Cube and tetrahedron are not equipartial.

Theorem 1 Two polygons of equal area are equipartial.
This means that if polygons Π_{1} and Π_{2} have the same area then one can cut the polygon Π_{1} on polygons π_{1}, \ldots, π_{k} and polygon Π_{2} on polygons $\pi_{1}^{\prime}, \ldots, \pi_{k}^{\prime}$ such that polygons π_{k} are equal to polygons $\pi_{k}^{\prime}: \pi_{1}=\pi_{1}^{\prime}, \pi_{2}=\pi_{2}^{\prime}, \pi_{3}=\pi_{3}^{\prime}, \ldots, \pi_{k}=\pi_{k}^{\prime}$.

The proof is simple. I give two hints to prove it.
Hint 1. This was proved by amateur mathematician in XIX century. This means that you can prove it! (Ja v svojo vremia sdelal eto s udovoljstvijem!)

Hint 2. The proof immediately follows from the lemma.
Lemma Let S_{1} be a triangle (with acute angles), and S_{2} be an rectangtle such that they have the same area and one of the sides of triangle S_{1} coincides with one of the sides of the rectangle S_{2}. Then the triangle S_{1} is equipartial with the rectangle S_{2}.

Proof: Let S_{1} be a $\triangle A B C$ with $a=B C$ and S_{2} be rectangle with a side a. Consider the segment $M N$ joining midpoints M, N of the sides $A B$ and $A C$, and the altitude (height) $A P$ of the triangle $A M N$. Then cut triangle $A B C$ on $\triangle A M P, \triangle A N P$ and trapezoid $B M N C$. Puting triangles $A B C, A M P$ to the trapezoid we come to the rectangle.

Now it is easy to prove the Theorem. To see how the lemma helps consider
Example. Show that rectangle Π_{1} with sides $\{1,2\}$ and square Π_{2} with sides $\{\sqrt{2}, \sqrt{2}\}$ are equipartial.

Solution: It follows from lemma that rectangle Π_{1} with sides $\{1,2\}$ and triangle with sides $\{2,2,2 \sqrt{2}\}$ are equipartial. Again applying lemma we see that triangle with sides $\{2,2,2 \sqrt{2}\}$ and rectangle Π_{3} with sides $\left\{2 \sqrt{2}, \frac{\sqrt{2}}{2}\right\}$ are equiaprtial. On the other hand rectangle Π_{3} with sides $\left\{2 \sqrt{2}, \frac{\sqrt{2}}{2}\right\}$ and square Π_{2} with sides $\{\sqrt{2}, \sqrt{2}\}$ are equipartial. Hence rectangle Π_{1} and square Π_{2} are equiaprtial.

Now the most interesting part:

Theorem 2 The cub and tetrahedron of the same volume are not equipartial.
It is one of the Hilbert's problem.
The meaning of this theorems is following: we know that area of the triangle is equal to $S=\frac{a h}{2}$, where h-is the length of the altitude on the side a; and the volume of tetrahedron is equal to $\frac{S H}{3}$, where S is the area of the base and h is the length of the altitude on the base. The Theorem 2 means that one cannot escape the Analysis (consider integration) to define the volume of tetrahedron*.

Few weeks ago I heard about wonderful proof of the second Theorem. (Davidik rasskazal mne eto dokazateljstvo, kogda ja vstretilsja s nim na Ukrajine. On priivjoz eto iz Moskvy) Here it is:

[^0]Consider cube with edge 1 and regular tetrahedron of the same volume. Let θ be an angle between sides of the tetrahedron. One can see that $\frac{\theta}{\pi}$ is irrational number. (I think this follows easy from the fact that $\cos \theta=1 / 3$).

For every polyhedron C consider the function

$$
\begin{equation*}
P_{C}=\sum_{i}\left|l_{i}\right| F\left(\varphi_{i}\right), \tag{1}
\end{equation*}
$$

where $\left\{l_{i}\right\}$ are edges of the polyhedron, φ_{i} is the angle between sides adjusted to the edge l_{i} and $F(\varphi)$-a real valued function (v etoj funktsiji i vsja solj!). The summation goes over all edges l_{i}.

