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In 1939, I. M. Gelfand and A. N. Kolmogorov showed [1] that for a compact Haus-
dorff topological space X, homomorphisms of the algebra of continuous functions
C(X) to the field of real numbers are in a one-to-one correspondence with points of
X. The algebra C(X) is considered without a topology; this result is less known than
its analog that gave birth to the theory of normed rings. The Gelfand–Kolmogorov
theorem may be viewed as a description of the image of the canonical embedding of
X into the infinite-dimensional linear space V = A∗, where A = C(X), by a sys-
tem of quadratic equations: f(1) = 1, f(a)2 − f(a2) = 0, indexed by elements of A.
This aspect was recently emphasized by V. M. Buchstaber and E. G. Rees (see [2]
and references therein). They showed that there is a natural embedding into V not
only for X, but also for all its symmetric powers Symn X. To this end, algebra ho-
momorphisms should be replaced by the so-called n-homomorphisms, and quadratic
equations describing the image, by certain algebraic equations of higher degree. This
theory was motivated by their earlier study of an analogue of Hopf algebra for multi-
valued groups. The other source is Frobenius’s higher group characters.

In the present note we give a generalization of Buchstaber–Rees’s theory. For a
space X we construct a functorial object Symp|q X, p, q > 0, and for a commutative
algebra with unit A, a corresponding algebra Sp|qA. We call them ‘generalized sym-
metric powers’. There is a canonical map from Symp|q X to V = A∗. To describe
its image we introduce certain algebraic equations, extending thus the statements of
Gelfand–Kolmogorov and Buchstaber–Rees. This corresponds to a description of al-
gebra homomorphisms Sp|qA → B in terms of the new notion of a p|q-homomorphism.
Our work was motivated by the results on linear operators on superspaces [3], from
where comes our main tool, the ‘characteristic function’ of a linear map of algebras.
The methods that we propose yield, in particular, a simple direct proof of the main
theorem of Buchstaber and Rees.

Let A and B be commutative associative algebras with unit. Consider an arbi-
trary linear map f : A → B. Its characteristic function is defined to be R(f , a, z) =
ef ln(1+az), where a ∈ A and z is a formal parameter. Example: if f is an algebra
homomorphism, then R(f , a, z) = 1 + f(a)z. Algebraic properties of the map f are
reflected in the properties of R(f , a, z) as a function of the variable z. The case when
R(f , a, z) is a polynomial of degree n corresponds to the Buchstaber–Rees theory.

We call a linear map f , a p|q-homomorphism if R(f , a, z) is a rational function that
can be represented by the ratio of polynomials of degrees p and q. Properties of p|q-
homomorphisms follow from general properties of R(f , a, z). For an arbitrary map f ,
R(f , a, z) has the power expansion at zero R(f , a, z) = 1 + ψ1(f , a)z + ψ2(f , a)z2 + . . .
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where ψk(f , a) = Pk(s1, . . . , sk). Here sk = sk(f , a) = f(ak), and Pk are the classical
Newton polynomials giving expression of elementary symmetric functions via sums
of powers. The exponential property R(f + g, a, z) = R(f , a, z)R(g, a, z) holds. Let
R(f , a, z) be defined as a function of z regarded, say, as a complex variable. Consider
its behaviour at infinity. By a formal transformation we can obtain R(f , a, z) =

zf(1)ef ln aef ln(1+a−1z−1), cf. [3]. In particular, for a = 1 we have R(f , 1, z) = (1 + z)f(1).
Assume that R(f , a, z) has no essential singularity. Then f(1) = χ ∈ Z and the
integer χ is the order of the pole at infinity. We arrive at the expansion near infinity
R(f , a, z) =

∑
k6χ ψ∗k(f , a)zk where ψ∗k(f , a) := ef ln aψχ−k(f , a

−1). Denote the leading

term of the expansion ef ln a =: ber(f , a) and call it, the f-Berezinian of a ∈ A. Note
that a 7→ ber(f , a) is, in general, a partially defined map A → B. One can immediately
see that f -Berezinian is multiplicative: ber(f , a1a2) = ber(f , a1) ber(f , a2). In the
rational case, ber(f , a) is the ratio of polynomials in the elements f(ak).

