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Abstract

We consider odd Laplace operators acting on densities of various weights on
an odd Poisson (= Schouten) manifold M . We prove that the case of densities
of weight 1/2 (half-densities) is distinguished by the existence of a unique odd
Laplace operator depending only on a point of an “orbit space” of volume
forms. This includes earlier results for the odd symplectic case, where there
is a canonical odd Laplacian on half-densities. The space of volume forms on
M is partitioned into orbits by the action of a natural groupoid whose arrows
correspond to the solutions of the quantum Batalin–Vilkovisky equations. We
compare this situation with that of Riemannian and even Poisson manifolds.
In particular, we show that the square of an odd Laplace operator is a Poisson
vector field defining an analog of Weinstein’s “modular class”.
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Introduction

In this paper we study odd Laplace operators acting on densities of various
weights on odd Poisson manifolds. This happens to be a very rich geometrical
topic, surprisingly linking even and odd Poisson geometry with Riemannian
geometry. The main result is the construction of odd Laplacians acting on
half-densities (= densities of weight 1/2) in the context of Poisson geometry
and a detailed study of their properties.

Earlier in [6, 7] it was shown that a canonical odd Laplacian on half-
densities exists on odd symplectic manifolds. In the current paper we consider
Laplacians on half-densities on arbitrary odd Poisson manifolds. This change
of viewpoint has led us to a completely new picture.

Namely, rather than study a single Laplace operator, we consider all oper-
ators depending on arbitrary volume elements on the supermanifold. Laplace
operators acting on half-densities are characterized by a commutator identity
of the form [∆, f ] = Lf , where Lf is the Lie derivative along the Hamiltonian
vector field with Hamiltonian f . Starting from this relation, we arrive at a
natural groupoid whose orbits parametrize the set of odd Laplace operators:
half-densities are distinguished because for them the Laplacian depends not
on a volume element but only on its orbit. This groupoid, which we call the
“master groupoid”, appears also in other instances. It seems that it plays a
very important role in odd Poisson geometry. Another interesting new object
is a remarkable analog of Weinstein’s “modular class”, which comes from the
square of odd Laplace operators.

Besides naturally expected links with even Poisson geometry, we have
found far-reaching surprising links with Riemannian geometry. We found
it worthy to point out at a simple analogy between the Batalin–Vilkovisky
formalism in quantum field theory and the usual quantum mechanics, in par-
ticular, between the exponential of the “quantum master action” and the
half-density wave function.

Remark. The Batalin–Vilkovisky formalism appeared around 1981 as a
very general method of quantization of systems with gauge freedom [1, 2, 3].
The central role in this method is played by a second order odd differen-
tial operator somewhat similar to the divergence of multivector fields. From
the viewpoint of supermanifolds it is better to interpret it as an analog of
a Laplacian. Geometry of the Batalin–Vilkovisky (BV) formalism has been
investigated in many works, in particular [9] and [4, 5]. Algebraic structures
related with the BV formalism gradually became very fashionable. Invariant
geometric constructions for the BV operator have been studied in [4], [9] in
the symplectic case and recently in [8] in the Poisson case. In these works the
operators considered act on functions. A new approach based on half-densities

2



was suggested in [6, 7] and is developed here.

1 Some facts from odd Poisson geometry

1.1 Poisson brackets and Hamiltonian vector fields

Let us briefly recall some well known formulae, for reference purposes1. Given
a supermanifold M , an arbitrary odd Poisson (or Schouten) structure on M
is specified by an odd function on T ∗M quadratic in momenta:

S =
1
2

Sab(x)pbpa (1.1)

(“odd quadratic Hamiltonian”). Explicitly:

{f, g}S := (f, (S, g)) = ((f, S), g) = −(−1)f̃(ã+1)Sab ∂f

∂xb

∂g

∂xa
, (1.2)

where we denote by ( , ) the canonical even Poisson bracket on T ∗M . Here
{f, g}S stands for the odd bracket on M specified by S. The Jacobi identity
for {f, g}S is equivalent to the vanishing of the canonical Poisson bracket
(S, S) = 0 on T ∗M .

