BEREZINIANS, EXTERIOR POWERS AND
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ABSTRACT. We study power expansions of the characteristic func-
tion of a linear operator A in a p|g-dimensional superspace V. We
show that traces of exterior powers of A satisfy universal recur-
rence relations of period ¢. ‘Underlying’ recurrence relations hold
in the Grothendieck ring of representations of GL(V'). They are ex-
pressed by vanishing of certain Hankel determinants of order ¢+ 1
in this ring, which generalizes the vanishing of sufficiently high
exterior powers of an ordinary vector space. In particular, this
allows to express the Berezinian of an operator as a ratio of two
polynomial invariants. We analyze the Cayley—Hamilton identity
in a superspace. Using the geometric meaning of the Berezinian
we also give a simple formulation of the analog of Cramer’s rule.
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1. INTRODUCTION

1.1. Main results. The Berezinian (superdeterminant) of a linear op-
erator, discovered by Felix Aleksandrovich Berezin, is a key notion of
supermathematics. In this paper we show that the Berezinian possesses
fundamental properties that were previously unknown. We give a new

invariant formula for the Berezinian as a rational function of traces.
1



2 H. M. KHUDAVERDIAN AND TH. TH. VORONOV

The crucial fact is the existence of universal recurrence relations satis-
fied by the exterior powers in the supercase.

Our starting point is the study of the characteristic function R4(z) =
Ber(1+ zA). The principal tool is the two power expansions of R4(z),
at zero and at infinity. We also study a similar rational function taking
values in the Grothendieck ring. The main results are as follows.

For an arbitrary even linear operator A in a p|g-dimensional super-
space V consider its action in the exterior powers A*¥(V) and ‘dual
exterior powers” X¥(V) = BerV @ AP7*V*. We establish universal
recurrence relations satisfied by the traces Tr A*A and Tr X*A (Theo-
rem Il and formulae (3.5), (3.6)) and similar relations satisfied by the
spaces A*(V) and ¥*(V) in a suitable Grothendieck ring (Theorems 4
and [5). In particular, we show that Tr ¥*A, which are rational func-
tions of A, can be obtained from the polynomial invariants Tr A*A by
a sort of “analytic continuation”. In this way we arrive at an invariant
explicit formula for the Berezinian Ber A as the ratio of two polynomial
invariants s

Ber_ A (1.1)
Ber™ A
where the new functions Bert A and Ber™ A are Hankel determinants
built of Tr A¥A (see equations (5.6), (5.7)). One can relate them with
the characters of polynomial representations corresponding to particu-
lar Young diagrams.

Besides this, we study two other related questions. We show how the
minimal annihilating polynomial of a linear operator on a superspace
can be obtained from its characteristic function R4(z) (an analog of the
Cayley—Hamilton theorem). However, we think that in the supercase
the rational characteristic function Ra(z) = Ber(l + zA) is a more
fundamental object than such a ‘characteristic polynomial’. We also
consider Cramer’s rule in the supercase and give for it a geometric
proof.

Ber A =

1.2. Discussion and background. Recall that the Berezinian is the
analog of the determinant for the supercase, which naturally appears
in integration theory involving odd variables. See [I, 3] and refer-
ences therein. The main feature of Ber A (see (2.2)) is that it is not
a polynomial in the matrix entries, but a fraction, whose numerator
and denominator do not have independent invariant meaning. Exactly
because Ber A is non-polynomial, integration theory in the supercase
is non-trivial. In particular, the straightforward generalization of the
exterior algebra by standard tensor tools transferred to the Zj-graded
situation is not sufficient, because it is not related with the Berezinian
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and hence with integration over supermanifolds (see, e.g., [19, 20]).
The simplest objects that one has to consider besides the naive exterior
powers A¥(V) are the ‘dual exterior powers’ X¥(V) := Ber V @ AP~FV*
introduced by Bernstein and Leites [5].

As we show in this paper, there are surprising “hidden relations”
between the naive exterior powers A*(V) and the Berezinian. This
is seen by the comparing of the two expansions of the characteris-
tic function R4(z): the expansion at zero gives the traces in A*(V),
while the expansion at infinity gives the traces in X*¥(V), including the
Berezinian. (There is an analogy with rational numbers: the ordinary
decimal expansion corresponds to an expansion near infinity, while a
p-adic expansion corresponds to an expansion at zero.)

Recall that for an ordinary vector space V' of dimension n all exte-
rior powers starting from A™™(V') vanish and the top exterior power
A™(V) is the same as the one-dimensional space det V. This gives rise
to natural ‘duality’ isomorphisms det V @ A"*(V*) = A¥(V). Com-
pared with this, in the Zs-graded case for a vector space V' of dimen-
sion p|q there is an infinite sequence of the exterior powers A*(V),
which does not terminate, and an infinite sequence of the ‘dual’ powers
Y¥(V) = Ber V @ AP~*V* stretching to the left, which are now essen-
tially different from A*(V). In this paper we establish relations for the
differences I'y, = A*V — (=I1)9%*"V in the Grothendieck ring:

I .. Ty
. e =0
I-‘k—i-q SR Flc—f—?q
for all k € Z. (Il is the parity shift functor.) When k£ > p — ¢ + 1 and
[, = A*V they replace the vanishing of the sufficiently high exterior
powers of ordinary vector spaces. Taken in the range where both A*V/
and Y*V are not zero, they give a proper replacement of the classical
‘duality isomorphisms’.

In the last fifteen years there was an active work on non-commu-
tative generalizations of determinants initiated by Gelfand and Re-
takh [10, 9] and related topics such as non-commutative Vieta formu-
lae [7, 6]. Methods of [10] were applied by Bergvelt and Rabin [4]
to obtain Cramer’s formula for the supercase. We show in this paper
how Cramer’s formula can be directly deduced from the geometrical
meaning of the Berezinian.

The topics of our paper are related with subtle questions concerning
rational and polynomial invariants of operators in superspaces consid-
ered in the pioneer works by Berezin (see references in [3]) and Kac [11].
(Some Berezin's texts of 1975-77 were incorporated into the English
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version of the posthumous book [3].) There is also a connection with
in an interesting sequel of papers by Kantor and Trishin [12, [13] [14]
aimed at clarifying the relations in the algebra of polynomial invari-
ants. Part of our identities for traces Tr A¥A were obtained in [13] [14]
by an analysis of Young diagrams.

The main new results of our paper are the recurrence relations link-
ing A¥V and YX*V, both for traces and in the Grothendieck ring, and
the explicit invariant formula for the Berezinian as a ratio of two poly-
nomial invariants (1.1).

1.3. Notation. We use standard language of superalgebra and super-
geometry. Whenever it could not cause confusion, we drop the prefix
‘super’, writing ‘spaces’, ‘traces’, etc., instead of ‘superspaces’,‘super-
traces’, respectively. The notation Tr is used for supertrace. Parity is
denoted by a tilde.

1.4. Acknowledgement. We wish to thank A. V. Borovik, G. Megy-
esi, P. N. Pyatov, J. Rabin, V. S. Retakh, and A. S. Sorin for discussions
at various times, and Th. Schmitt for sending us his paper [16]. With
great sadness we learned that Thomas Schmitt had since passed away.
Special thanks go to S. P. Novikov and the participants of his seminar
at the Steklov Institute in Moscow for many useful comments.