Here are the examples to be kept in mind. If f(a) = tr ρ(a) for a matrix represen-
tation ρ : A → Mat(n, B), then R(f , a, z) = det(1 + ρ(a)z) and ber(f , a) = det ρ(a).
For a representation by p|q × p|q matrices, we obtain R(f , a, z) = Ber(1 + ρ(a)z). In
this case, f(a) = str ρ(a) and ber(f , a) = Ber ρ(a) is the ordinary Berezinian.

Multilinear symmetric functions Φk(f , a1, . . . , ak) of elements ai ∈ A such that
Φk(f , a, . . . , a) = k!ψk(f , a), satisfy the Frobenius recursion relations (see [2]). Note
that for the case of a matrix representation, sk(f , a) = tr ρ(a)k, ψk(f , a) = tr Λkρ(a),
and Φk(f , a1, . . . , ak) = k! tr (ρ(a1) ∧ . . . ∧ ρ(ak)).

Let us return to the case when R(f , a, z) is polynomial in z. Buchstaber and Rees’s
theory can be recovered as follows. The degree of R(f , a, z) in z equals f(1) = χ,
hence χ = n > 0. Therefore ψk(f , a) = 0 for all k > n + 1 and all a ∈ A. This
is equivalent to the equations: f(1) = n ∈ N and Φn+1(f , a1, . . . , an+1) = 0 for all
ai, which is precisely the definition of an n-homomorphism according to Buchstaber
and Rees [2]. In this case ber(f , a) = ψn(f , a) (in particular, it is a polynomial
function of a), therefore the function ψn(f , a) turns out to be multiplicative in a; hence
its polarization Φn(f , a1, . . . , an)/n! is an algebra homomorphism SnA → B. This
gives a one-to-one correspondence between n-homomorphisms A → B and algebra
homomorphisms SnA → B.

We define the p|q-th symmetric power Symp|q X of a topological space X as the
identification space of the Cartesian product Xp+q with respect to the action of the
group Sp × Sq and the relations

(x1, . . . , xp−1, y, xp+1 . . . , xp+q−1, y) ∼ (x1, . . . , xp−1, z, xp+1 . . . , xp+q−1, z) .

An algebraic analog of the space Symp|q X, for a commutative associative algebra with
unit A, we define to be the subalgebra Sp|qA := µ−1 (Sp−1A⊗ Sq−1A) of the algebra
SpA⊗ SqA where µ : SpA⊗ SqA → Sp−1A⊗ Sq−1A⊗ A is the multiplication of the
last arguments. Example: for A = C[x], the algebra Sp|qA will be the algebra of all
polynomial invariants of p|q by p|q matrices (this is a non-trivial statement). There is
a relation between algebra homomorphisms Sp|qA → B and p|q-homomorphisms A →
B. To each homomorphism Sp|qA → B canonically corresponds a p|q-homomorphism
A → B. (We have managed to establish the inverse in special cases.) Example.

An element [x1, . . . , xp+q] ∈ Symp|q X defines a p|q-homomorphism on A = C(X):
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a 7→ a(x1) + . . . + a(xp)− . . .− a(xp+q). In general, an integral linear combination of
algebra homomorphisms of the form

∑
nαfα where nα ∈ Z is a p|q-homomorphism

with p =
∑

nα>0

nα, q = − ∑
nα<0

nα, and χ =
∑

nα.

The condition that f : A → B is a p|q-homomorphism can be expressed by equa-
tions: f(1) = p − q and |ψk(f , a), . . . , ψk+q(f , a)|q+1 = 0 for k > p − q + 1, where
|ψk(f , a), . . . , ψk+q(f , a)|q+1 is a Hankel determinant, cf. [3]. This system of polyno-
mial equations for ‘coordinates’ of the linear map f should, in particular, describe the
image of Symp|q X in C(X)∗.

Our results may have an application to topological ramified coverings (cf. [4]). We
thank V. M. Buchstaber for a fruitful discussion.
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