Symmetries of Clairaut equation
 or

 how looks infinitesimal Legendre transformations

 how looks infinitesimal Legendre transformations}

Recall that ordinary first order differential equation $f\left(x, y^{\prime}, y\right)=0$ has the following geometrical interpretation: The difequation defines surface M_{f} of codimension 1 in the contact space $J^{1}(\mathbf{R})$ with coordinates $(x, p, y)\left(p=y^{\prime}\right)$,

$$
\begin{equation*}
M_{f}=\{(x, p, y): f(x, p, y)=0\} \tag{0.1}
\end{equation*}
$$

and the (generalised) solution of the equation is a curve $l=(x(t), p(t), y(t))$ belonging to this surface such that the contact form

$$
\begin{equation*}
\omega=p d x-d y \tag{0.2}
\end{equation*}
$$

vanishes on the curve ${ }^{1)}$
The Legendre transformation

$$
\begin{equation*}
\tilde{x}=p, \tilde{p}=-x, \tilde{y}=y-p x \tag{0.3}
\end{equation*}
$$

of contact space $J^{1}(\mathbf{R})$ preserves the contact form.
We study here wow lookz infinitesimal transformation which generates the Legendre transformation. This maybe applied to Clairaut equation.

Our aim to find the one-parametric famiily of contact trasnformations which include the Legendre transformation (0.3)

Recall that infinitesimal transformations-vector fields on $J^{1}(\mathbf{R})$ which preserves the distribution of the planes which vanish the contact form (0.2) are in one-one correspondence with Hamiltonians on $J^{1}(\mathbf{R})$:

$$
\begin{equation*}
C\left(J^{1}(\mathbf{R})\right) \ni H(x, p, y) \leftrightarrow \mathbf{X}: \quad \mathcal{L} \mathbf{X}(p d x-d y)=\lambda(x, p, y)(p d x-d y) \tag{1.1}
\end{equation*}
$$

The correspondence is the following:

$$
\begin{equation*}
\left.H(x, p, y) \mapsto \mathbf{X}_{H}=\frac{\partial H}{\partial p} \frac{\partial}{\partial x}-\frac{\partial H}{\partial x} \frac{\partial}{\partial p}+\left(p \frac{\partial H}{\partial p}-H\right) \frac{\partial}{\partial y}, \quad \mathbf{X} \mapsto H=\omega\right\rfloor \mathbf{X},\left(\lambda=-H_{y}\right) . \tag{1.2}
\end{equation*}
$$

Consider on $J^{1}(\mathbf{R})$ the Hamiltonian $H=\frac{p^{2}}{2}+\frac{x^{2}}{2}$ of harmonic oscillator. This Hamiltonian defines due to (1.2) on $J^{1}(\mathbf{R})$ the contact vector field

$$
\begin{equation*}
\mathbf{X}_{H}=p \frac{\partial}{\partial x}-x \frac{\partial}{\partial p}+\left(\frac{p^{2}}{2}-\frac{x^{2}}{2}\right) \frac{\partial}{\partial y}, \quad \mathcal{L}_{\mathbf{X}_{H}} \omega=0 \tag{1.3}
\end{equation*}
$$

[^0]and it induces the contact transformation
\[

\left($$
\begin{array}{l}
x \\
p \\
y
\end{array}
$$\right) \rightarrow\left($$
\begin{array}{c}
\tilde{x}_{\tau} \\
\tilde{p}_{\tau} \\
\tilde{y}_{\tau}
\end{array}
$$\right),
\]

such that

$$
\left\{\begin{array}{l}
\frac{d \tilde{x}}{d \tau}=\frac{\partial H}{\partial \tilde{p}}=\tilde{p} \\
\frac{d \tilde{p}}{d \tau}=-\frac{\partial H}{\partial \tilde{x}}=-\tilde{x} \quad \text { with boundary conditions }\left.\binom{\tilde{x}_{\tau}}{\frac{d \tilde{p}}{d \tau}=\left(\frac{\tilde{p}^{2}}{2}-\frac{\tilde{x}^{2}}{2}\right)}\right|_{\tau=0}=\left(\begin{array}{l}
x \\
p \\
\tilde{y}_{\tau}
\end{array}\right) .
\end{array}\right.
$$

Solving this equation we come to

$$
\left\{\begin{array}{l}
x_{\tau}=x \cos \tau+p \sin \tau \\
p_{\tau}=-x \sin \tau+p \cos \tau \\
y_{\tau}=y+\frac{1}{4}\left(p^{2}-x^{2}\right) \sin 2 \tau+\frac{1}{2} p x(\cos 2 \tau-1)
\end{array}\right.
$$

We see that for $\tau=0$ this is the identity transformation, and for $\tau=\frac{\pi}{2}$ this the Legendre trasnformation

$$
\left\{\begin{array}{l}
x_{\frac{\pi}{2}}=p \\
p_{\frac{\pi}{2}}=-x \\
y_{\frac{\pi}{2}}=y-p x
\end{array}\right.
$$

Application to Clairaut equation

The Clairaut equation

$$
\begin{equation*}
y-x y^{\prime}=f\left(y^{\prime}\right) \tag{2.1}
\end{equation*}
$$

has the one-parametric family of lines

$$
\begin{equation*}
y=k x+f(k), \quad k \in \mathbf{R},-\infty<k<\infty, \tag{2.2a}
\end{equation*}
$$

and the special soluction, their envelope: $\varphi(x)$,

$$
\begin{equation*}
\varphi(x)=k(x) x+f(k(x)): \quad k(x) \text { is such that } \frac{\partial \varphi}{\partial k}=x+f^{\prime}(k)=0 \tag{2.2b}
\end{equation*}
$$

E.g. the solutions of Clairaut equation $y-x y^{\prime}=y^{\prime 2}$ are the lines $y=k x+k^{2}, k \in \mathbf{R}$ and their envelope, the function $\varphi(x)=-\frac{x^{2}}{2}$. This is standard.

Apply Legendre transformation (0.3) to Clairaut equation (2.1). The Clairaut equation (2.1) transforms to the algebraic equation

$$
\begin{equation*}
\tilde{y}=f(\tilde{x}) \tag{2.3}
\end{equation*}
$$

The solutions (2.2a), the lines will transform to (generalised) solutions, vertical lines: Every line (2.2a) $l_{k}=\left(\begin{array}{c}x=t \\ p=k \\ y=k t+f(k)\end{array}\right)$ is transformed to vertical line $\left\{\begin{array}{l}\tilde{x}=k \\ \tilde{p}=t \\ \tilde{y}=f(k)\end{array}\right.$, $-\infty<t<\infty$, and this vertical line is the generalised solution of equation (2.3).

The special envelop solution (2b), the curve

$$
l_{\varphi}=\left(\begin{array}{c}
x=t \\
p=k(t) \\
y=k(t) t+f(k(t))
\end{array}\right), \text { where } k(t): t+f(k(t))=0
$$

is transformed to curve $\left\{\begin{array}{l}\tilde{x}=t \\ \tilde{p}=f^{\prime}(t), \text { which comes from the solution of algebraic equation. } \\ \tilde{y}=f(t)\end{array}\right.$
Remark it is improtant to note that Legendre transformation is the quasiclassic of Fourier trasnformaation.

[^0]: 1) The contact form (0.1) defines the distribution (not-integrable) of the planes which vanish the form. The solution l is the integral of this distribution.