2. EXPANSIONS OF THE CHARACTERISTIC FUNCTION

Let A be an even linear operator acting in a finite-dimensional su-
perspace V' of dimension p|g. Introduce the characteristic function of
the operator A,

Ra(2) :=Ber(1+ zA), (2.1)
depending on a complex variable z. Here Ber denotes the Berezinian
(superdeterminant). Recall that

det (AOO — A01A1_11A10)

Ber A = 2.2
o det All ( )

Ao Ao
A An
the matrix entries are even and in the antidiagonal blocks Agq, Ao,
odd. The Berezinian is a multiplicative function of matrices, hence it
is well-defined on linear operators. In the sequel, if it cannot cause a
confusion, we do not distinguish sharply operators and matrices. Ma-
trix elements can be viewed either as belonging to a given Zs-graded
(super)commutative ring or as free generators. This corresponds to

for an even matrix A = (

). In the diagonal blocks Agg, A11
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considering an ‘individual” matrix or a ‘general’” matrix, in the classi-
cal language. Strictly speaking one should speak about free modules
over the ground ring instead of vector spaces, but we shall not pushthis
distinction.

Consider the expansion of the rational function R4(z) at zero:

Ra(z) = ch(A)zk =14+ciztc?+.... (2.3)
k=0

In the ordinary case when ¢ = 0, the function R4(z) is a polynomial
and the expansion (2.3) terminates. It is well known that for a linear
operator acting in a p-dimensional vector space V'

det(1+2zA) =1+ciz+... + ¢,

where ¢, (A) = Tr A¥A are the traces of the action of the operator A in
the exterior powers AV, In particular, ¢;(A) = Tr A4, ¢,(A) = det A.
For k > p, cg(A) = 0 as A¥V = 0. If the odd dimension of V is not
equal to zero, then Ber(1 + zA) is no longer a polynomial in z, but an
analog of the formula above still holds:

Proposition 1. There is an infinite power expansion

Ber(1+ zA) = ch(A)zk where cx(A) = Tr A% A. (2.4)
k=0

As far as we have managed to find out, this expansion was first ob-
tained by Th. Schmitt in [16]. It can be proved by considering diagonal
matrices. Here A*A stands for the action of A in the k-th exterior power
of the superspace V. Recall that the exterior algebra A(V) = @AV
is defined as T(V)/{(v @ u + (—1)""u ® u), v,u being elements of V.
Parity (the Zy-grading) in A(V) is naturally inherited from V. There is
no “top” power among A*V | and the Taylor expansion (2.4) is infinite.
We denote the supertrace of a supermatrix by the same symbol as the
trace of an ordinary matrix. Recall that for an even supermatrix

AOO A()l

TrA="Tr (AIO An

> = TI‘AOO —TI"AH .

The expansion of the characteristic function at infinity leads to traces
of the wedge products of the inverse matrix:

Ber(14-zA) = Z ¢ (A)z™%  where ¢* (A) = Ber A- Tr AP77TF A1,

k=q—p
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This follows from (2.4) and the equalities Ber(14+2A) = Ber A Ber(A™ '+
z) = 2P79Ber A Ber(1 + z7'A~!). The geometric meaning of the co-

efficients is as follows. Ber A - TrAP"*A~1 = TrY*A is the trace of
the representation of A in the space LV := Ber V ® AP~*V*. In the

ordinary case, it would be just a “dual” description of the same A*V;

in the super case these two spaces are essentially different. Hence we

arrive at the following proposition.

Proposition 2. There is an expansion at infinity
Ber(1+ zA) = Z (A2 where ¢ (A) = TrX97FA, (2.5)
k=q—p
which is a Taylor expansion when p < q and a Laurent expansion when
p>q. Here Tt X7 *A = Ber A - Tr AP~9TF AL,

Consider the coefficients c;(A) = Tr A*A. They can be expressed as
polynomials via s;(A) = Tr A* using the Liouville formula:

2

and ¢ (A) = Pi(so(A),...,sk(A)), where Py are the classical Newton’s
polynomials. For example, ¢y = so = 1,

2 3
Ber(1 + zA) = eT0+24) — oxp <z TrA— = Tr A%+ % Tr A% + .. ) :

1 1
c=s, @=; (s —5y), c3= 6 (53 — 35189 + 253),
etc., where ¢, = ¢x(A), s, = sg(A). There is a relation
1
Ck+1 = k——}—l (slck — S§9Ck—1 + ...+ (—1)k81€+1). (26)

These universal formulae linking c;(A) with s,(A) are true regardless
whether V' is a superspace or ordinary space.

For further considerations it is convenient to define the following
polynomials:

Hp(2) = 2F — 12 42" 2 — L+ (1), (2.7)

where k = 0,1, 2,.... We shall refer to them as to the Cayley—Hamilton
polynomials. (In the classical case of an n-dimensional space, =3, (z)
is the classical characteristic polynomial det(A — z) if ¢, = ¢x(A).) The
following identities are satisfied:
dcyyt (A)

dA

1 A _ k
Tl Tr(AH; (A)) = (—1)*crsa(A), (2.9)

= (1" (A) (2.8)
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Here Hi'(A) is the value of the polynomial (2.7) where ¢, = cx(A) at

df(A)
A

z = A. The derivative of a scalar function of a matrix argument

df (A d
is defined as the matrix that satisfies <% : B> = %f(A + tB)‘t:O

for an arbitrary matrix B, where the scalar product of matrices is
given by (A, B) = Tr(AB). Formulae (2.6), (2.8) can be deduced
by differentiating the characteristic function R4(z) = Ber(1 + Az).
Bearing in mind that d Ber A = Ber ATr(A"'dA), we can come to the
following identities:

a4 log Ra(z) = Tr (A(1+ Az)_l) Z(—l)kskH(A)zk )

dz par
d _ -1 _ = k k+1 Ak
T log Ra(2) = (1+ Az2) z_l;( 1)kFtt AR

By writing dlog Ra(z) as (R4(z)) 'dRa(z) and comparing the power
series we arrive at (2.6)), (2.8).

Unlike the polynomial functions ci(A) = TrAFA, the coefficients
ci(A) = TrX7* A = Ber A - Tr AP"7"% A1 are rational functions of the
matrix entries of A. In particular,

cr_(A)=Tr¥?A = Ber A.

P—aq
Our task will be to give an expression for ¢j(A) in terms of polynomial
invariants of A.

3. RECURRENCE RELATIONS FOR TRACES OF EXTERIOR POWERS

Recall that 3*A denotes the representation of A in the space XFV =
Ber V - AP7*V* thus Tr3X*¥A = Ber A - TrAP"*A~!. By definition,
TrY¥*A = 0 when k£ > p and TrA*FA = 0 when k& < 0. In the purely
even case ¢ = 0 the spaces A*V and X*V are canonically isomorphic,
TrAFA = TrX*A, ¢,(A) = det A, and ¢ (A) = 0 for k > p. We shall
find out now what replaces these facts for a general p|g-dimensional
superspace.

Let us analyze the expansions of the characteristic function R4(2).
One can see that R(z) is a fraction of the appearance

P(z)  1+aiz+a2®+...+ayz”
Q(2)  1+biz+bg22+ ... +by2t

where the numerator is a polynomial of degree p and the denominator
is a polynomial of degree ¢q. (Consider the diagonal matrices.) In
principle the degrees can be less than p and ¢, and the fraction may

RA(Z) =
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be reducible. However, for an operator “in a general position”, this
fraction is irreducible and the top coefficients a,, b, can be assumed
to be invertible. We shall use the notation R}(z) and R,(z) for the
numerator and denominator of the fraction R4(z).

JFrom the well-known connection between rational functions and
recurrent sequences (see Appendix), one can deduce the following facts:

(1) The coefficients cx(A) = Tr A*A of the expansion of Ra(z) at
zero (2.4) satisfy the recurrence relation of period ¢

bock+q + ...+ chk =0 (31)

for all k > p — q, where by = 1. In particular, if p < ¢, then (3.1) holds
for all ¢; including the zero values when p — ¢ < k < 0.