Now the most interesting part: Consider an additive function F on $\mathbf{R}: F(a+b)=$ $F(a)+F(b)$, i.e. the linear function on the real numbers, considered as a vector space over rational numbers, such that

$$
\begin{equation*}
F(\pi / 2)=0 \tag{2}
\end{equation*}
$$

and

$$
\begin{equation*}
F(\theta)=1 \tag{3}
\end{equation*}
$$

One can see that condition (2) implies that function (1) is not changed under cuttings.
This function exists because $\frac{\theta}{\pi}$ is irrational number, but this function is not linear in common sense, i.e. it is not continuous function.! To construct this function we need Hamel basis ${ }^{* *}$. Now the proof is in one line:

The function $P_{C}=\sum_{i}\left|l_{i}\right| F\left(\varphi_{i}\right)$ defined by relations (1),(2) and (3) is equal to 0 if C is the cube of volume 1 and it is equal to $z=6 l$ if C is regular tetrahedron, where l is a length of the teathredon. On the other hand the function P_{C} does not change under cutting of polyhedron because the function F is additive function of the angles, and the condition $F(\pi)=0$ is obeyed. Contradiction.

I enjoyed so much this proof, but something is worrying: we use Choice Axiom for constructing additive not continuous function F on all real numbers. Do we really need it?

I think one can escape the using of choice axiom.
Indeed suppose one can cut cube on polyhedra $\gamma_{1}, \ldots, \gamma_{k}$ such that after putting with each other we come to tetrahedron. Consider the finite set of angles $\left\{\varphi_{1}, \ldots, \varphi_{N}\right\}$ which arise during cuttings.

Let V be the linear space spanned by the numbers $\left\{\varphi_{1}, \ldots, \varphi_{N}\right\}$ with rational coefficients:

$$
V=\left\{a_{1} \varphi_{1}+\ldots+a_{N} \varphi_{N}, \text { where } a_{1}, \ldots, a_{n} \in \mathbf{Q}\right\}
$$

** The space \mathbf{R} of real numbers is a vector space over rational numbers. The basis in this space is the set $\left\{e_{\alpha}\right\}$ of numbers such that for an arbitrary real number $\mathbf{b}, \mathbf{b}=\sum \gamma_{\alpha} e_{\alpha}$ where all $\left\{\gamma_{\alpha}\right\}$ are equal to zero except the finite set. The set $\left\{\gamma_{\alpha}\right\}$ is defined uniquely. The problem is that this vector space is "worse" than infinite-dimensional-its dimension is uncountable. To find a basis $\left\{\mathbf{e}_{\alpha}\right\}$ one needs to use transfinite induction, i.e. essentially use of Choice Axiom. A basis $\left\{e_{\alpha}\right\}$ is called Hamel basis

Let F be a linear function on V which obeys the condition (2). One does not need Choice Axiom to construct this function (in spite of the fact that a function F is not defined uniquely), since V is finite-dimensional vector space. It suffices to consider this function to come to contradiction.

Krassivo nepravda li?
Remark (28.12.2013). The proof of this Theorem is founded on the function $I=$ $\sum\left|l_{i}\right| F\left(\varphi_{i}\right)$ where $F\left(\varphi_{i}\right)$ is a function which is linear on a finite sequence of angles φ_{α}, where φ_{α} are all the angles which arise during cuttings of cube.

Then the restriction $F(\pi)=0$ implies that I is invariant of cuttings...
I would like to mention that if we take the genuine linear function $F(\varphi)=\varphi$ then these considerations will fail (cutting around faces will change the invarance) but we will come to...

$$
I(M)=\sum\left|l_{i}\right| F\left(\varphi_{i}\right)=\int_{M} H
$$

where H is mean curvature of closed surface M. It is interesting the interplay of this formula with tube formula

$$
V_{h}=V_{0}+S_{m} h+h^{2} \int_{M} H+\frac{4}{3} \pi h^{3}
$$

where $M=\partial D$ is a boundary of convex domain, and $V_{h}(D)$ is a volume of all the body which contains all the points of $D+$ points which are on the distance from M less or equal to h, and h is enough small.

[^0]: * The Theorem 1 claims that one comes to the formula for an area of triangle just by cutting rectangle and without using Analysis, i.e. without integration

