
Cube and tetrahedron are not equipartial.

Theorem 1 Two polygons of equal area are equipartial.

This means that if polygons Π1 and Π2 have the same area then one can cut the poly-
gon Π1 on polygons π1, . . . , πk and polygon Π2 on polygons π′

1
, . . . , π′

k
such that polygons

πk are equal to polygons π′
k
: π1 = π′

1
, π2 = π′

2
, π3 = π′

3
, . . . , πk = π′

k
.

The proof is simple. I give two hints to prove it.

Hint 1. This was proved by amateur mathematician in XIX century. This means that
you can prove it! (Ja v svojo vremia sdelal eto s udovoljstvijem!)

Hint 2. The proof immediately follows from the lemma.

Lemma Let S1 be a triangle (with acute angles), and S2 be an rectangtle such that
they have the same area and one of the sides of triangle S1 coincides with one of the sides
of the rectangle S2. Then the triangle S1 is equipartial with the rectangle S2.

Proof: Let S1 be a △ABC with a = BC and S2 be rectangle with a side a. Consider
the segment MN joining midpoints M,N of the sides AB and AC, and the altitude (height)
AP of the triangle AMN . Then cut triangle ABC on △AMP , △ANP and trapezoid
BMNC. Puting triangles ABC, AMP to the trapezoid we come to the rectangle.

Now it is easy to prove the Theorem. To see how the lemma helps consider

Example. Show that rectangle Π1 with sides {1, 2} and square Π2 with sides {
√

2,
√

2}
are equipartial.

Solution: It follows from lemma that rectangle Π1 with sides {1, 2} and triangle with
sides {2, 2, 2

√
2} are equipartial. Again applying lemma we see that triangle with sides

{2, 2, 2
√

2} and rectangle Π3 with sides {2
√

2,
√

2

2
} are equiaprtial. On the other hand

rectangle Π3 with sides {2
√

2,
√

2

2
} and square Π2 with sides {

√
2,
√

2} are equipartial.
Hence rectangle Π1 and square Π2 are equiaprtial.

Now the most interesting part:

Theorem 2 The cub and tetrahedron of the same volume are not equipartial.

It is one of the Hilbert’s problem.

The meaning of this theorems is following: we know that area of the triangle is equal to
S = ah

2
, where h–is the length of the altitude on the side a; and the volume of tetrahedron

is equal to SH

3
, where S is the area of the base and h is the length of the altitude on the

base. The Theorem 2 means that one cannot escape the Analysis (consider integration) to
define the volume of tetrahedron∗.

Few weeks ago I heard about wonderful proof of the second Theorem. (Davidik
rasskazal mne eto dokazateljstvo, kogda ja vstretilsja s nim na Ukrajine. On priivjoz
eto iz Moskvy) Here it is:

∗ The Theorem 1 claims that one comes to the formula for an area of triangle just by
cutting rectangle and without using Analysis, i.e. without integration
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Consider cube with edge 1 and regular tetrahedron of the same volume. Let θ be an
angle between sides of the tetrahedron. One can see that θ

π
is irrational number. (I think

this follows easy from the fact that cos θ = 1/3).
For every polyhedron C consider the function

PC =
∑

i

|li|F (ϕi), (1)

where {li} are edges of the polyhedron, ϕi is the angle between sides adjusted to the edge
li and F (ϕ)–a real valued function (v etoj funktsiji i vsja solj!). The summation goes over
all edges li.

Now the most interesting part: Consider an additive function F on R: F (a + b) =
F (a)+F (b), i.e. the linear function on the real numbers, considered as a vector space over
rational numbers, such that

F (π/2) = 0 , (2)

and
F (θ) = 1. (3)

One can see that condition (2) implies that function (1) is not changed under cuttings.
This function exists because θ

π
is irrational number, but this function is not linear

in common sense, i.e. it is not continuous function.! To construct this function we need
Hamel basis ∗∗. Now the proof is in one line:

The function PC =
∑

i
|li|F (ϕi) defined by relations (1),(2) and (3) is equal to 0 if

C is the cube of volume 1 and it is equal to z = 6l if C is regular tetrahedron, where l
is a length of the teathredon. On the other hand the function PC does not change under
cutting of polyhedron because the function F is additive function of the angles, and the
condition F (π) = 0 is obeyed. Contradiction.

I enjoyed so much this proof, but something is worrying: we use Choice Axiom for
constructing additive not continuous function F on all real numbers. Do we really need
it?

I think one can escape the using of choice axiom.

Indeed suppose one can cut cube on polyhedra γ1, . . . , γk such that after putting with
each other we come to tetrahedron. Consider the finite set of angles {ϕ1, . . . , ϕN} which
arise during cuttings.

Let V be the linear space spanned by the numbers {ϕ1, . . . , ϕN} with rational coeffi-
cients:

V = {a1ϕ1 + . . . + aNϕN , where a1, . . . , an ∈ Q}
∗∗ The space R of real numbers is a vector space over rational numbers. The basis in this

space is the set {eα} of numbers such that for an arbitrary real number b, b =
∑

γαeα

where all {γα} are equal to zero except the finite set. The set {γα} is defined uniquely.
The problem is that this vector space is ”worse” than infinite-dimensional— its dimension
is uncountable. To find a basis {eα} one needs to use transfinite induction, i.e. essentially
use of Choice Axiom. A basis {eα} is called Hamel basis
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Let F be a linear function on V which obeys the condition (2). One does not need Choice
Axiom to construct this function (in spite of the fact that a function F is not defined
uniquely), since V is finite-dimensional vector space. It suffices to consider this function
to come to contradiction.

Krassivo nepravda li?

Remark (28.12.2013). The proof of this Theorem is founded on the function I =∑ |li|F (ϕi) where F (ϕi) is a function which is linear on a finite sequence of angles ϕα,
where ϕα are all the angles which arise during cuttings of cube.

Then the restriction F (π) = 0 implies that I is invariant of cuttings...
I would like to mention that if we take the genuine linear function F (ϕ) = ϕ then

these considerations will fail (cutting around faces will change the invarance) but we will
come to...

I(M) =
∑

|li|F (ϕi) =

∫
M

H

where H is mean curvature of closed surface M . It is interesting the interplay of this
formula with tube formula

Vh = V0 + Smh + h2

∫
M

H +
4

3
πh3

where M = ∂D is a boundary of convex domain, and Vh(D) is a volume of all the body
which contains all the points of D + points which are on the distance from M less or equal
to h, and h is enough small.
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