(2) The coefficients c}(A) = Tr X9 A of the expansion of Ra(z) at
infinity (2.5) satisfy the same recurrence relation:

bocg + -+ bgc_, =0 (3.2)

for all £ < 0. In particular, if p < ¢, then the relation (3.2) holds for
all ¢; including the zero values when p — g < k < 0.

(3) The sequences ¢ and ¢ can be combined together into a single
recurrent sequence by considering the differences

Vi = Ck —
which satisfy the recurrence relation
boVk+q + -+ by =0 (3.3)
for all values of k € Z (notice that ¢, = 0, 7, = —c; for £ < 0 and
i =0,y =cpfor k>p—q).
In particular, we have the following fundamental theorem.

Theorem 1. For an operator A acting in p|q-dimensional vector space
the differences

Y =cp —cp ="Tr AFA — Tryetk g (3.4)
form a recurrent sequence with period q, for all k € Z. O

In the classical case of ¢ = 0, all terms of the sequence (3.4)) are zero
and TrA*A = TrYX¥A or Tr A*A = det A- Tr A»* A~! for any operator
A. In this case the spaces A*V and ¥*V are canonically isomorphic.
Theorem 1] actually suggests a relation between spaces A*V and LF+aV
for arbitrary ¢ (see details in Section [7).

In (3.4) the terms ¢ = TrA*A and ¢ = TrX?*A are together
nonzero only in a finite range, for k = 0,...,p—qif p > q. Otherwise ~;
equals either ¢;(A) for k > p—q+1 or —cj(A) for £ < —1. The relation
(3.4) gives a tool to express terms of the two sequences c¢j = Tr X9++ A
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and ¢, = Tr A¥A via each other. What actually happens, for large k
holds v, = ¢, and the sequence can be continued to the left using (3.3))
to obtain cj(A), in particular ¢;_ (A) = Ber 4, as

Ber A =TrAP"1A —~, ,.

The “continuation to the left” of ¢ (A) using recurrence relations cor-
responds to the analytic continuation to the neighborhood of infinity
of the power series (2.4) representing the rational function R4(z) near
zero. We give examples of calculations in the next section.

For linear recurrence relations with constant coefficients such as (3.1))
or (3.3) it is possible to eliminate the coefficients to obtain the relation
in a closed form, using Hankel matrices. Recall that a Hankel matriz
has the entries ¢;; = ¢;1;. A recurrence relation for ¢, of period ¢
implies the vanishing of Hankel determinants of order ¢q + 1.

The statement of Theorem [1/ can be reformulated in the following
way: the identity

w(A) o rre(A)
=0 (3.5)
Yrrq(A) o Yrrzq(A)
holds for all £ € Z.
Corollary. The identity
Ck(A> c. Ck+q<A)
=0 (3.6)
Clk+q (A) e Ck+2q(A)

holds for all k > p —q.

Remark. A system of equations for b; similar to our (3.1) appeared
previously in [2], [11] without a link with recurrence relations. Rela-
tions for ¢, = Tr A*A, in particular the identity (3.6), were obtained
in [13] [14] from an analysis of Young diagrams. The main difference of
our work from [2], [11] and [13} [14] is in the simultaneous consideration
of ci(A) = Tr A*A and ¢} (A) = TrZFA.

4. BEREZINIAN AS A RATIONAL FUNCTION OF TRACES

As we established above, the coefficients ¢, (A) = Tr A*A for a linear
operator A in a p|g-dimensional vector space V satisfy relations (3.1)
making them a p|g-recurrent sequence (see Appendix for necessary no-
tions). Basing just on this fact we will give a recurrent procedure for
calculating the characteristic function Ra(z) = Ber(1l + zA) and the
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Berezinian of the operator A. Then we will present a closed formula
for Ber A using the relations (3.5) of Theorem (1.

Let ¢ = {c,}n>0 be a p|g-recurrent sequence such that ¢ = 1 .
Denote by R,4(2,c) its generating function:
I+aiz+...+apz?
L+biz 4 ...+ byzt
The fraction R,|4(z, c) is defined by the first p+ ¢ terms c1, o, ..., Cpiq
of the sequence c:

Rpj4(z,¢) = =l+caz+ez®+....

RP|Q<Z> C) = Rp|q(z’ Cly- - ’Cp-l—q) .

In particular, if A is a p|g x p|g matrix and {c;} is the sequence of
the traces of exterior powers of the matrix A (¢ = ¢, (A) = Tr AFA),
then R,4(2, c) coincides with the characteristic function of A:

Ralz) = Rujalz: 1 (A),e2(A), . cpglA)). (4.1)

The rational functions R,j4(z,¢) = Ryq(2,c1, ..., Cptq) have the fol-
lowing properties:

(1) If p > q, then the sequence ¢’ defined by ¢}, := C’“c% (assuming

that the coefficient ¢; is invertible) is a p — 1|g-recurrent sequence and

Ryjg(z,¢) =14 c12 Ry14(2, ), (4.2)

ie.,

C &
Rp‘q(z, C1y. .. ;Cp+q) =1+ 1z Rp—1|q <Z, 0—2, ce p_—l—q) . (43)
1

€1
(2) The sequence ¢ = {c!1} defined according to
1

I+l +dl24 . = ,
! 2 1412+ 022+ ...

for example
m_ m_ 2 I _ 3
¢ =—C1, ¢y = —Co+cCf, ¢35 =—C3+2c1c0—¢, ..., (4.4)

is a g|p-recurrent sequence, and

1
Rpjg (z,¢1,. .., Cpiq) = . (4.5)
P b Ryp(z, et )
(If Ais a p|gx p|g supermatrix and A is the parity reversed ¢|p x g|p
supermatrix, then c;(A%) = ¢, (A)L)
Using these properties one can express the rational function R,
corresponding to a p|g-recurrent sequence via the rational function Ry,

corresponding to a 0| 1-recurrent sequence, i.e., a geometric progression.
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The steps are as follows. If p < ¢, we apply (4.5) to get a p’|¢’-sequence
with p’ > ¢'. If p > ¢, we repeatedly apply (4.2) to decrease p.

Example 4.1. Let A be a p|1 x p|1 matrix. Then it follows from (4.2)
and (4.5) that

Ra(z) = Rypi (2,¢c1(A), c2(A), ... cpra(A)) =

&) Cp+1
1+012Rp71‘1 2y gy ] = =
C1 &1

C
L4z 4+ 12"+ 2P Rop (z, i—“) =

P
c, 2P
p—1_, _ "P"  _
I+ecz+-+c¢paz —l—l_cpﬂz—
Cp
c2 2P
-1 P
l+cz+-+cpad " + ——W—
Cp — Cpp1%

We can deduce from here formulae for the Berezinian. One can see
from (2.5) that for a p|q x p|¢g matrix A

Ber A = lim 277? Ra(z) (4.6)

Z—00

Let ¢ = {c,}, n > 0, be an arbitrary p|g-recurrent sequence such that
co = 1 and let R(z, ¢) be its generating function. Then mimicking (4.6)
we define the Berezinian of this sequence B,,(c) by the formula

By(c) = zlglolo 217P Ryje(2, €). (4.7)

If ¢, = ¢,(A) = TrA*A, then By,(c) = Ber A. From (4.2) and (4.5)
immediately follow relations for By,

c1Bp1j (€¢) ifp>qg+1
Bya(€) = Byyler, ... cprg) = 1+ 1By 1) () if p=gq
Bq|p1(cn) if p < q— 1
(4.8)

where the sequences ¢’ and ¢! are defined as above.

