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On Duistermaat-Heckman localisation Theorem 11

Here we will give a formulation (with supermathematics flavor), the proof and concrete
calculations for DH (Dustermaat-Heckman) localisation formula. This etude is essentially
based on the papers of Armen Nersessian [1], and of Oleg Zaboronsky and Albert Schwarz
[2], my etude [4] (see the previous etude on this topic) which was based on calculations of
A.Belavin.) It is interesting also to note the paper [3]. This etude is a developed exposition
of my talk on the Geometry seminars in Manchester (17 October and 23 October, 2013).

If a form, is invariant with respect to odd vector field

Q =d+ 1k = Lk where Lk is Lie derivative

with respect to U(1)-vector field K, then integral of this
form over manifold M is localised at the zero locus

of vector fied K. This is the meaning.

of Dustermaat-Heckman localisation formula.

80 Recallings
Recall briefly the DH (Duistermaat-Heckman) localisation formula and perform some
calculations based on calculations in [4].
Let (M, ) be compact symplectic supermanifold (€2 is non-degenerate closed two
form, dim M = 2n). Let H be a Hamiltonian and K = Dy: dH = —ik (), its Hamiltonian
vector field. Let vector field K obeys the following conditions:

K = Dy is compact vector field, i.e. it defines U(1)-action on MY (0.1)

Zero locus of vector field K, K(z;) =0, is a set {x;} of isolated points (0.2)

DH-localisation formula states that if conditions (0.1) and (0.2) are obeyed then

det Qir Z etH (i)

/einVQ = /ei(HJFQ) |
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(0.3)

Comments to this formula:

1. Here and later we often omit all the coefficients proportional to 7%, n!, ",

2. z;: K(z;) =0, is a locus (zero locus) of Hamiltonian vector field K, i.e. stationary
points of Hamiltonian H,

3. dVq is invariant volume form:

dVo =Q"=Q A ... A€ is Lioville volume form ,
—_—
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in local coordinates dVg = Pfaf Qd*>"x = v/det Qd*"z, Hess H = zam
stationary points; as well as Bm is linear operator at zero locus of vector field K.

=21 i bilinear form at

Shortly show how to calculate (0.3) using ideas of [4].
Let w be an arbitrary K-invariant 1-form:

Lxw=doikw+tgodw=0. (0.4)

Consider ‘partition function
Z(t) _ /M 6i((H-i—Q)—Hde) 7 (0.5)

where dx = d+ tk. One can see that condition (0.4) and condition dk (H + ) = 0 imply
that this partition function does not depend on t:

dz(t) _ . S(H+Q)+tdxw) ) _
T_Z/MdK (we )—0, (0.6)

because for an arbitrary differential form F, [, dF = 0 (Stokes Theorem) and [, tx F' =0
also, since form ¢ F' has order less than equal 2n (2n is the dimension of M is an order of
top form.)

Partition function Z(t) at ¢ = 0 is the left hand side of equation (0.3), the initial
integral; this function at ¢ — oo can be calculated using stationary phase method. So
using (0.6) we reduce calculations of the integral to quasiclassical calculations for ¢ — oc:

Z(0) = lim Z(t ka / HHthQraom | (0.7)

t—o00

where Q = dw, h = 1gw. Now calculate partition function at ¢t — co. dh = d(ikw) =
—1k ). Hence at zero locus of K, i.e. dh = 0 we have
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Hence using the fact that for symmetric bilinear form A(x,x) in k-dimensional Euclidean

space R”
ik
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we obtain that at the quasiclassical limit for partition function Z(t) in (0.7) is equal to
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Now choose w such that Q = dw is non-degenerate at locus of K. We have dh = 1.

Hence at locus of K 92 5
Hess H = A(x) = eri )
ox™mxn ox™

and we have finally that

lim Z(¢
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Thus due to relation (0.6) leads to (0.3).

Remark 1 The form = dw and new Hamiltonian h = ixw define the same Hamil-
tonian vector field K as a pair (€, H). On the other hand the pair (€, w) is more suitable
for calculation of quasiclassical approximation. The U(1)-vector field K is fundamental

object of DH-localisation formula, not the pair which produces this field (see in detail §2).

Remark 2

One of the way to produce K-invariant form w is the following: One can take w-
covector K with respect to U(1)-invariant metric: w = w;dz?, w; = g;1, K* and gy, is U(1)-
invariant Riemannian metric (average over group U(1)). It is crucial for calculation that
Q) = dw is non-degenerate at zero locus of K. Is it an additional condition, or it follows from
the fact that vector field K generates U(1)-action (and M is even-dimensional manifold)?
On one hand I cannot prove this completely, on the other hand natural counterexamples
deal with non-compact vector field.

