
On one subset in SO(3) and Euler Theorem

This text was written around 2006. Korchagina had a beautiful talk with very facinat-

ing title “On the second generation of proof of Theorem on finite simple groups”. Sasha

Borovik did some interesting remarks about status of this Theorem and about relation be-

tween RP 3 and SO(3).

around 2006 The group S0(3) has fantom memories

of lost operations

(...initiated by remark of Sasha Borovik)

It is well-well-known that SO(3) ≈ RP 3(as manifold) , but in fact one can say much

more: S0(3) ‘knows’ about structure of projective space. In particular the subspace RP 2 ⊂
RP 3 can be canonically embedded in SO(3). It is the following subset (not subgroup!) in

SO(3) :

L = {A: A ∈ SO(3), det(1 +A) = 0} . (1)

Geometrically it means following: Operators A ∈ L are orthogonal transformations which

are rotations around axis on the angle π. It will be RP 21) . This is not hard to see. The

subset Lh naturally appears also in another algebraic proof of Euler Euler Theorem.

Recall first maybe the most beautiful proof of Euler Theorem (Coxeter Proof). Let

‘A ∈ SO(3), {e, f ,g} be an orthogonal basis and {e, f ,g} be a new orthogonal basis,

e′ = Ae, f ′ = Ae,g′ = Ag. Consider a reflection O1 which transforms e to e′; the

invariant plane of this reflection is spanned by vectors e + e′ and e × e′. Then consider

the reflection O2 which transforms f to f ′. The vector e′ belongs to invariant plane of this

reflection. Under composition of these two reflections f transforms to f ′ too. Indeed in

other case we consider third reflection with respect to the plane e′, f ′ but composition of

three reflections has determinant −1.) Hence A = O2O1. The intersection of invariant

planes of these reflection is an axis of rotation.

Now algebraic proof. Let A ∈ SO(3). Note first that if there exists eigenvector n with

eigenvalue 1 then restriction of transformation A on the plane orthogonal to the vector

n is nothing but orthogonal rotation of the plane α. (Indeed if α is a plane which is

orthogonal to n, then it is obvious that A maps α on α, it is orthogonal operator on α

and detA|α = 1. ). Hence A is rotation around axis n. It remains to prove that such an

eigenvector n exists. Consider characteristic polynomial P (z) = det(z − A). It is cubic

polynomial, and it has at least one real root. Let λ be its real root and n be corresponding

eigenvector. Operator A preserves scalar product. This implies that λ = ±1. if λ = 1,

1) Any rotation =axis+angle of rotation=point of the ball of the radius π. Rotation on

angle 6= π is an interior of this ball. The boundary of this ball with fatorised antipodal

points = L
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then everything is already proved (see above). If λ =: −1, then det(1 +L) = 0, i.e. A ∈ L
2). Let n be an eigenvector corresponding to the eigenvalue λ = −1: An = −n. Consider

a plane α, which is orthogonal to the eigenvector n. Restriction of A on the plane α is

orthogonal transformation with determinant −1, i.e. the restriction of A on the plane α

is a reflection of the plane with respect of a line l ∈ α (A on α has eigenvectors f ,g with

eigenvalues 1,−1 respectively, and l is directed along vector f .) We see that in this special

case A is a rotation around axis λ on the angle π. Subset L is in one-one correspondence

with axis= lines which go over origin, i.e. L = RP 2.

2) Of course in this case also one can prove the existence of eigenvector with eigenvalue

1, but it is much easier to do it straightforwardly
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