Using these relations one can calculate the Berezinians of matrices in
terms of traces. Note that from these recurrent relations follows that if
p > q then for a p|g-recurrent sequence ¢, its Berezinian By, depends
only on the coefficients c,_4,...,¢p, ..., Cpiq-
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Example 4.2. For a 1|1 x 1|1 matrix:

c c
Ber A = Byi(ei(A), 2(4)) = 1+ 1 Bop (2) =14+ —— Lo =
“oe((R))
(g
o G —d TrA>+(TrA)?

:1——:

1 =
* o o Tr A2 — (Tr A)?

)
C1

(we have applied Newton’s formulae to get the last expression).

Example 4.3. For a p|1 X p|1 matrix:

¢, ¢C
Ber A = Byj1 (¢p-1(A), ..., cp(A), ..., cp31(A)) = cp_1Bip <—p, p—“)

Cp—1 Cp—1

2
Cp—1Cp+1 — Cp

Cp+1
Example 4.4. For a 2|2 x 2|2 matrix:
Ber A = B2|2 (Cl(A), CQ(A), 03(14), C4(A)) =1+ ClBl‘Q (z—i, Z—j7 Z—j) =
C1
=1+ o NIT oIl oIy
Ban((5) - (2) - (2)°)
1+ “a -
Ban(=2, =g+ (2) -2 +288-(2))
‘i ‘i

1- —1-—

ePn(E-e-Br@) @)
322

The last expression can be further simplified, and in principle one
can proceed in this way to get the answer for arbitrary ¢, but at this
point it is easier to give a general formula. It will reveal an unexpected
link with classical algebraic notions.

5. BEREZINIAN AND RESULTANT

Let A be an even linear operator in a p|g-dimensional superspace.
Consider the relation (3.5) of Theorem 1 for £ = p — ¢. Recall that

Yp—q = Cp—gq = Cp_gp Ve = Cx for k 2 p—q+1and c; , = Ber A. Hence
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we have the following equalities:

Yo—q -+ Vp Cp—qg—BerA ... ¢
0=1|... ... ...|= N
T - Tptg Cp oo Cptg
Cp—q Cp Cp—q+2 Cp+1
—BerA| ..
& Cptq Cp+1 Cp+q

We arrive at the formula

Cp—q --- Cp
Cp ... C .
Ber A = P ALl -0 Glats : (5.1)
Cp—qt+2 -+ Cptl |Cp—g+2 - - Cpralg
Cp+1 Ce Cp-{—q

where we used a short notation for Hankel determinants with subscripts
denoting their orders. Here as always ¢, = 0 for £ < —1 and ¢y = 1.

Let us make an important observation. The Hankel determinants ap-
pearing in the numerator and denominator of formula (5.1) are nothing
but the traces of the representations in the subspaces of tensors corre-
sponding to certain Young diagrams. Indeed, denote by D = Dy, .y,
the Young diagram with s columns, such that the i-th column con-
tains A\; cells, Ay > Xy > ... > A,;. Let Vp be an invariant subspace
in the tensor power V¥V N = X\ 4+ --- + ), corresponding to the
Young diagram D = Dy, . ), and Ap be the representation of A in
Vp. Then the Schur—Weyl formula (see [21]) tells that the trace of Ap
is expressed via the traces c,(A) = Tr A¥A as the determinant of the
s X s matrix with the entries a;; = ¢y, 1j—i(A) = Tr AN A, This
formula remains valid in the supercase. Let D(r, s) be the rectangular
Young diagram with r rows and s columns. So D(r,s) = Dp, ..,
with \; = r for all . For D = D(r, s) the ‘Schur determinant’ Tr Ap is
equal to the Hankel determinant |¢,_s11 ... ¢, |s with the inverted order
of rows. In other words, Hankel determinants appearing in this paper
can be interpreted as characters of tensor representations correspond-
ing to rectangular Young diagrams.

The formulae obtained above deserve to be called a theorem.

Theorem 2. The Berezinian of a linear operator A in a p|q-dimensional
space is equal to the ratio of the traces of the representations in the in-
variant subspaces of tensors corresponding to the rectangular Young
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diagrams D(p,q+ 1) and D(p + 1,q)
| Tr AP79A ... Tr APA| (-1 o 1T Ap(pg+1)
| Tr Ap—a+2A ... Tr APT1A],

the sign coming from a change of order of the rows in the determinant.

U

Ber A = , (5.2

N Tr AD(p+17q)

Example 5.1. For a 2|3 x 2|3 matrix we have
0 1 C1 Co
1 C1 Cg C3
Ci Cp C3 (4

Cy C3 C4 Cy Tr AD(274)
Ber A = = — .
1 C2 C3 Tr AD(3,3)
Cy C3 (4
C3 C4 Cp

Remark. In the classical case ¢ = 0 when ¢ (A) are the elementary sym-
metric functions of the eigenvalues of A, Schur’s determinants corre-
sponding to Young diagrams, when written as functions of eigenvalues,
are special symmetric functions known as Schur functions (see [15]);
in the supercase the same Schur determinants when expressed via the
eigenvalues are no longer classical symmetric Schur functions but are
certain combinations of functions separately symmetric in the ‘bosonic’
and ‘fermionic’ eigenvalues.

What is the meaning — as polynomial invariants of A — of the deter-
minants appearing as the numerator and denominator in formula (5.2))7

Definition. Define the following functions of A:

Ber®™ A=A, [ [ = ) (5.3)
Ber A:=py...p, H(/\’ — lho)- (5.4)

We assume for a moment that A can be diagonalized and \;, p,
1=1,....,p,a =1,...,q stand for its eigenvalues. So
At...A,  BertA
... jtg Ber A’

We shall see that Ber® A make sense for all A. Denote the product
[L;o (A — o) by R or R(A). If R}(z) and Rj(z) stand for the nu-
merator and denominator of the characteristic function R4(z), then

it is easy to check that R is the classical Silvester’s resultant for the
polynomials R} (z) and R,(z), R = Res(R,(z), R}(2)).

Ber A =
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Proposition 3. The resultant of R} (z) and R,(z) is a polynomial in
the matriz entries of A and can be expressed by the following formula:

R = Res(R3(2), Ri(2) = [[(\ — #a) =

(_1)q(q_1)/2’cp—q+1 o Cplg="Tr AD(p,q)- (5.5)

Proof. The Hankel determinant in the r.h.s. of (5.5) vanishes when
Ai = [, for any pair ¢, . This follows from our recurrence relation (3.6)
applied a (p — 1|¢ — 1)-dimensional space. Hence |c,_qt1...¢plq is di-
visible by the resultant. As polynomials in \;, u, they have the same
degree pq, hence they must coincide up to a numerical factor, which
can be checked, for example, by setting all u, = 0. O

The statement of Proposition 3/ can be extracted from Berezin’s pa-
per [2].

Theorem 3. The functions Bert A and Ber™ A are polynomial invari-
ants of A. The following equalities hold:

Ber" A=\ ...\, H()‘l — o) = |Cpq - Cplgr (5.6)

Ber A= py...p, H()\z — ) = |Cp—gr2 - Cprilq, (5.7)
i.e., Ber™ A and Ber A give exactly the top and bottom of the expres-
sion for Ber A in formula (5.2)).