In the sequel we leave S fixed and drop the reference to S from the notation
for the bracket. The Hamiltonian vector field on M corresponding to a function
f is defined as

Xf := (−1)f̃+1{f, } = (−1)ãf̃Sab ∂f

∂xb

∂

∂xa
. (1.3)

It has parity opposite to that of f . Notice that

X{f,g} = [Xf , Xg] (1.4)

and
Xfg = (−1)f̃fXg + (−1)g̃+f̃ g̃gXf (1.5)

(or Xfg = Xf ◦ g + (−1)f̃fXg + (−1)f̃{f, g}, where in the r.h.s. there is the
multiplication by g followed by the action of Xf ).

We denote by
Lf := LXf

(1.6)

the Lie derivative of geometric objects on M (e.g., tensor fields of a given
type) w.r.t. the vector field Xf . The Lie derivative along Xf makes the space
of particular geometric objects on M into a “Poisson module” over the odd
Poisson algebra C∞(M), meaning that

[Lf , g] = (−1)f̃+1{f, g} = Xfg (1.7)
[Lf ,Lg] = L{f,g}. (1.8)

1A collection of useful formulae can be found in the introductory section of [10]
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1.2 Odd Laplacian on functions

Select a volume form ρ = ρDx on an odd Poisson manifold M . We assume
that ρ is non-degenerate, i.e., that it constitutes a basis element of the space of
volume forms. (Here and in the sequel we skip the question of global existence
of such a form and the questions of orientation. It is not difficult to supplement
the corresponding details.)

Definition 1.1. The Laplace operator acting on functions is defined by the
formula

∆ρ f := “div grad f” = divρ Xf =
Lfρ

ρ
. (1.9)

It depends on the choice of ρ. The operator ∆ρ is odd.

Formula (1.9) was introduced for the first time in 1989 in [4] (formally, only
for the symplectic case) as an invariant construction for the “∆-operator” of
Batalin and Vilkovisky [1, 3]2. See also [5],[9]. A detailed analysis of this
construction for the Poisson case, in a very general algebraic setup, is given
in [8].

From formula (1.3) for Hamiltonian vector fields and the formula for the
divergence

divρ X =
1
ρ

(−1)ã(X̃+1) ∂(ρXa)
∂xa

one immediately gets a simple “Laplace–Beltrami type” expression for ∆ρ:

∆ρ f =
1
ρ

∂

∂xa

(
ρSab ∂f

∂xb

)
= Sab ∂2f

∂xb∂xa
+ (lower order terms). (1.10)

The operator −~22 ∆ρ is a “quantization” of the function S on T ∗M . Notice
that there is a coordinate-free expression similar to (1.2)

∆ρ f · ϕρ = ((S, f), ϕρ) (1.11)

via the canonical even Poisson brackets on T ∗M , where ϕρ(x, p) = ρ(x)δ(p) is
the generalized function on T ∗M corresponding to the volume form ρ on M .
Related to it is another useful coordinate-free representation of ∆ρ given by
an integral identity ∫

M
f(∆ρ g) ρ =

∫

M
{f, g}ρ, (1.12)

2As we see it now, the physical meaning requires rather an operator acting on half-
densities, i.e., densities of weight 1/2. Such operators are the main topic of this paper —
though we start off from operators on functions.
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analogous to the familiar “Green’s first integral formula” in Riemannian ge-
ometry (without boundary terms). It is valid if f or g is compactly supported
inside M . It follows that ∆ρ is formally self-adjoint with respect to ρ.

