
06 November 2013
On caluclation of some surface integrals .

Let p = p(r) be a scalar function in E3. We consider the following three surface
integrals:

∫

M

p(r)ds , (1) ,

∫

M

grad p(r)ds , (2) ,

∫

M

grad p(r) × ds (3) .

Here as always ds is vector valued element of surface.
Anybody who learned basic vector calculus (or theoretical physics) knows many integrals

like these. I would like to analyze difference between these three integrals.
In the case if M = ∂D is a boundary of a domain D then the second integral can be

calculated by standard application of Gauss-Ostrogradsky formula:

∫

∂D

grad p(r)ds =

∫

D

div grad p(r) =

∫

D

∆p(r)dV .

For the first integral standard calculations (see below) show that in the case if M = ∂D

then
∫

∂D

p(r)ds =

∫

D

grad p(r)dV .

This is nothing but Archimedes’s principle.
The third integral vanishes on closed surfaces and moreover for arbitrary surface M

it is reduced to integral over contour ∂M :

∫

M

grad p(r) × ds =

∫

∂M

p(r)dl, .

The third integral looks peculiar: not only volume form and metric but also vector product
is engaged in integrals construction. It turns out that this integral is topological: rightly
viewed it does not depend on metric structures.

I am grateful to Grigory Vekstein who have focused my attention on the very beautiful
integral (3).

§ 1 Gauss-Ostrogradsky formula and differential forms

First of all recall Gauss-Ostrogradsky formula for flux of vector field. If closed surface
M is the boundary of domain D, M = ∂D, then this formula expresses the flux of vector
field through the surface via the integral over the domain:

∫

∂D

Kds =

∫

D

div Kd3x .

The most illuminating way to understand this formula, is to use the language of differential
forms. The integrand in the left hand side is 2-form, the integrand in the right hand side
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is a 3-form. More in detail: the flux of vector field K through the surface M is equal to
integral of 2-form ωK = Ω⌋K over surface M :

Flux of K via M =

∫

M

Kds =

∫

Ω⌋K ,

where Ω is a volume form. Due to Stokes Theorem:

∫

∂D

ω =

∫

D

dω ,

we have that if surface M is a boundary, M = ∂D then:

Flux of K via ∂D =

∫

∂D

Kds =

∫

∂D

Ω⌋K =

∫

D

d (Ω⌋K) .

Cartan formula gives that d (Ω⌋K) = LKΩ = (divΩ K) Ω hence

∫

∂D

Kds =

∫

∂D

Ω⌋K =

∫

D

d (Ω⌋K) =

∫

(divΩ K) Ω .

In coordinates: if volume form Ω = ρdx ∧ dy ∧ dz then

divΩ K =
d (Ω⌋K)

Ω
=

d (ρdx ∧ dy ∧ dz⌋ (Kx∂x + Ky∂y + Kz∂z))

ρdx ∧ dy ∧ dz
=

d (ρ (Kxdy ∧ dz − Kydx ∧ dz + Kzdx ∧ dy))

ρdx ∧ dy ∧ dz
=

1

ρ

(

∂(ρKx)

∂x
+

∂(ρKy)

∂y
+

∂(ρKz)

∂z

)

=

∂Kx

∂x
+

∂Ky

∂y
+

∂ρKz

∂z
+ Kx

∂ log ρ

∂x
+ Ky

∂ log ρ

∂y
+ Kz

∂ log ρ

∂z
.

This is standard stuff. Integral over surface M = ∂D is reduced to the integral over
domain D due to the fact that integrand is a differential form, and the Stokes formula
works. Of course not every surface integral over closed surface M = ∂D can be reduced
to the integral over domain D. In general, integral over surface is an integral of density.
Reduction happens if the density is a differential form.

It often happens when we integrate over surface not differential form, but vector-valued
differential forms. This is just the case with integrals (1) and (3). Note that flux of vector
field which was calculated above is integral of a function over surface, not vector field. In
the case if integrand is vector-valued and it is differential form, Stokes-Gauss-Ostrogradsky
like formula still works but there are some problems.

