antibrackets and localisation of (path) integrals arXix: hep-th/9305181, (published in JETP)
[2] Albert Schwarz and Oleg Zaboronsky. Supersymmetry and localisation. arXiv: hep-th/951112v1, (published in CMP)
[3] On the Duistermaat-Heckman localisation formula and Integrable systems arXiv: hep-th/9402041v1
[4] homepage: maths.manchester.ac.uk/khudian/Etudes/Geometry/Dustermaat-Heckman】 localisation formula. Etude based on the fragment of the lecture of A.Belavin in Bialoveza, summer 2012.

[^2]
[^0]: * the condition to be $U(1)$-invariant may be is not necessary. We will use it for constructing $U(1)$-invariant partition of unity. This condition is absent in the paper [1].

[^1]: ${ }^{2} H(x, d x)$ is non-homogeneous differential form on M. It is a function on tangent bundle $\Pi Т M$ with reversed parity of fibers.

[^2]: * See the remark 2