Proof. Indeed, Ay ...\, and p; ... p14 are equal, respectively, to the co-
efficients a, and b, in R} (z) and R;(z). In general, all the coefficients
a;, by can be obtained from ¢, k = 1,...,p + ¢, by solving simulta-
neous equations, with the determinant of the system being exactly R.
Therefore, all coefficients a;, by have the appearance of a polynomial in
¢ divided by the same denominator R = £[cp_qi1- .- Cplg = Tr Ap(pq)-
Formulae (5.6) and (5.7) follow by a direct application of Cramer’s
rule. (In particular, this yields another proof of the expression for the
Berezinian (5.2).) O

. From the proof follows that the polynomials R™(z) and R™(z) are
well-defined if the resultant R = |c,—g41 - . - ¢p|q 1S invertible.

Notice that the top and bottom of the standard definition of the
Berezinian given by fraction (2.2) are non-invariant and non-polynomial
functions of the matrix. The products A;...\, and gy ... p, are in-
variant, but non-polynomial. The functions Ber™ A are polynomial
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invariants, and they are the “minimally possible” modifications of the
products of eigenvalues with this property.

We have four remarkable Hankel (or Schur) determinants in this pa-
per: Tr Appq), Tr Appiig)y Tr Appg+1) and Tr Api1441); the first
being the resultant R, the last giving the identity (3.6) of the smallest
degree, and the two others arising in the formula for the Berezinian (5.2).

Remark. As a by-product of Proposition [3 we have the following for-
mula for the resultant of two polynomials:

Cp—gq+1 -+ Cp
Res(Q,P)=| ... ... ... (5.8)

Cp - Cpyg—1

where P(2) = ap2? + ...+ 1, Q(z) = b,z + ...+ 1, and the coeflicients
cr = cx(Q, P) are defined as follows:

(Q,P) = Y am(~1) (5.9)

i+j=k

where 7; are the complete symmetric functions of the roots of @). The
r.h.s. of (5.8) can be interpreted as the (super)trace & Tr Ap, ), where

A is an operator in a p|g-dimensional space associated with the pair of
P(z)

polynomials P, @) such that R4(z) =

6. CAYLEY-HAMILTON IDENTITY

In the previous section we obtained explicit formulae expressing the
Berezinian as a rational function of traces. The Berezinian is an ex-
ample of a rational invariant on supermatrices. Let us briefly review
general facts concerning such functions. This will be applied to the
analysis of an analog of the Cayley-Hamilton theorem.

In the classical case rational invariant functions F'(A) on p X p ma-
trices, F(A) = F(C7'AC), are in a 1 — 1 correspondence with rational
symmetric functions f(Ay,...,\,) of p variables, the eigenvalues of A.
The same is true for polynomial functions, due to the fundamental
theorem on symmetric functions and to the fact that the elementary
symmetric polynomials o () (or the power sums s (\)) are restrictions
of the polynomial functions of matrices Tr A*A (resp., Tr A¥).

This is not the case for p|q X p|¢ matrices, where there is a wide gap
between rational and polynomial invariants.

Every rational invariant function F'(A) of p|g X p|qg matrices, such
that F(A) = F(C~'AC) for every even invertible matrix C, defines a
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function f(A1,..., Ap, 11, - - ., p4g) of the eigenvalues of A, with \; corre-
sponding to even eigenvectors and p, to odd eigenvectors, symmetric
separately in the variables A;,..., A, and pq,..., 4, (Even and odd
eigenvectors cannot be permuted by a similarity transformation.)

Proposition 4. Every rational S, x Sg-invariant function of A, fta
can be expressed as a rational function of the polynomials ci,. .., cpiq
OT S1,. .+, Sprq, Where cx(A, ) = TrAPA; sp(A, p) = Tr AF.

Example 6.1. Consider the S; x Sj-invariant polynomial f(\, p) =
A+ . We have
N —p? sy -0

L e pat (6.1)

and it is a rational invariant function on 1|1 x 1|1 matrices.

Proposition 4 (Berezin [2],[3, p. 315], Kac [11]) immediately follows
from considerations of the previous section. Indeed, all S, x S;-invariant
functions of \;, y, are expressed via the elementary symmetric func-
tions of \; and pu,, i.e., the coefficients aj, by of the numerator and
denominator of the characteristic function R4(z), which are rational
functions of ci,...,cprq. Moreover, for S, x Sy-invariant polynomi-
als f(A, i) the corresponding rational invariant functions F(A) can be
written as fractions with the numerator being a polynomial invariant
function of A and the denominator being a power of the resultant R.

In Examplel6.1/we see that S, X S,-invariant polynomials of the eigen-
values do not necessarily extend to polynomial invariants of matrices.
The following non-trivial statement holds.

Proposition 5 (Berezin, Sergeev). For a S, X Sy-invariant polynomial
F(\, ) three conditions are equivalent:

(a) the equation
af  of
(mi " W)
18 satisfied;

(b) f(\ ) extends to a polynomial invariant on matrices;
(¢) f(A\ ) can be expressed as a polynomial of a finite number of

functions c(X, 1) (or sp(A, ).

(6.2)

Ni=pa

The implication (c)=-(b) is obvious, the implication (b)=-(a) can be
deduced from the invariance condition, the implication (a)=-(c) is the
key non-trivial part. (See [2], [3, p. 294], [17], [18].)

Example 6.2. The S; x Sj-invariant polynomial f(X, u) = u™ (X — )
satisfies (6.2) and is in fact equal to the polynomial (—1)Vcn1(A). Tt
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cannot be expressed as a polynomial in ¢p,...,c; if £ < N. On the
other hand, in full accordance with Proposition 4, we can express it
rationally via ci,c: uN(A — p) = (=1)Neng1(A) = e /e L

Example 6.2/ demonstrates that, differently from the classical case,
the algebra of polynomial invariants on supermatrices is not finitely
generated (no a priori number of ¢, is sufficient) and is not free (the
generators ¢k, k = 1,2, ... satisfy an infinite number of relations (3.6))).

Remark. It would be interesting to describe the class of rational S, xS~
invariant functions of \;, u, that obey equation (6.2). For example,
the characteristic function R4(z) and the Berezinian Ber A belong to
this class. Hence it contains products of polynomial invariants with
arbitrary powers of the Berezinian.

An important fact immediately follows from Proposition 5 and will
be useful for the analysis of the Cayley—Hamilton theorem. If f(A, p) is
an arbitrary S, x Sg-invariant polynomial, then the product Rf extends
to a polynomial invariant. Here R = [[; ,(\i — pa) is the resultant
considered above. This statement can be found in Berezin [3].

Now let us turn to the Cayley—Hamilton theorem. Let A be an oper-
ator on a p|g-dimensional space. Clearly A annihilates the polynomial
Pa(z) = [[(N — 2)(1a — 2), where A\;, p, stand for the eigenvalues
of A as above. For a generic operator A, every polynomial annihilat-
ing A is divisible by P4(z), exactly as in the classical case. Hence,
the polynomial P4(z) is a minimal polynomial for generic operators.
‘Generic’ here means that all the differences of the eigenvalues, \; — A;,
Ai — fa, Mo — [, are invertible. In particular, Rf(z) make sense and
R = Res(R}, R}) is invertible. This ‘naive’ characteristic polynomial
can be expressed as

Pa(z) = (—2)PTIRY (_l) R; (_1) _

z z
(ap — apo1z+ ...+ (=1)P2P) (by — bg_12 + ... + (—=1)729)  (6.3)
or
Pa(z) = R*Bert(A — 2)Ber (A — 2). (6.4)
where we used our notions Ber™ and Ber~. The coefficients of P4(z)
are rational (not polynomial) invariant functions of A. As it follows
from the fact mentioned above, the denominators of the coefficients
of P4(z) are equal to R and the product Ber™(A — z) Ber™ (A — z) is
divisible by R. Define the polynomial P4(z) by the equality

Pu(z) = RPa(2) (6.5)
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for generic operators. Its coefficients are polynomial invariants of A.
Getting rid of the denominator R makes P 4(2) an annihilating polyno-
mial for arbitrary operators, not necessarily generic. Notice that both
polynomials P4(z) and P4(z) are reducible over the ring of rational
invariants of A (and RP4(z), over the ring of polynomial invariants).