§1 DH-formula and supersymmetric mechanics. Nersessian’s approach.
The considerations of this paragraph are based on the work [2]

The calculations above can be put in supersymmetric framework. Differential form on
M can be considered as a function on IIT'M—tangent bundle to M with reversed parity
of fibers w; (x)dz® — w;(x)EY, . ... Integral of form over M is the integral of a function over
supermanifold IIT'M with invariant volume form dx'...dz?"d¢t ... dE?m.

In the very nice paper [1] Armen Nersessian suggested the supersymmetric framework
of the calculations above. I will try to explain it here. Recall that for an arbitrary Poisson
manifold M (manifold with Poisson bracket { , }) one can consider odd Koszul bracket
[, | on IIT'M such that for arbitrary functions f,g on M we have that

[f,9] =0,[f,dg] = {f, g} [df,dg] = d{f,g}. (1.1)

In local coordinates [z%, z%] = 0, [2¢,£F] = Q| [¢8, &F] = ¢70,Q°F.
If Poisson structure is symplectic one then

[Q,F] =dF, (Q = Qip€ie™) (1.2)
If H is an arbitrary Hamiltonian on M and K = Dy Hamiltonian vector field then
[H,F| = F (1.3)
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We see that
(d+ux)F =[Q+ H, F|
and

LxF=(d+u)*=[H+Q[H+QF)]=[HQ]F].

Thus we come to core of Dustermaat-Heckman formalism:

Form F' is invariant with respect to odd vector field dx = d + 1k if it is integral of
motion of "Hamiltonian” H + €2, form F' is invariant with respect to Hamiltonian vector
field K = Dy if it is integral of motion of "Hamiltonian’ G = [H, F].

The partition function (0.5) can be rewritten as

Z(t) = /ei(H—Q—t[H—i—Q,é})‘

Remark 3 Hamiltonians {H + Q, H — , Q} form superalgebra.

§2Schwarz-Zaboronsky supersymmetric formalism

In this paragraph we will speak about approach developed in the paper [2], where
supergeometry is powerfully used for formulating localisation formula in a more general
case.

It will always be assumed that M is compact manifold and K is compact vector field
on it, i.e. vector field which generates U(1) action. We denote by

0
oxt

, 0
+ Kz(x)a_fzw

Qk =d+ 1k, In “supernotations” Qg = Si

where %, £ = da? are local coordinates on IIT M.
Odd vector field Qk is a “square root” of a Lie derivative L =tk od + d o 1k:

2 i
.0 . a>:Ki(m)a LOK' 0

— N2 _ i

or in classical notations

Lx =Q% =(d+ ) =dowk+ixod.

We formulate the following version of DH localisation theorem:
Theorem Let H = H(x,dx) be a Qk-invariant form on M, i.e.

dH +1xH = 0. (2)

Then the integral fM H(z,dx) is localised at locus of K. This means follows: let Ux be an
arbitrary U(1)-invariant™ tubular neighborhood of locus of K and let Gy = Gy(x,dx) be a

* the condition to be U(1)-invariant may be is not necessary. We will use it for con-
structing U (1)-invariant partition of unity. This condition is absent in the paper [1].
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Qx -tnvariant form such that it is equal to 1 at the locus of vector field K and it vanishes
out of neighborhood Uk :

QKGU = 0, (i.e. dGU + LKGU = 0), GU|lOCU8 OfK = 1, GU|M\UK =0. (3)

(Bump-form of zero locus of K.) (We will prove the existence of such a bump-form)

Then
/MH:/MHGU. (4)

Example Let M be a symplectic manifold, i.e. non-degenerate closed two-form (2
is defined on M (M is even-dimensional). Let h = h(x) be a Hamiltonian such that its
Hamiltonian vector field Dy (Dp: ¢, 2 = —dh) is compact, i.e. it defines U(1) action.
Consider the form

H(z,dx) =expi(Q2+h) . (5)

This form is Qk-invariant. Indeed since K is Hamiltonian vector field Dj, hence
k) + dh = 0.i.e. QK(h + Q) =0=QxH =0.

Then

N

. ? .
/H(x,da:):/eXpZ(Q—l—h)——/expth/\.../\Q

n!
n times

is localised.

