29 January 2017

Inversion and stereographic projection

Vek zhivi, vek uchisj, durakom pomrjoshj

You know how I like stereoraphic projection, it has so much beautiful properties, in particular the property of transforming of rational points to rational ones. Today I learned that stereographic projection is just the restriction of inversion!

In a more details:

Let $\varphi: S^n \setminus N \leftrightarrow \mathbf{R}^n$ be a stereographic projection of unit sphere without North pole $N = (0, \dots, 0, 1),$

$$S^n \backslash N = \left\{ x^i \colon \sum_{i=0}^n x^i x^i = 1, x^0 \neq 1 \right\}$$

on the hyperplane

$$\mathbf{R}^{n} = \left\{ x^{i} = u^{i}, i = 1, \dots, n; \ x^{0} = 0 \right\} \,.$$

A point $\varphi(A) \in \mathbf{R}^n$ is stereopgraphic image of the point $A \in S^n$ if three points $N, A, \varphi(A)$ are incident (belong to the same line).

This is remarkable map, in particular it has the property:

point $\varphi(A)$ has rational coordinates if and only if the point A has rational coordinates
(†)

Now consider the inversion $\hat{\varphi}$ of \mathbf{R}^{n+1} with respect to the sphere \tilde{S} , such that the centre of this sphere is the north pole N and equatorial circle S_{equator}^{n-1} (points $x^0 = 0$ on S^n) belongs to this sphere: One can see that the sphere \tilde{S} is defined by the equation

$$(x^0 - 1)^2 + \sum_{i=1}^n x^i x^i = 2.$$
 (*)

The map $\hat{\varphi}$ has the following appearance:

$$\mathbf{R}^{n+1} \mathbf{n} \ni \mathbf{x} \ \hat{\varphi}(\mathbf{x}) = \mathbf{n} + \frac{2\mathbf{x} - 2\mathbf{n}}{|\mathbf{x} - \mathbf{n}|^2}$$

where **n** is a vector attaching origin to the North pole. The image of S^n under inversion $\hat{\varphi}$ is hyperplane, since $\hat{\varphi}$ is not define at vector **n**. It is easy to check also that equatorial circle remains invariant. Using properties of inversion¹⁾ we come to the

Fact

$$\hat{\varphi}_{S^n \setminus N} = \varphi \,,$$

i.e. the restriction of inversion with respect to the sphere (*) is stereographic projection φ . Notice that for inversion $\hat{\varphi}$ condition (†) holds.

I always was little bit unhappy that there is always a problem when we consider stereographic map φ in Cartesian coordinates of embedding space. The embedding of φ in inversion, $\hat{\varphi}$ makes us little bit happier.

¹⁾ inversion maps circles and planes to circles and planes