
I wrote this on 22-nd June 2017

Hidden hyperbolicity

In this étude we consider one geometrical problem, which has two manifestations. It

seems to be the standard Euclidean problem, but it possesses the hidden hyperbolicity. We

first explain how the example is arised, then consider its solution in terms of Euclidean

and Hyperbolic Geometry

Source

Consider a realisation of hyperbolic (Lobachevsky) plane as upper half-plane of Eu-

clidean plane. Let C be a (usual Euclidean) circle in this half-plane. It is also the hyperbolic

circle/ Let O be a centre of C considered as the Eucldean circle, and let A be a centre of

C considered as the hyperbolic circle. The fact that the point A is the hyp[erbolic centre

means that if two curves γ, γ′ are arbitrary hyperbolic geodesics passing through the point

A, and Lγ , L
′
γ′ are points of the intersections of these geodesics with circle C, Lγ = γ×C,

Lγ′ = γ′ × C then the (hyperbolic) lengths of these geodesics coincide. In particular due

to the lemma this implies that all these geodesics intersect the circle C under the angle π
2 .

Now look at this picture from the point of view of Euclidean geometry. All gedesics

are half-circles with centres on the absolute, the line x = 0, (except the geodesicis which

are the vertical lines) Angles are the same. If geodesic γ is represented by the half-circle

with the centre at the point K, then the segment KLγ , radius of this half-circle has to be

tangent to the circle C in the case if this geodesic intersects the circle C under the angle π
2 .

Thus we come to conclusion that for the arbitrary point K on the absolute the (Euclidean)

length of the tangent from the point K to the circle C is equal to the (Euclidean) length

of the segment KA.

Based on the considerations above we will formulate the following problem of Eucldean

geometry.

Let C be a circle in the Euclidean plane and let A, be an arbitrary point on this plane.

Consider the locus MC,A of the points K such that the length of the tangent from K

to the circle C is equal to the length of the segment KA:

MC,A = {K: KA = lenght of the tangent from K to the circle.} . (1)

Find the locus MC,A.

This problem looks as standard geometrical question in Euclidean gepmetry. Tempo-

rary forgetting where this problem comes from, we will discuss first solution of this problem

just in terms of Eucldean geometry

Solution
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Let A′ be a point which is inverse to the point A with respect to the circle C: Points

O (centre of the circle), A and A” belong to the same ray rOA and

|OA| · |OA′| = 1 . (2)

(We suppose that the circle C has unit length.)

Consider the set of circles passing through the points A and A′. One can see that

every such a circle,

intersects the circle C under the right angle (3)

This means that for centre K of such circle, the tangent to the circle C is the radius of this

circle. We see that the locus MC,A = the locus of the centres of circles passing through

the points A and A′ = the locus of the points which are on the same (Euclidean) distance

from the points A and A′. This is the line l which is ortogonal to the AA′ and passes

through th emiddle point P of the segment AA′ (P ∈ AA′, |AP | = |PA′|.
So we come to

MC,A = {l: d(l, A) = d(l, A′)} . (4)

It remains to prove just relation (3). It can be checked straightforwardly. The following

beautiful prove implies inversion.

Let L be an arbitrary circle passing through the points A,A′. Let this circle intersects

the circle C at the pointM . Triangle AMA′ remains intact under the inversion with respect

to the circle C: A ↔ A′,M ↔ M (see equation (1)). Hence the inversion transforms the

circle L to the same circle. If ϕ is angle of intersection of L with C, then π−ϕ is the angle

of intersection of inversed circle with C;ince inversion transforms the direction of arcs. We

have ϕ = π − ϕ, i.e. ϕ = π
2 .

Meaning in hyperbolic geometry

The considerations of the first paragraph show that the fact that l = MC,A has

explanations in hyperbolicity.

Indeed the line l divides the plane on two half-planes. Consider the half-plane the

circle C belogs to, as a model of hyperbolic (Lobachevsky) plane ∗. The circle C will be

the circle in the hyperbolic plane also.

∗ Recall shrotly what is it. One can consider Cartesian coordinates (x, y) such that

the line l is y = 0 the half-plane is y ≥ 0. Then hyperbolic plane H can be defined as

as this half-plane with Riemannian metric G = dx2+dy2

y2 . The geodesics of this metric

(lines of hyperbolic plane) are vertical lines x = a and upper half-circles with centre on

the absolute l:

{
(x− a)2 + y2 = R2

y > 0
. The distance between two points A1 = (x1, y1)
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One of the points A or A′ is in the circle C. WLOG suppose that this is a point A.

One can see traightfoewardly that the point A is the centre of the hyperbolic circle C
2. This immediately implies that the points of l belong to the locus MC,A. Indeed due to

the lemma all the geodesics starting at the point A, the centre of the circle, interesect the

circle C under the right angle, i.e. the points of l belong to this locus.

and A2 = (x2, y2), the length of the geodesic passing via points A1, A2 can be defined

alternatively by cross-ratio of the points

d(A1, A2) = |log (A1, A2, A0, A∞))| =
∣∣∣∣log

(
z1 − z0
z1 − z∞

:
z2 − z0
z1 − z∞

)∣∣∣∣ ,
where points A0, A∞ are points of intersection of the half-circle with absolute, z1 = x1 +

iy1,z2 = x2 + iy1. E.g. for two points A1 = (0, a1), A2 = (o, a2) on the vertical line (this

is geodesic)

d(A1, A2) = |log |(A1, A2, 0,∞))| =
∣∣∣∣log

(
ia1 − 0

ia1 −∞
:
ia2 − 0

ia1 −∞

)∣∣∣∣ =

∣∣∣∣log

(
a1
a2

)∣∣∣∣ .
2 It is convenient to consider coordinates (x, y) such that the line l is defined by x = 0,

and the vertical ray AP is y = 0. Let point a be on the distance a from the Euclidean centre

of the circle C. Then the Euclidean centre of the circle has coordinates O =
(
0, 12

(
a+ 1

a

))
,

and respectively

P = (0, 0) , A =

(
0,

1

2

(
a+

1

a

)
− a
)

=

(
0,

1

2

(
1

a
− a
))

.

Recall that P is the point of intersection of the vertical ray passing throught the point A

with absolute l. Let N1.2 be points of the intersection of the ray AP , then

N1,2 =

(
0,

1

2

(
a+

1

a

)
± 1

)
=

0,
1

2

(√
1

a
±
√
a

)2


We see that |PA| is geometrical mean of PN1, PN2:

|PN1| · |PN2| =
1

2

(√
1

a
+
√
a

)2
1

2

(√
1

a
−
√
a

)2

=
1

4

(
1

a
− a
)2

= |PA|2 ,

i.e. the hyperbolical lengths |AN1| and |AN2| coincide.
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