Return to calculations of integrals (1) and (3) considered above.
Both these integrals are integrals of vector valued differential form over surface—

vector field is integrated over surface. (For the integral (2) scalar-valued form is integrated
over surface.) The integrals (1) and (3) are defined in Euclidean space where integration of
vector field has a since since one can add two vectors attached at different points. In general
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integral of vector field over surface may be defined only in spaces with absolute parallelism,
where you have well defined transport of vectors from point to point, independent on paths.

We first recall how to calculate these integrals using standard trick∗), then we will
consider these integrals in a more general framework.

Calculation of integral F =
∫

∂D
p(r)ds.

Calculate this integral (1) using the standard trick: take the scalar product of an
arbitrary constant vector a with integrand in (1) in surface integral . Then we come to
the flux of vector field p(r)a through surface ∂D:

F · a =

∮

∂D

(p(r)a) ds .

Applying Gauss-Ostogradsky law to this integral we come to

F · a =

∮

∂D

(p(r) · a) ds =

∫

div (p(r)a) = a ·
∫

D

grad p(r)dV .

Since this relation is obeyed for an arbitrary constant vector a then

F =

∮

∂D

p(r)ds =

∫

grad p(r)dV .

In particular if pressure p = ρgz then we come to Archimedes’s law:

F =

∮

∂D

p(r)ds =

∫

D

grad p(r)dV = ρg

∫

D

dV = ρgVD .

Calculation of integral IM =
∫

M
grad p(r) × ds.

The same trick works for the integral (3):
a · (grad p(r) × ds) = (a × grad p(r)) · ds. Hence if a is constant vector then

a · IM =

∫

M

a · (grad p(r) × ds =

∫

M

(a × grad p(r))ds .

If M = ∂D is a boundary of domain D then

a · I∂D =

∫

∂D

a · (grad p(r) × ds =

∫

∂D

(a × grad p(r))ds =

∫

D

div (a × grad p(r))dV = 0 ,

since div (a× grad p(r)) = a · rot ◦ grad p(r) = 0. We see that IM =
∫

M
grad p(r)× ds = 0

if M is a boundary. In fact we can say more: We have that a × grad p(r) = rot (p(r)ac)).
Hence

a · IM =

∫

M

a · (grad p(r)× ds =

∫

M

(a× grad p(r))ds =

∫

M

rot (p(r)a)ds =

∫

∂M

p(r)a · dl .

∗) which every physicist knows from books like ’Batygin, Toptygin’
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Thus we see that for arbitrary surface M

IM =

∫

M

grad p(r × ds =

∫

∂M

p(r)dl .

§ 2 Vector-valued forms

Yes, integrals are calculated, but we prefer more illuminating way to do it....
One can consider integrals over surfaces in Euclidean spaces of vector-valued vector

form. First of all express vector valued area element in terms of vector valued form.
Let r = r(ξ, η) be a local parameterisation of surface M in E3.
Then vector-valued surface element of M is equal to

dσ = |rξ × rη|dξ ∧ dη =
√

r2

ξr
2
η − (rξ · rη)

2
dξ ∧ dη =

√

(xξyη − xηyξ)
2

+ (xξzη − xηzξ)
2

+ (zξyη − zηyξ)
2
dξ ∧ dη

A normal unit vector to the surface is equal to n =
rξ×rη

|rξ×rη|
and vector surface element is

equal to
ds = ndσ = (rξ × rη) dξ ∧ dη

We see that vector surface element is expressed trough vector valued 2-form:

→

Σ:
→
ω(rξ, rη) = rξ × rη ,

→

Σ
∣

∣

M
dξdη = ds .

In Cartesian coordinates

→

Σsurf = dx ∧ dy
∂

∂z
− dx ∧ dz

∂

∂y
+ dy ∧ dz

∂

∂x
=

1

2
ǫikmdxi ∧ dxk ∂

∂xm
.

In arbitrary coordinates ui = (u1, u2, u3)

→

Σsurf =
1

2

√

det gǫikmdui ∧ dukgmn ∂

∂un
,

where gik is Euclidean metric in coordinates ui.
This vector-valued form can be considered in arbitrary Riemannian manifold, but we

can consider integral of the form (or any form p(r)
→

Σ over surface only if operation of
vectors transport is well-defined (in spaces with absolute parallelism).