Example 6.3. Consider a linear operator A in a p|1-dimensional vector
space V. Using the formula for R4(z) from Example 4.1 we obtain that

Pa(z) = (—1)P*H! (Zp _ 8% TGl pe1 | 2% T G po2

Cp Cp
a8 ) ()
Cp Cp
and after simplification using the identity c,c, 2 — cf, +1 =0 we get
AR CrCp — 2CK—1Cpy1 + Cl—2oC
?A(Z> — Z(_l)p+1_k kCp k—1Cp+1 k—2Cp+2 Zp.l,_l_k; (66)
_ Cp
k=0
(here ¢, = R). Hence
R p+1
Palz) = z:(—l)p“_’c (ChCp — 2Ck_1Cp11 + ChooCpra) 2PTHF . (6.7)
k=0

One can come to the characteristic polynomial P 4(2) by differentiat-
ing the recurrence relations of Theorem [1. In this way the coefficients
of P4(z) will be explicitly expressed in terms of ¢x(A). Recall that in
the classical case when A is a linear operator on a p-dimensional vec-
tor space differentiating the identity ¢,.1(A) = 0 leads to the classical
Cayley-Hamilton theorem.

If A is an even linear operator in a p|g-dimensional vector space, then
the traces of its exterior powers obey relations (3.6) for all £ > p — q.
For k =p—q+ 1 we have

epgi1(A) o pra(4)
pi1(A) oo Cpagra(A)
This is a scalar equation valid for any even matrix in a p|g-dimensional

space. By differentiating it one obtains a matrix identity. Denote by
F,. the partial derivative of the Hankel determinant:

0

F,. = 8_0r lcp—gt1 - Cpralgrn, (6.9)

= lep—q1(A) - pra(A)lgr = 0. (6.8)
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and by FA its value when ¢, = ¢;(A). Define the polynomial P(z) in z
of degree p + ¢, with coefficients polynomially depending on c:

p+q

Plz)i= > (1) Frnd(2), (6.10)

r=p—q
where H,(2) are the ‘Cayley-Hamilton polynomials’ (2.7). We shall
write P(z) = Pa(2) if ¢ = cx(A).

Proposition 6. The polynomial PA(z) is an annihilating polynomial
for any operator A in a p|q-dimensional space, and it coincides with
Pa(z) = RPA(z) introduced above.

Proof. By differentiating (6.8)) and applying (2.8), we get the equality

ST R, (4) = 0 (6.11)

r=p—q+1
or P4(A) = 0. Now, for generic matrices, Pa(z) is a minimal polyno-
mial. Hence the annihilating polynomial P4(z) is divisible by P4(z)

and P4(z) = ¢- P4(z), where ¢ is a constant, as both polynomials are
of the same degree. Check that ¢ = R. Compare the top coefficient in

P4(z), which is (=1)P*9F,, 41, with that of P4(z), which is (—1)P*4,

8 Cp—g+1 - -- Cp+1 Cp—g+1 - -- Cp
Fp+q+1:ac == :R
g+l
pTq Cp+1 ceo Cpyg+1 Cp «oo Cpyg—1
Hence ¢ = R and P4(z) = Pa(z). O

Example 6.4. Let us make a calculation for p|1 x p|1 matrices. We
have the identity cpcpi2 —012) 11 = 0. By differentiating we get F), = ¢,2,
Fp+1 — —26p+1’ Fp+2 — Cp. Thus

Pa(z) = (~1P 1 (2) + (1P Fpn36(2) + (— 1P Fpyaa (2).

After substituting the expressions (2.7) for 3, (z) and collecting similar
terms we immediately arrive at the polynomial coinciding with (6.7).

Cayley—Hamilton type identities such as (6.11) were obtained from
relations for traces in [14] by means of some formal differential calculus.
As we see here, the annihilating polynomial obtained by differentiation
coincides with the naive polynomial P4(z) up to a factor R.
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7. RECURRENCE RELATIONS IN THE GROTHENDIECK RING

Recurrence relations for the traces of exterior powers of an operator A
in a p|¢-dimensional superspace hold good for any operator, their form
being independent of the operator. Such universal relations for traces
suggest the existence of underlying relations for the spaces themselves,
such as in the case of ¢ = 0 the equality A¥V = 0 when k& > p. We
shall deduce these relations now.

First of all, let us explain in which sense we may speak about recur-
rence relations for vector spaces. They hold in a suitable Grothendieck
ring. One can consider the Grothendieck ring of the category of all
finite-dimensional vector superspaces (i.e., Zy-graded vector spaces).
This ring is isomorphic to Z[II]/(IT> — 1), which is the ring where di-
mensions of superspaces take values. An equality in this ring means
just the equality of dimensions. Alternatively, one can fix a super-
space V and consider the Grothendieck ring of the category of all
finite-dimensional superspaces with an action of the supergroup GL(V),
i.e., the Grothendieck ring of the finite-dimensional representations of
GL(V). Equality of two “natural” vector spaces like spaces of ten-
sors over V' in this ring should mean the existence of an isomorphism
commuting with the action of GL(V').

As a starting point we use the following relation, which holds for any
superspace V:

Az(v) ' S*Z(V) =1, (71&)
which one might prefer to rewrite as
A(V)-A_.n(IIV) =1 (7.1b)

(for a proof it is sufficient to consider one-dimensional spaces). Here
A (V)= 2FAFV = 142V +22A2V +. .., etc. These are power series
in either of the Grothendieck rings described above. We do not distin-
guish in notation a vector space and its class in the Grothendieck ring.
Notice that the unity 1 is the class of the main field. Equalities (7.1)
hold in both senses. For example, expanding in z one gets V —V = 0,
SV + AV -V eV =0, etc.

Now, for a superspace V we have V = Vj & V; where V; is purely
even and V] is purely odd. We can rewrite this as V = U @ [IW where
both U, W are purely even vector spaces. It follows that A (V) =
AL (U)A,(ITW), therefore by (7.1b)

AL(U) 14 2U + 22A%U + ... + 2PAPU

Aa(W) — 1= 2IW + 22A2W — .+ (—2)[l9AdIV
(7.2)

A(V) =
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Note that though U and W with their exterior powers do not belong to
the ring of representations of GL(V'), they can be thought of as ideal
elements that can be adjoined to it, or, which is the same, as elements
of the representation ring of the block-diagonal subgroup GL(U) x
GL(W) C GL(V). We see that the power series A,(V') represents a
rational function with the numerator of degree p and denominator of
degree g. Denote it by Ry (z); it replaces the characteristic function
R4(z) = Ber(1+ zA) of our previous analysis. R4(z) can be viewed as
the character of Ry (z), for the ring of representations of GL(V).

We can apply to Ry (z) the same reasoning as to R4(z) above and
conclude that the exterior powers A*V for a p|g-dimensional vector
space V satisfy a recurrence relation of period g

boAFTIV 4+ b, APV =0 (7.3)

for all k > p — ¢+ 1. Here b; = (—I1)'A'W. Evidently, in the classical
case of ¢ = 0 this reduces to A¥V = 0 for k > p + 1. The relations for
cx(A) = Tr A* A then follow from (7.3).