From the definition of ∆ρ, together with the formula (1.4), one easily
obtains the derivation property with respect to the bracket:

∆ρ{f, g} = {∆ρ f, g}+ (−1)f̃+1{f,∆ρ g}. (1.13)

Using the definition of Xf , this can be rewritten in the commutator form

[∆ρ, Xf ] = −X∆ρ f . (1.14)

As for the product of functions, the odd Laplace operator ∆ρ satisfies

∆ρ(fg) = (∆ρ f)g + (−1)f̃f(∆ρ g) + (−1)f̃+12{f, g} (1.15)

(directly analogous to another “Green’s identity”). It follows from formula (1.5)
and the equality divρ(fX) = f divρ X + (−1)X̃f̃Xf . Recalling the definition
of Xf , we rewrite (1.15) in the commutator form

[∆ρ, f ] = 2Xf + ∆ρf. (1.16)

From here purely algebraically follow the identities

∆ρ(fn) = nfn−1 ∆ρf − n(n− 1)fn−2{f, f}, (1.17)

∆ρ ekf = k
(
∆ρ f − k {f, f}

)
ekf . (1.18)

The definition of the Laplace operator ∆ρ depends on the choice of a basis
volume form ρ. If we change ρ, the odd Laplacian on functions transforms as

∆ρ′ = ∆ρ +Xσ = ∆ρ−{σ, }, (1.19)

where ρ′ = eσρ.

1.3 Symplectic case: a canonical odd Laplacian on half-densities

The case of a nondegenerate bracket, i.e., of an odd symplectic manifold M , is
distinguished by the existence of local Darboux coordinates, i.e., local coordi-
nates xi, θi (xi even, θi odd) such that the odd bracket has the form {θi, x

j} =
−{xj , θi} = δj

i and {θi, θj} = {xi, xj} = 0. Suppose ρ = ρ(x, θ) D(x, θ) in
such coordinates. Then, clearly,

∆ρ = ∆0 + Xln ρ = ∆0 − {ln ρ, }, (1.20)
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where

∆0 = 2
∂2

∂xi∂θi
(1.21)

is a “coordinate ∆-operator”. Each term in (1.20) is not invariant under
changes of coordinates, only the sum being invariant. It is tempting, however,
to consider ∆0 independently. It turns out that though it does not make
sense as an operator acting on functions, an analog of ∆0 is well-defined as a
canonical operator on densities of weight 1/2 (half-densities).

Definition 1.2 (see [6, 7]). Let s be a half-density. The canonical odd Laplace
operator ∆ acts on s by the formula

∆s :=
(

2
∂2s

∂xi∂θi

)
D(x, θ)1/2, (1.22)

where s = s(x, θ) D(x, θ)1/2 in a local Darboux chart.

The operator (1.22) was introduced in [6]. It was proved in [6, 7] that the
definition of ∆ on half-densities does not depend on the choice of a Darboux
chart, thus yielding a well-defined operator, canonical in the sense that it
depends only on the odd symplectic structure and does not require any extra
data like a volume form (in contrast to the operator ∆ρ on functions). The
role of half-densities is crucial. One can show that an operator defined in
Darboux coordinates by a formula similar to (1.22) on arbitrary densities of
weight w will be invariant only for w = 1/2.

The existence of ∆ on half-densities is essentially equivalent to the following
statement, which can be traced back to Batalin and Vilkovisky [3]:

Lemma 1.1 (“Batalin–Vilkovisky Lemma”).

∆0

(
Ber

∂x′

∂x

)1/2

= 0 (1.23)

for the change of coordinates between two Darboux charts. Here x = (xi, θi),
x′ = (xi′ , θi′), and ∆0 corresponds to the “old” coordinate system.

We do not give a proof here. Proofs and a detailed analysis of the properties
of the operator ∆ on half-densities can be found in [7]. Further analysis will
be given in subsection 2.3.

The exceptional role of the exponent 1/2 in equation (1.23) cannot be de-
tected on the infinitesimal level. It is related with the possibility to “integrate”
infinitesimal canonical transformations to finite ones, due to a deep groupoid
property of the Batalin–Vilkovisky equations we discuss in Section 2.
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The following important formulae were obtained in the calculus of half-
densities on an odd symplectic manifold [7]:

∆(fs) = (∆s2f)s + (−1)f̃f(∆s) (1.24)

for an arbitrary function f and a non-degenerate half-density s (at the r.h.s.
stands the Laplacian on functions with respect to the volume form s2), and

∆2
ρf =

{
ρ−1/2 ∆(ρ1/2), f

}
, (1.25)

where on the l.h.s. stands the Laplace operator on functions with respect to
the volume form ρ and at the r.h.s. stands the canonical operator on half-
densities. Equation (1.25) in particular implies that the square of the odd
Laplacian ∆ρ is a Hamiltonian vector field. Equation (1.24) can be restated
as follows:

∆(fs) = 2Lf s + (−1)f̃f ∆s, (1.26)

now valid for arbitrary half-densities (indeed, for an even half-density s, (∆s2f)s =
(Lfs2)s−1 = 2Lf s). Notice that equation (1.26) means that

[∆, f ] = 2Lf , (1.27)

(compare with equation (1.16) for functions).

