Projective module of Mobius band global sections

Let C be an algebra of continuous functions on $[0,2 \pi]$. Consider the following two subalgebras of C

$$
\begin{equation*}
\Lambda=\{f: f \in C, f(0)=f(2 \pi)\} \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
P=\{f: f \in C, f(0)=-f(2 \pi)\} \tag{2}
\end{equation*}
$$

P can be considered as module over Λ This module is projective and it is not free. More precisely:

$$
\begin{equation*}
P \oplus P=\Lambda \oplus \Lambda \tag{3}
\end{equation*}
$$

Prove (3). Equation (3) means that P is projective (by definition). From (3) it follows that P is not free. Indeed suppose that it is free. Then from embedding (3) it follows that it has one generator f_{0}. From (2) it follows that f_{0} vanishes in some point x_{0}. Hence f_{0} generates submodule of P. Contradiction.

Before proving (3) we note that P is nothing but module of global continuous sections on Mobius band. Condition (3) corresponds to condition that Whithney sum of two Mobius bundles is trivial bundle:

$$
\begin{equation*}
M \oplus M=R^{2} \times S^{1} \tag{4}
\end{equation*}
$$

The proof follows from the following geometrical realization of (4). Consider in R^{4} two Mobius bands, bundles over circle:

$$
M_{1}:\left\{\begin{array}{l}
x=\cos \varphi \tag{5}\\
y=\sin \varphi \\
z=t \cos \frac{\varphi}{2} \\
u=t \sin \frac{\varphi}{2}
\end{array}, \quad M_{1}:\left\{\begin{array}{l}
x=\cos \varphi \\
y=\sin \varphi \\
z=-\tau \sin \frac{\varphi}{2}, \quad 0 \leq \varphi \leq 2 \pi,-\infty<t<\infty,-\infty<\tau<\infty \\
u=\tau \cos \frac{\varphi}{2}
\end{array}\right.\right.
$$

It is evident that this embedding leads to (4). Now from (5) it follows the proof of (3). The isomorphism (3) is given by the formula

$$
\rho\binom{t(\varphi)}{\tau(\varphi)}=\hat{T}_{\frac{\varphi}{2}}\binom{z(\varphi)}{u(\varphi)},
$$

where \hat{T} is operator of rotation:

$$
\hat{T}_{\varphi}=\binom{\cos \varphi, \sin \varphi}{-\sin \varphi, \cos \varphi}
$$

To isomorphism (3) corresponds the following projector in $R^{2} \times S^{1}$ on M:

$$
\Pi(z, u, \varphi)=\hat{T}_{\frac{\varphi}{2}} \circ\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right) \circ \hat{T}_{\frac{-\varphi}{2}}, \quad 1-\Pi(z, u, \varphi)=\hat{T}_{\frac{\varphi}{2}} \circ\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right) \circ \hat{T}_{\frac{-\varphi}{2}}
$$

It is funny to note that this projector has very simple appearance:

$$
\Pi=\frac{1}{2}\left(1+\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) \hat{T}_{\varphi}\right)
$$

