Inversion and stereographic projection

Vek zhivi, vek uchisj, durakom pomrjoshj

You know how I like stereoraphic projection, it has so much beautiful properties, in particular the property of transforming of rational points to rational ones. Today I learned that stereographic projection is just the restriction of inversion!

In a more details:
Let $\varphi: S^{n} \backslash N \leftrightarrow \mathbf{R}^{n}$ be a stereographic projection of unit sphere without North pole $N=(0, \ldots, 0,1)$,

$$
S^{n} \backslash N=\left\{x^{i}: \quad \sum_{i=0}^{n} x^{i} x^{i}=1, x^{0} \neq 1\right\}
$$

on the hyperplane

$$
\mathbf{R}^{n}=\left\{x^{i}=u^{i}, i=1, \ldots, n ; x^{0}=0\right\} .
$$

A point $\varphi(A) \in \mathbf{R}^{n}$ is stereopgraphic image of the point $A \in S^{n}$ if three points $N, A, \varphi(A)$ are incident (belong to the same line).

This is remarkable map, in particular it has the property:
point $\varphi(A)$ has rational coordinates if and only if the point A has rational coordinates

Now consider the inversion $\hat{\varphi}$ of \mathbf{R}^{n+1} with respect to the sphere \tilde{S}, such that the centre of this sphere is the north pole N and equatorial circle $S_{\text {equator }}^{n-1}$ (points $x^{0}=0$ on S^{n}) belongs to this sphere: One can see that the sphere \tilde{S} is defined by the equation

$$
\begin{equation*}
\left(x^{0}-1\right)^{2}+\sum_{i=1}^{n} x^{i} x^{i}=2 \tag{*}
\end{equation*}
$$

The map $\hat{\varphi}$ has the following appearance:

$$
\mathbf{R}^{n+1} \backslash \mathbf{n} \ni \mathbf{x} \hat{\varphi}(\mathbf{x})=\mathbf{n}+\frac{2 \mathbf{x}-2 \mathbf{n}}{|\mathbf{x}-\mathbf{n}|^{2}}
$$

where \mathbf{n} is a vector attaching origin to the North pole. The image of S^{n} under inversion $\hat{\varphi}$ is hyperplane, since $\hat{\varphi}$ is not define at vector \mathbf{n}. It is easy to check also that equatorial circle remains invariant. Using properties of inversion ${ }^{1)}$ we come to the

Fact

$$
\hat{\varphi}_{S^{n} \backslash N}=\varphi,
$$

i.e. the restriction of inversion with respect to the sphere $\left({ }^{*}\right)$ is stereographic projection φ.

Notice that for inversion $\hat{\varphi}$ condition (\dagger) holds.
I always was little bit unhappy that there is always a problem when we consider stereographic map φ in Cartesian coordinates of embedding space. The embedding of φ in inversion, $\hat{\varphi}$ makes us little bit happier.

[^0]
[^0]: ${ }^{1)}$ inversion maps circles and planes to circles and planes