Physical background. By the geometrical meaning of the Batalin–Vilko-
visky quantization procedure, the exponential of the “quantum master action”
eiS/~ appearing in the quantum master equation ∆ eiS/~ = 0 is not a scalar,
but the coefficient of a density of weight 1/2 on the extended phase space of
fields, ghosts, antifields, antighosts. The ∆-operator in this master equation
exactly corresponds to the canonical Laplace operator on half-densities. In
the BV-method eiS/~ is integrated over a Lagrangian submanifold; that is
due to the fact that half-densities on the phase space correspond to forms
on Lagrangian submanifolds [7]. The difference of the BV quantum action
(logarithm of a half-density) from a scalar appears in quantum corrections
to the scalar classical action. In the usual Feynman integral (without gauge
freedom) the exponential of the “quantum action” eiS/~ is the coefficient of a
volume form, i.e., of a density of weight 1.

2 Odd Laplace operators: main results

2.1 Square of ∆ρ, master groupoid and modular class

In the even Poisson case, the analog of formula (1.9) gives an operator of
the first order, a Poisson vector field (see [11] and references therein). The
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reason why there are no terms of the second order is the skew-symmetry of the
Poisson tensor, in contrast with the symmetry of Sab. In fact, it is nothing
but the divergence of the Poisson bivector with respect to a chosen volume
form. Under a change of the volume form, this Poisson vector field changes
by a Hamiltonian vector field. Hence, its class in the Poisson–Lichnerowicz
cohomology does not depend on the volume form and is an invariant of even
Poisson manifolds (Weinstein’s “modular class”).

Now we shall see how a similar class arises for odd Poisson (Schouten)
manifolds.

Consider the square of the Laplace operator ∆ρ. Applying ∆ρ to both sides
of (1.15) and using the derivation property with respect to the bracket (1.13),
after cancellations we arrive at the simple formula

∆2
ρ(fg) = (∆2

ρ f)g + (−1)f̃f(∆2
ρ g), (2.1)

which shows that ∆2
ρ is a vector field. Notice that ∆ρ is of order 6 2, so

∆2
ρ might, in principle, contain terms of order 6 4. However, since ∆2

ρ =
(1/2)[∆ρ, ∆ρ], the terms of order 4 cancel automatically. The cancellation of
the terms of order 3 follows from the vanishing of the canonical bracket (S, S),
which is the classical limit of [∆ρ, ∆ρ]. These simple considerations a priori
allow to reduce the order of ∆2

ρ to 2. Remarkably, the actual order is 1.
(In an algebraic setup, the equivalence of ∆ being a derivation of the odd

bracket and ∆2 being a derivation of the associative product was explicitly
noticed in [8].)

Since ∆2
ρ = (1/2)[∆ρ, ∆ρ] and ∆ρ is a derivation of the odd bracket, we

arrive at

Proposition 2.1. The vector field ∆2
ρ is a derivation of the odd bracket, i.e.,

∆2
ρ is a Poisson vector field.

Recall that in the symplectic case it is always Hamiltonian (equation (1.25)).

Definition 2.1. The Poisson vector field ∆2
ρ will be called the modular field

of the Schouten manifold M with respect to the volume form ρ.

Proposition 2.2. The modular field ∆2
ρ preserves the volume form ρ.