Integral of vector-valued forms over surface cannot be well-defined in an arbitrary
Riemannian space.

On the other hand for vector valued forms one can consider functionals

ΨM (σ) =

∫

M

〈→ω, σ〉
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on 1-forms σ which are well-defined since an integrand 〈→ω, σ〉 is number-valued differential
form. (〈 . 〉 is contraction of 1-form with vector (covector with vector)). In the special case
of Euclidean space one can consider just constant 1-forms. This is a special case which
was consider above when we calculated integrals using “standard tricks”.

Now we consider functionals for integrals (1) and (3).

Functional ΨM (σ) for integral
∫

M
p(r)ds.

∫

M

p(r)ds −→ ΨM (σ) =

∫

M

〈p(r)
→

Σ, σ〉

LHS is well-defined in Euclidean space. RHS is well defined in arbitrary Riemannian
manifold. Using previous calculations we see that the integrand is differential 2-form such
that its value on arbitrary two vectors v1,v2 tangent to M = ∂d is equal to

〈
→

Σ, σ〉(v1,v2) = 〈
→

Σ(v1,v2), σ〉 = σ(v1 × v2)

Using formulae for vector-valued form
→

Σ we see that 2-form 〈
→

Σ, σ〉 is equal to

〈
→

Σ, σ〉 = σzdx ∧ dy + σydz ∧ dx + σzdx ∧ dy ,

in Euclidean space (in Cartesian coordinates), and for arbitrary Riemannian manifold

→

Σsurf =
1

2

√

det gǫikmdui ∧ dukgmnσn ,

(Here σ − σi(x)dxi.) Using Stokes Theorem and formulae above we see that in the case if
M = ∂D then

Ψ∂D(σ) =

∫

∂D

〈p(r)
→

Σ, σ〉 =

∫

D

σ(grad p)dV +

∫

pdiv ξσ ,

where ξσ = gikσk is vector field corresponding to 1-form σ:.
In particular if σ = dϕ is an exact form then

Ψ∂D(σ = ϕ) =

∫

∂D

〈
→

Σ, dϕ〉 =

∫

D

σ(grad p)dV +

∫

p∆ϕ ,

∆ is Laplace-Beltrami operator:

∆ϕ =
1
√

∂

∂xm

(

√

det ggmn ∂ϕ

∂xn

)

This is generalisation of integral (1). In the case if ϕ is linear polynomial in E3 we come
to standard Archimedes’s integral. It is interesting to look at this formula in the case if ϕ

is an arbitrary harmonic function.
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Functional ΨM (σ)for integral
∫

M
grad p(r) × ds.

Now consider generalisation of example (3).
We come to the following functional on 1-forms:

∫

M

grad p(r) × ds −→ Ψ∂D(σ) =

∫

M

〈grad p(r) ×
→

Σ, σ〉 .

LHS is defined in Euclidean space, RHS is defined in an arbitrary Riemannian space. One
can see that RHS is well-defined for arbitrary manifold, it does not depend in fact on
Riemannian structure. Indeed for arbitrary two vectors v1,v2 tangent to M = ∂D we see
that

grad dp(r) ×
→

Σ (v1,v2) = grad p(r) × (v1 × v2) = v1dp(r)(v2) − v2dϕ(v1) .

Hence we see that

〈grad p(r) ×
→

Σ, σ〉(v1,v2) = σ (v1dp(r)(v2) − v2dϕv1) = σ ∧ dϕ(v1,v2) .

We come to answer:

ΨM (σ) =

∫

M

〈grad p(r) ×
→

Σ, σ〉 =

∫

M

σ ∧ dp .

Thus we see that rightly viewed integral (3) does not depend on any metric structure on
the manifold.

Due to Stokes formula

ΨM (σ) =

∫

M

σ ∧ dp =

∫

M

d(σ ∧ p) −
∫

M

dσ ∧ p =

∫

∂M

σ ∧ p −
∫

M

dσ ∧ p .

In particular if 1-form σ is closed the

ΨM (σ) =

∫

∂M

σ ∧ p .

Le jeux en vaut la chandelle!
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