Remark 4 Note that this example is a basic example in classical background. Com-
pact vector field K appears naturally in this example as Hamiltonian vector field of Hamil-
tonin A. In Schwarz-Zaboronsky approach the vector field K appears independently with-
out symplectic structure and Hamiltonian. In this approach the localisation formula is
stated for a function H(x,dx) on IITM (sum of differential forms of different orders). The
classical condition that sum of differential forms is invariant with respect to equivariant
differential dx = d + tx becomes the condition that “function” 2

H(z,dz) is invariant with respect to odd vector field Qk which is the square root of
Lie derivative along the vector field K : Q% = L.

Remark 5 ’Super-language’ becomes essentially important for constructing of parti-
tion of unity for forms.

Proof of Theorem First we prove the existence of a form Gy = Gy (z, dz) which obeys
the condition (3), then we will show that an arbitrary Qg-invariant “function” (form)
which obeys conditions (3) yields the localisation formula (4).

Using partition of unity arguments consider a function F' = F(z) such that

F(x)‘locus of K =0 F(x)}M\UK =1. (6)

2 H(z,dx) is non-homogeneous differential form on M. It is a function on tangent
bundle IIT'M with reversed parity of fibers.



(We may consider partition of unity which is subordinate to covering V; U Vs, where
Vi = Uk and Vo = M\locus of K.

We may assume that F'(z) is K-invariant function. (Here we use the U(1)-invariance
of neighbourhood of locus (see the footnote.)).

It is useful to consider the differential 1-form

WK - WK(X) <K7 7X> y Wi = gmemde ) (7)

where (K, ,x) is U(1)-invariant Riemannian metric on M. Now we are ready to define
form Gy which obeys the condition (3):

G de) =1~ Qe (52 () ) )

Qrwk

Straightforward calculations show that this function obeys conditions (3). Indeed F'(xz) =0
if x belongs to locus of K (and in a vicinity of the locus), hence the right hand side of
equation (8) is well-defined on the locus of K, where the form wk is not defined. Using

the fact that Qk (@) =1 (if K(z) # 0) we immediately come to the condition (3).

WK
Let Gy = GU(x,dm) be an arbitrary QQk-invariant form which obeys the condition
(3). Then consider the difference L(z,dx) = Gy — Gy. The form L(z,dx) is Qk-invariant
and it is equal to 0 at the locus of K, Hence

wk (z, dx)
QKWK

L(z,dz) = Qx ( L(mx)) . 9)

Thus we see that Qk-invariant form Gy (z,dr) in (8) which obeys the condition (3) as
well as an arbitrary Qk-invariatn form Gy (z,dx) which obeys the condtion (3) obey the

condition that
Gy(z,dr) =1+ Qk(...)
GU(I, d:L’) =1+ QK()

This immediately implies the relation (4):

/Hmdw)GU(x dz) /dex)(HQK /Hmdw

since [,, Qk(...) =0 N

Concrete calculations
Now based on the Theorem we present concrete calculations. which are very similar
to calculations in paragraph 0.

** since Qg = d + 1k, and tgw ’does not contain’ top form. This follows also from the

vanishing of divergence of odd vector field Qi with respect to canonical volume form in
I[nrm



Let H = H(z,dz) be Qk invariant form and locus (zero locus) of U(1)-invariant
vector field K is a set {z;} of isolated points.

Using bump-form Gy, the form which vanishes out vicinities of points {z;} (see the
considerations above) we calculate [,, H(z,dz).

Lemma For an arbitrary Qg-invariant form H(x,dz) the integral

= /H(x,dx)e”QK(‘”K),

where wk is U(1)-invariant form (7) does not depend on t.
Proof:

dz(t

dt / H(z, dz)Qguice <) = Z/ QK( (z, dx)e ”QK(“’K)> =0.

Now using lemma and bump-form which localises integrand in vicinity of points {x;} we
come to

/ H(z,dx) / H(x,dx)Gy(x,dx) (/ H(z,dz)Gy(x,dx)e @th(wK)) ‘t:O

= (/M H(ac,da:)Gu(%da?)eitQK(WK)> ’t—)oo

Using method of stationary phase and assuming that dw is non-degenerate at locus of K*
we calculate the last integral (see [4]) and come to the answer

, n H(z,dz)
o itQr (w - ¢ ’ T
/M H(x,dr) == (/M H(z,dz)Gy(x,dx)e K ( K)) ‘t_mo = Em H%T
If H(x,dx)| = Ho(x;), where H(x,dx) = Ho(x) + Hi(x,dx) + ... is a sum of differential
forms. '
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