
Minimal formulation of localisation principle

10 October, Cyprus---12 October David’s birthday.

Here I try to formulate the statement on localisation which seems to be very ”rational”.

It is based on my notes in 2013, and these notes are based on understanding of Belavin

calculations based on the classic paper of Schwarz

Let F (x) = eiH(x) be an arbitrary (non-zero valued) function in symplectic manifold

(M ,Ω). Consider the integral ∫
M

eiHdpdq , (1)

where dpdq is Lioville measure in M :

dpdq = Ω ∧ . . . ∧ Ω︸ ︷︷ ︸
n-times

, 2n=dimension of M .

Statement The integral (1) can be localised if there exist DH-invariant 1-form ω

which produces symplectic structure on M (i.e. Ω̃ = dω is non-degenerate 2-form).

We denote by DH = K Hamiltonian vector field of Hamiltonian H

ΩcK + dH (K) = 0 , , (K = DH) , LKω = 0 .

In the case if {xi} are points where vector field K = DH vanishes,then this vector field

defines at every point the linear operator dKi
∗ This localised integral is equal (up to

coefficients containing π) to
1

n!

∑
xi

eiH(xi)√
det dK(xi)

(1a)

Namely following Belavin ∗∗ consider a function

Z(t) =

∫
ΠTM

ei(H+Ω+t
√
LKω)dpdqdξ =

∫
ΠTM

ei(H+Ω+t(h+Ω̃))dpdqdξ , (2)

where ΠTM is tangent bundle with reversed parity of fibres,dpdqdξ is canonical measure

on ΠTM , h is an ‘artifical’ Hamiltonian defined by the new symplectic structure; this new

artificial Hamiltonian produces the same Hamiltonian vector fied: Dh = DH = K.

h = Ω̃cK , Ω̃ = dω .

∗ the action of operator dKi on an arbitrary tangent vector v ∈ Txi
M can be defined

by an equation dKi(v) = [ṽ,K], where ṽ is an arbitrary vector field such that its value

at the point xi is equal to v, and [ , ] is the commutator of vector fields. The vanishing of

ector K at the point xi provides the correctness of this definition.
∗∗ I did the slight but important modification of his calculations
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We use notation
√
LK for equivariant differential:√

LKω = dKω = dω + ωcK .

Remark We denote by the same letter differential form and the function on ΠTM corre-

sponding to this form.

Lemma A function (2) does not depend on t:

We use this lemma to reduce the calculation of initial integral Z(0) to the integral

Z(T ), which for big t can be expressed in terms of artificial HHamiltonian h. Lemma

implies that the initial integral can be calculated in terms of an artificial hamiltonian, and

this integral may be caluclated using the stationary phase method:∫
eiHdpdq = Z(0) = Z(∞) .

i.e. ∫
M

eiHdpdq =

∫
M

eiH Ω ∧ . . . ∧ Ω︸ ︷︷ ︸
n-times

=

∫
ΠTM

ei(H+Ω)dpdqdξ =

lim
T→∞

∫
ΠTM

ei(H+Ω+T
√
LKω)dpdqdξ = lim

T→∞

∫
ΠTM

ei(H+Ω+T(h+Ω̃))dpdqdξ , (3)

Now notice that for every T∫
ΠTM

ei(H+Ω+T(h+Ω̃))dpdqdξ =

∫
M

ei(H+Th)
n∑

k=0

T kΩ̃k ∧ Ωn−k

k!(n− k)!

and for every term
∫

ΠTM
ei(H+Ω+T(h+Ω̃))dpdqdξ =

∫
M
ei(H+Th)

∑n
k=0 Ω̃k ∧ Ωn−k the in-

tegral is proportional to tk−n, i.e. it is tending to zero if T → ∞ and k 6= n. Hence we

have that in equation (3)

Z(0) = Z(∞) = lim
T→∞

∫
ΠTM

ei(H+Ω+T(h+Ω̃))dpdqdξ = lim
T→∞

∫
M

ei(H+Th)T
nΩ̃n

n!
.

Notice that at the points {xi} where vector field K vanishes, artificial Hamiltonian

h = ωcK and its first derivatives vanish also:

h
∣∣
x=xi

= ωiK
i
∣∣
x=xi

= 0 ,
∂h

∂xk
∣∣
x=xi

= Ω̃kmK
m
∣∣
x=xi

= 0 . (4)

Hence calculating the last integral using the stationary phase method we come to

lim
T→∞

[
Tn

n!

∑
xi

eiH(xi)

∫
M

eiT(hpq(xi)(x
p−xp

i
)(xq−xq

i
)+...)Ω̃n

]
=
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n!

∑
xi

eiH(xi)

√
det Ω̃

detHessian of h

∣∣
xi
. (5)

Using equation (4) we see that for Hessian of h at stationary points

∂2h

∂xp∂xq
∣∣
xi

= Ω̃pr
∂Kr

∂xq
∣∣
xi
,

thus at stationary points xi

detHessian of h
∣∣
xi

= det Ω̃ · det dKi.

THis means that equation (5) implies the statement (1a).

Finally we prove the lemma.

Proof of the lemma

dZ(t)

dt
=

∫
ΠTM

it
√
LKωe

i(H+Ω+t
√
LKω)dpdqdξ ,

and due to the K invariance of the form ω it is equal to

dZ(t)

dt
=

∫
ΠTM

it
√
LK

(
ωei(H+Ω+t

√
LKω)

)
dpdqdξ ,

One can see that the last integral vanishes since
√
LKσ = dσ + σcK Lemma is proved.
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