As in Section 3, it is possible to eliminate the coefficients b; =
(—ID)A"W from the recurrence relations (7.3) and express them in
a closed form using Hankel determinants. We arrive at the following
theorem.

Theorem 4. For an arbitrary p|q-dimensional vector space V' the fol-
lowing Hankel determinants vanish:

APV ARV

.. |=0 (7.4)
ARty A2y

forallk>2p—q+1. O

Notice that the expression of the recurrence relation for A¥V in the
form of Hankel’s determinant has an advantage of not using the ele-
ments that are not in the ring of representations of GL(V/).

Example 7.1. Let dim V = p|1. Then (7.4) gives the relation
ARV ARy
ALY ARF2Y

i.e., APV -A*2Y = (AFF1V)2 (product means tensor product) for k > p.
This can be seen directly as follows. V = U & [IW where dim U = p,
dim W = 1. Hence A*V = @, ;-4 AU @ IIVSTW. Note that STW =
W9, Thus for k > p we have A*V = @?_ AU & (IIW)k~¢ therefore
ARV = AV @ TIW (a geometric progression). Obviously, by tensor
multiplying A¥V and A¥*2V we get the isomorphisms A¥V @ A¥2V =

‘ ~0, (7.5)
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APV @ AWV @ TIW = AFV @ ARV which is exactly the rela-
tion (7.5).

Let us obtain the expansion at infinity for the rational function
Ry (z). For this, we shall rearrange the numerator and denominator
in (7.2). Since AY(U) = detU @ AP7/(U*) and A/(W) = detW ®
A3 (W™), we have

Ru(z) = det U AP(U*) + zAP~Y(U*) + ...+ 2P _
VT det W A9(W) — 2ITA L (W) + ...+ (—z)edld

14+ 271U 4+ 27 2A20* + ... + 27PAPU*
Ber V (—I1)? 27~ _
eV A e S A = 5 (—) AT

Ber V (—I1)7 2774 A7) Ber V (—I1)7 2P~9 Ay (V*
er (—)Z m— er (—)Z %( )_
(—I)72""7 Ber V') 2FAR(V*) = (—I1)7 Y FHmisrh(v) =
k<0 k<0
(- > ).
k<p—q

Hence the rational function Ry (z) taking values in a Grothendieck ring
has the following expansions:

Ry(z) =) 2" A%(V) (at zero) (7.6)
— Z 2K (—10)1 2kre(v) (at infinity) (7.7)

In the same way as in Section 4 we arrive at the following theorem.

Theorem 5. The sequence in the Grothendieck ring
[y = A"V — (=I)ixktay (7.8)
for all k € Z is a recurrent sequence of period q. O

It very well fits with the equality A*V = X*V of the classical case of
q=0,ie., AFV = detV ® AP~*V*, which is a canonical isomorphism
compatible with the action of GL(V'). Theorem [5/implies the vanishing
of the Hankel determinants of order ¢ + 1 made of the elements I'y.

Example 7.2. Consider V where dimV = 1|1. Then A*(V) = 0 for
k<0,dimA°(V)=1,dimA*(V)=1+1I for k > 1. In the same way
dim (V) = 1 4+ 11 for k < =1, dimXZH(V) = 1, dim Z*4(V) = 0
for k > 0. Tt follows that dim A*V — (—II) dim X¥*'V = 1 + 11 for all
k € Z, which is a geometric progression with ratio II infinite in both
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directions. This verifies the statement of Theorem 5 for V at the level
of dimensions.

Example 7.3. (Continuation of Examples 7.1 and [7.2.) For a super-
space V such that dim V' = 1|1 we shall show explicitly an isomorphism
0: ARV @ APV — AMLYV @ APV commuting with the action of
GL(V). Let e € Vi, € € V| be a basis of V. Then E, =¢ A ... A and
k
F.=eAegA...Ncis a basis in A*V for k > 1. The desired isomor-
k—1
phism ¢ is as follows: p(Ey ® Eyo) = a Exi1 @ Epr1, p(Er ® Fiyo) =

: (—oz—i—kiﬂﬁ’) Ep1 ® Frpa +(=1)%3 (O""kiﬂﬁ)) Fi41® By, 9(Fr @

Ery2) = (—1)*3 <04 + =2 5) Ei1® Fi1+ 3 (Oé — g2 @) Fry1 ® By,
and o(Fy ® Fri2) = 0 Fry1 ® Fyyq, where «, § are arbitrary nonzero
parameters. In particular, notice that ¢ is not unique.

8. CRAMER’S RULE IN SUPERMATHEMATICS

In this section we formulate Cramer’s rule in supermathematics bas-
ing on the geometrical meaning of the Berezinian. Earlier such a gen-
eralization was obtained by Bergveldt and Rabin in [4], who used the
‘hard tools’ of the Gelfand—Retakh quasi-determinants theory [10} 9].
Our approach does not use anything but the main properties of the
Berezinian.

Let us first formulate the ordinary Cramer’s rule geometrically. Let
A be a linear operator in an n-dimensional vector space V. Consider a
linear equation

Alx)=vy.
Here @,y are vectors in V. For any volume form p on V' and arbitrary
vectors vy, ...,v,_1 we obviously have
p(A(x), A(vy),...,A(v,_1)) =det A- p(x,vy,..., 0, 1).
Considering this equation for different vectors vy, ..., v,_1 we can ex-
press  via y = A(x). Namely, let eq,...,e, be an arbitrary basis
in V. Take as p the coordinate volume form, i.e., p(ey,...,e,) = 1.
Then for the k-th coordinate of & we have z* = p(ey,...,x, ..., e,)
( stands at the k-th place), hence
Clll c. (Zln
F= o pldCe) Ae) =g |V o O
= e),...,y,...,Ale,)) = —— ,
det A ” ! Y det A |7 Y
a,' a,”
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where at the r.h.s. the coordinates of y replace the k-th row of the
matrix of the operator A. This is exactly Cramer’s rule. Here we use
row vectors rather than columns because it will be more convenient in
the supercase.

These considerations can be generalized to the supercase as follows.

Let V' be a p|g-dimensional space. Consider a volume form p. Recall
that in the supercase a volume form is defined as a function on bases
such that a change of basis is equivalent to the multiplying by the

Berezinian of the transition matrix. Let ey, ..., e, , where eq,... €,
are even vectors and epi1,...,€,4, are odd, be a basis in V. For
another basis vy, ..., v,44, the coordinate volume form associated with
el,..., €y, takes the value
’011 e Ulerq
Ber ..
1 p+q
Uptq -+ Uptq

Here v; = v/ e;. It follows that a volume form is linear in the first p
arguments and hence can be extended by linearity to arbitrary vectors
(the last ¢ arguments must remain linearly independent odd vectors!).
In particular, it is possible to insert an odd vector into one of the first
p “even” positions.