Proof. Denote Y := ∆2
ρ. To calculate the Lie derivative LY ρ, we can apply

“Green’s formula” (1.12) (or the self-adjointness of ∆ρ):
∫

M
g(LY ρ) = −

∫

M
(Y g)ρ = −

∫

M
(∆2

ρ g)ρ = −
∫

M
(∆ρ(1)∆ρ g)ρ = 0,

for an arbitrary test function g. Hence LY ρ = 0.
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Consider now the transformation of ∆2
ρ under a change of ρ.

Theorem 2.1. If ρ′ = eσρ, then

∆2
ρ′ = ∆2

ρ−XH(ρ′,ρ), (2.2)

where
H(ρ′, ρ) := ∆ρ σ − 1

2
{σ, σ} = 2e−σ/2 ∆ρ eσ/2. (2.3)

The odd functions H(ρ′, ρ) satisfy the following “cocycle conditions”:

H(ρ,ρ) = 0, (2.4)
H(ρ′, ρ) + H(ρ, ρ′) = 0, (2.5)

H(ρ′′, ρ) = H(ρ′′,ρ′) + H(ρ′, ρ). (2.6)

Proof. By equation (1.19), we have ∆ρ′ = ∆ρ +Xσ. Hence

∆2
ρ′ = (∆ρ +Xσ)2 = ∆2

ρ +[∆ρ, Xσ] + X2
σ = ∆2

ρ−X∆ρ σ +
1
2

[Xσ, Xσ] =

∆2
ρ−X∆ρ σ− 1

2
{σ,σ},

which proves (2.2-2.3). The cocycle conditions are checked directly:

H(ρ′′, ρ′) + H(ρ′,ρ) = ∆ρ′ σ
′ − 1

2
{σ′, σ′}+ ∆ρ σ − 1

2
{σ, σ} =

∆ρ σ′ − {σ, σ′} − 1
2
{σ′, σ′}+ ∆ρ σ − 1

2
{σ, σ} =

∆ρ(σ + σ′)− 1
2
{σ + σ′, σ + σ′} = H(ρ′′,ρ).

Similarly H(ρ, ρ′) = −H(ρ′, ρ), and H(ρ, ρ) = 0 is obvious.

Remark 2.1. The vector fields XH(ρ′,ρ) = ∆2
ρ−∆2

ρ′ being “coboundaries”
trivially satisfy the “cocycle condition”. However, one might expect that the
corresponding Hamiltonians H(ρ′,ρ) define a cocycle only up to Casimirs; the
key statement is that the cocycle conditions are satisfied exactly.

Consider the factors eσ as “arrows” between volume forms on M . This is
an action of a group on the set of volume forms. Consider now only the arrows
ρ → ρ′ = eσρ satisfying the equation ∆ρ eσ/2 = 0 (the equation on an arrow
depends on its “source”). From formula (2.3) and the cocycle conditions (2.4),
(2.5), (2.6) follows an important statement.
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Theorem 2.2. The solutions of the equations ∆ρ eσ/2 = 0 form a groupoid.
That is: for three volume forms ρ, ρ′,ρ′′, if ∆ρ eσ/2 = 0 and ∆ρ′ e

τ/2 = 0, then
∆ρ e(σ+τ)/2 = 0 (“composition”). Also, if ∆ρ eσ/2 = 0, then ∆ρ′ e

−σ/2 = 0
(“inverses”). Here ρ′ = eσρ, ρ′′ = eτρ′.

Since the arrows in it satisfy equations that have the form of the quan-
tum “master equation” of the Batalin–Vilkovisky formalism, we shall call the
groupoid defined in Theorem 2.2 the master groupoid of an odd Poisson man-
ifold M . The space of all non-degenerate volume forms on M is partitioned
into orbits of the master groupoid.

The factor 1/2 in the exponent is exceptional; no such property holds for
any eλσ other than λ = 1/2.

