
Shape operator = square root of curvature two-form
and

Teorema Egregium

We give here very simple proof of the fact why for an even-dimensional surface curva-
ture defined by shape operator is invariant of isometries and show why this does not work
for odd-dimensional case∗.

Let M be a surface of codimension 1 in n + 1-dimensional Riemannian space. One
can consider unit normal vector field n. Since (n,n) = 1 then the derivative of vector field
n along an arbitrary vector x tangent to the surface is tangent vector also. We come to
Shape operator S defined on the vectors tangent to the surface:

S(x) = −∂xn (0.1)

One can see that det S is equal to the density of volume form induced on the surface by
the volume form on n-dimensional sphere in En through Gauss map (M 3 pt → n|pt).,
i.e. an integral ∫

det Sdσ (0.2)

is equal to the degree of Gaussian map. (dσ is volume form on the surface induced by the
Riemannian metric:dσ =

√
det g)

The integrand in this formula is total divergence. (Explain why?)

In the case if surface M is even-dimensional then one can say more: det S is propor-
tional to Gaussian curvature, it is invariant of isometries, i.e. it depends on the induced
metric and does not change if we change embedding and does not change induced metric.
It is Gauss Egregium Teorema. In this case det Sdσ is local expression for Euler class.

We would like to show this by simple calculations. Our plan is following: we show
that det S is equal to the pfaffian of the determinant of curvature-two form.

Remark Note that Note that shape operator (0.1) is defined up to a sign as well as
normal unit vector. Hence the density detS in (0.2) is defined up to a sign if dimension
M is odd and it is well-defined if dimension of M is even: det(−S) = (−1)n detS.

General stuff

In his paragraph we consider relations between curvatures of tangent and normal
bundle for an arbitrary k-dimensional surface in n-dimensional Euclidean space En.

∗ Thedya Voronov suggested to make these calculations using moving frames formalism.

This works very nice.
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Let xi(ξα) (i = 1, . . . , n, α = 1, . . . , k) be a parameterisation of the given surface M .
The trivial (canonical) connection in En induces connection on surface and on normal
bundle to the surface. Consider an orthonormal (in general non-holonomic) basis {ea,np},
a = 1, . . . , k, p = 1, . . . , n − k on the points of the surface M such that vectors e1, . . . , ek

are tangent to the surface and vectors n1, . . . ,nn−k are normal vectors:

ea(ξ) = eα
axi

α

∂

∂xi

∣∣
xi

α=
∂xi(ξ)

∂ξα
, (a = 1, . . . , k), (ea, eb) = δab, (ea,np) = 0, (np,nq) = δpq

One can consider basis vectors {ea,np} as functions, 0-forms on the points of the manifold
M with values in the vectors of En, {ea(ξ) = ea(x(ξ)),np(ξ) = np (x (ξ))}.

Consider 1-forms dea, dnp on M with values in vectors in En. Expanding them over
the basis {ea,np} we come to the equations:

d

(
ea

np

)
=

(
Aab Laq

Spb Tpq

) (
eb

nq

)

dea = Aabdeb + Laqnq, dnp = Spbeb + Tpqnq, (1)

where (Aab, Laq, Spb, Rpq) are one-forms. The matrix
(

Aab Laq

Spb Tpq

)
is antisymmetric since

(ea,np) is an arthonormal basis at any point of M :

Aab = −Aba, Lap = −Spa, Tpq = −Tqp (2)

The condition that d2ea = 0, d2nb = 0 leads to identities:

0 = d2

(
ea

np

)
=

(
dAab dLaq

dSpb dTpq

)(
eb

nq

)
−

(
Aab Laq

Spb Tpq

)(
deb

dnq

)
=

((
dAab dLaq

dSpb dTpq

)
−

(
Aac Lar

Spc Tpr

)(
Acb Lcq

Srb Trq

))(
eb

nq

)

Hence we have four conditions (structure equations)

dAab −Aac ∧Acb − Lar ∧ Srb = 0
dLaq −Aac ∧ Lcq − Lar ∧ Trq = 0
dSpb − Spc ∧Acb − Tpr ∧ Srb = 0

dTpq − Spc ∧ Lcq − Tpr ∧ Trq

= 0

In a view of (2) we come to the following three conditions on one-forms Aab, Spb, Tpq :

dAab −Aac ∧Acb + Sra ∧ Srb = 0 (∗)
dSpb − Spc ∧Acb − Tpr ∧ Srb = 0 (∗∗)
dTpq + Spc ∧ Sqc − Tpr ∧ Trq = 0 (∗ ∗ ∗)

(3)

2



Clarify geometric meaning of these conditions.
1. One-forms {Aab} in (1) define parallel transport of tangent vectors and connection

in the tangent bundle such that eb-component of covariant derivative of vector field ea(x(ξ))
along tangent vector X is equal to Aab(X). For any section uaea the one-form with values
in tangent vectors to M

D(uaea) = duaea + uaDea = duaea + uaAabeb,

where D is covariant differential. Respectively

∇X (uaea) = D(uaea) (X) = dua (X) ea + uaDea (X) = ∂Xuaea + uaAab(X)eb .

One can show that this is Levi-Chivita connection of the metrics gαb (ege+ = 1)
(Show it!). The action of D2 defines curvature operator:

D2(uaea) = D (duaea + uaAabeb) = −duaDea + d(uaAab)eb − uaAabDeb = uaRtang
ab eb

where for curvature-form Rtang
ab

Rtang
ab = dAab −Aac ∧Acb

Hence the first condition in (3) means

Rtang
ab = −Sra ∧ Srb (4)

This is our central statement.
Analogously we can consider connection and curvature of normal bundle. In particular

we see that for curvature Rnorm
pq of normal bundle

Rnorm
ab = dTpq − Tpr ∧ Trq

and third condition means
Rnorm

ab = −− Spc ∧ Sqc (5)

We see that both curvatures of normal and tangent bundle are defined via the one forms
Spr.

Surfaces of codimension 1
Now return to one-codimensional case. All becomes much simpler: Derivation equa-

tion (1) have now the following appearance:

dea = Aabdeb − San, dnp = Sbeb,
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The one-form Sa is nothing but shape operator (0.1) Indeed if Sβ
α are components of shape

operator in coordinate basis and one-form Sa = dξαSαa then

∂n
∂ξα

= −Sβ
α

∂r(ξ)
∂ξβ

= Sαbeb = Sαbe
β
b

∂r(ξ)
∂ξβ

,

i.e.
= −Sβ

α = Sαbe
β
b , (eb = eβ

b xi
β)

condition (4) for hypersurface becomes:

Rtang
ab = −Sa ∧ Sb, (2.1)

‘This formula contains all the answer!
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