As above, for any volume form p on V' and vectors vy, ..., vp14—1 Of
the appropriate parity we have

p(A(v1),..., A(x),..., A(Vprq—1)) = Ber A- p(v1,...,z,..., Vpig1),
where the vector  stands at the one of the first p “even” places. A is
assumed to be an even invertible operator. This leads to the solution
of a linear equation

Alx) =1y (8.1)
in the superspace V' as follows. Take as p the coordinate volume form
associated with a basis ey, ..., e,.,. Then p(ey,...,x,..., €y,) = 2",
if Kk = 1,...,p. Hence the formula for the first p coordinates of x
corresponding to the even basis vectors is exactly the same as in the
classical case. For k=1,...,p

1 1
k __ —
= Bor A p(Aler),....,y,...., Aleyry)) = Bor A Ar(Ayy), (8.2
where
(111 c. (11p+q
Ap(A,y) =Ber | y* ... gyt | (8.3)

a,t ... a,”
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(y inserted at the k-th “even” position).
To obtain the last ¢ coordinates of @ corresponding to the odd basis

vectors €,41, . . ., €ptq, consider the space IIV with reversed parity. Let
p" be the coordinate volume form on IIV corresponding to the basis
epr1ll, ... e Il el ... e ll. Now we have

pH (ep+1H, ool e Il el epH) = z*

for k=p+1,...,p+ q. Introducing the notation

P (v1,. . V) = P (eIl vy I oI v, 1)
and
Ber* M := Ber M" (8.4)
for a matrix M, we can rewrite this as z* = piler,...,x, ..., epy),
k=p+1,....,p4+q. Hencefor k=p+1,...,p+¢q
1 1
k) * *
= A e LA =— A} (A 8.5
A, Alepi) = 5 A(AY), (85)
where
CLll Ce (llerq
Ai(Ayy) =Ber™ | ¥t ... oyt | (8.6)
an,t ... ap”

(y inserted at the k-th “odd” position). Formulae (8.2)—(8.6) give a
complete solution of the equation (8.1). Recall that the matrix of a
linear operator is defined by the formula A(e;) = a;/e;. Hence A(x) =
A(z'e;) = x'a? e; if A is even.

Remark. For even invertible matrices the function Ber”® is the same as
Ber™'. However, for matrices that are not invertible, Ber* can make
sense, taking a nonzero nilpotent value, while Ber and Ber™! are not
defined.

The “super” Cramer formulae (8.2)—(8.6) motivate the following def-
inition. Let D;;(A) denote the matrix obtained from an even matrix A
by replacing all elements in the i-th row by zeros except for the j-th
element replaced by 1. Notice that D;;(A) may be odd depending on
positions of the indices i, j.

Definition. The (i, j)-th cofactor or adjunct of an even p|q X p|q matrix
Ais
(adj A);; = {BerDij(A) wheni=1,...,p

8.7
Ber* D;;(A) wheni=p+1,....,p+q 57
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In the previous notation, (adjA);; = A;(A,e;) for i =1...,p and
(adj A);; = Af(A,e;) fori =p+1...,p+ q. Notice that this notion
is not symmetrical w.r.t. rows and columns. We have the following
formulae for the entries of the inverse matrix:

dji A);
% when j =1,...,p
_ er
(A7) = . (8.8)
(adj A)ji :
Bor A when j=p+1,...,p+q

Example 8.1. Consider a 1|1 x 1|1 even matrix

12
_ (o a”\ _ fa B
1= i) =(0)
. 10 1 .
Then by formulae (8.7) we get (adj A)1; = Ber v od) T @ (adj A)yp =

Ber (3 61l> = _ga (ad.] A)Ql - Ber* (iL g) = Ber (2 i) = —g’

1
(adj A)ge = Ber” (8 f) = Ber (; 0) = —. Thus for the transpose

adjunct matrix we have:

Q

and

_fa B Cll —a% - %—g—” 0 _ (Ber A 0
=) )00 )= (0 )

as expected.

Remark. A different approach to Cramer’s rule was suggested in [12].
Instead of solutions of A(x) = y, they introduced ‘A-solutions’ satis-
fying A(x) = X -y, with A being one of certain polynomial ‘relative
determinants’ of A defined in [12]. Such approach allows to avoid di-
vision and use only polynomial expressions.

APPENDIX A. ELEMENTARY PROPERTIES OF RECURRENT
SEQUENCES

Here we summarize the relations between recurrent sequences and
rational functions used in the main text. Let
ap+ a1z + ...+ ayz?
R(z) = -

= Al
b0+blz+...—|—qu‘1 ( )
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be a rational function. We assume that the numerator has degree p
and the denominator degree q. The coefficients can be in an arbitrary
commutative ring with unit. Consider formal power expansions of the

fraction (A.1) at zero and at infinity. Let R(z) = > ;2" near zero
k>0
and R(z) = Y. c;2* near infinity. It is convenient to assume that the
k<p—q
coefficients such as ay, by, ¢, etc., are defined for all values of k € Z but

may be zero for some k. Hence we have the equalities a,, = 23:0 biCr—;
and a, = Y ;_bici_, for all n, where ¢, = 0 for £ < 0 and ¢} = 0 for
k > p — q. Taking into account that a, = 0 for n > p or n < 0, we
obtain that

q
Z bicmq,i =0 (A2)
i=0

for all £ > p — ¢, and that

q
> bicg ;=0 (A.3)
=0

for all £ < 0. For arbitrary k € Z, we obtain that
q
=0

where 7, = ¢, — ¢}, (by taking the difference of a,, = ;'I:() bic;_, and
Ay = zq:O bicn_i).

We say that a sequence {c}rez is right or positive if ¢, = 0 for
k < 0. We call a right sequence {c,} a plg-recurrent sequence or,
shortly, a p|g-sequence, if the elements ¢ satisfy a recurrence relation
of the form (A.2) for all & > p — q. The coefficients ¢, of the power
expansion at zero of the fraction (A.1) make a p|g-recurrent sequence.
(The coefficients of the expansion of (A.1) at infinity also make a p|g-
sequence after the re-indexing that makes them a right sequence, ¢}, :=
¢y o) The fraction (A.1) is classically referred to as the generating
function or the symbol of the recurrent sequence {c}.

For a sequence {cg}r>o to be a p|g-sequence means, if p > ¢, that it
satisfies a recurrence relation of period ¢ except for the p — ¢+ 1 initial
terms ¢y, ..., Ccp—q, and if p < g, that it satisfies a recurrence relation
of period ¢ for all terms ¢, £ > 0, and can be extended to the left by
extra ¢ — p — 1 zero terms so that the relation still holds.

Hence we have the following picture for the coefficients of the expan-
sions of the rational function (A.1). The coefficients of the expansions
at zero and at infinity satisfy the same recurrence relations of period q.
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If p < g, the coefficients ¢, and ¢} can be nonzero only in the disjoint
ranges k > 0 and k£ < p— q, respectively. The recurrence relation holds
for all terms. If p > ¢ (that is, when the fraction is improper), the
coefficients ¢, and ¢} can be simultaneously nonzero in the finite range
0 < k < p—q. Separate recurrence relations break down in this range.
However, in all cases the sequence 7, = ¢ — ¢, infinite in both direc-
tions and which coincides with either ¢ or —cj ‘almost everywhere’,
satisfies the recurrence relation for all k € Z.

If a sequence {cx} is given, one can consider the associated infinite
Hankel matrix with the entries a;; = ¢;4;. Let {¢;} satisty a recurrence
relation of the form (A.2) for all & > N. Assume that by is invertible.
Then the infinite vector eytq = {¢q+x }k>n 1s a linear combination of
the vectors ey = {cx}i>n,y - -+ ENtg—1 = {Cqrk—1}e>n. In particular it
implies the vanishing of the Hankel minors of order ¢ + 1:

Cp c. Cl+q

Cktq -+ Ck42q

where k£ > N. It is a classical fact noticed by Kronecker that a power
series represents a rational function if and only if the corresponding
infinite Hankel matrix has finite rank. There is a vast literature devoted
to theoretical and practical aspects of recurrent sequences and Hankel
matrices. We presented the material in the form convenient for our
purposes. Note that the classical expositions, see [8], make use of the
expansion of a rational function at one point (infinity), while our main
results are based on comparing two such expansions, at zero and at
infinity.
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