Example 2.1. Let M be an odd symplectic manifold. Consider as points
of a groupoid all Darboux coordinate systems and as arrows the canonical
transformations between them. A homomorphic image of it is the groupoid
whose points are coordinate volume forms (in Darboux coordinates) and whose
arrows are the respective Jacobians J . Consider a new groupoid with arrows
Jλ. Infinitesimally, ∆0J

λ = 0 for any λ, where J = 1 + εdiv0 XF = 1 +
ε∆0F , where F is a Hamiltonian generating the canonical transformation,
because ∆2

0 = 0. However, we can glue together the conditions for infinitesimal
transformations ∆0J

λ = 0 only when λ = 1/2. Thus we arrive at the identity
∆0J

1/2 = 0 for a finite transformation, i.e., to the Batalin–Vilkovisky Lemma.
That means that all “Darboux coordinate volume forms” belong to the same
orbit of the master groupoid, i.e., in the symplectic case the orbit space has a
natural base point.

Notice now that by Theorem 2.1 the modular vector field ∆2
ρ depends on a

volume form up to a Hamiltonian vector field. Hence it defines a cohomology
class [∆2

ρ] depending only on the odd bracket structure. We call [∆2
ρ] the mod-

ular class of the Schouten manifold M . More precisely, consider T ∗M with the
canonical even bracket. The Schouten tensor (1.1) satisfies (S, S) = 0. Hence
the operator D := adS = (S, ) on the space C∞(T ∗M) is an odd differential.
We call the complex (C∞(T ∗M), D) or its subcomplex consisting of fiberwise
polynomial functions, the Schouten–Lichnerowicz complex of M , and its co-
homology, the Schouten–Lichnerowicz cohomology of M . The modular class
belongs to the first cohomology group. For odd symplectic manifolds (constant
Schouten structure) this class vanishes by equation (1.25). One can show that
it also vanishes for all linear Schouten structures. (Compare with Weinstein’s
class for the Berezin bracket on g∗ if g is non-unimodular.) Whether there are
Schouten structures with a nontrivial modular class, is an open question.
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2.2 Laplacians on half-densities (Poisson case)

In the symplectic case the canonical odd Laplacian acting on half-densities
satisfies equation (1.27). We shall use this identity to characterize Laplacians
acting on half-densities on an arbitrary odd Poisson manifold.

Theorem 2.3. Given an odd Poisson manifold, a linear differential operator
∆ acting on densities of weight w and satisfying the equation

[∆, f ] = 2Lf (2.7)

for an arbitrary function f , exists if and only if w = 1/2. In this case ∆ is
defined uniquely up to a zeroth-order term. If s = sρ1/2, where ρ is some basis
volume form, then

∆(s) = ∆(sρ1/2) = (∆ρs)ρ1/2 + Cs (2.8)

(where C is a function). Here ∆ρ is the Laplace operator on functions.

Proof. Consider densities of weight w and suppose an operator with the prop-
erty (2.7) exists. For any two operators satisfying (2.7) their difference com-
mutes with the multiplication by functions, hence is a scalar. To fix this scalar,
we can set ∆(ρw) = 0 for some chosen volume form ρ. Then from (2.7) imme-
diately follows that ∆(s) = ∆(sρw) = 2Lsρ

w = 2wLsρ·ρw−1 = 2w(∆ρs)ρρw−1 =
2w(∆ρs)ρw. (In particular, for w = 1/2 we get exactly ∆(s) = (∆ρs)ρw.)
However, a direct check shows that the operator defined by this formula sat-
isfies condition (2.7) only for w = 1/2. For all other weights the actual com-
mutator contains an extra term. We omit here these calculations.

Choose a volume form ρ and fix normalization by requiring ∆(ρ1/2) = 0.
We arrive at the following definition.

Definition 2.2. The odd Laplace operator on half-densities on an odd Poisson
manifold is

∆(s) := ρ1/2∆ρ(sρ−1/2) (2.9)

where ρ is some basis volume form.

Thus defined, the Laplace operator ∆ on half-densities satisfies the com-
mutator condition (2.7)3. The uniqueness implies that varying of ρ in (2.9)
changes ∆ by a scalar term, in contrast with (1.19) for the Laplacian on func-
tions.

3By multiplying ∆ by a constant the factor “2” in front of the Lie derivative in (2.7) can
be replaced by any number. It is convenient, though, to keep coherent normalization with
the Laplacians on functions.
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Theorem 2.4. Under the change of volume form ρ → ρ′ = eσρ, the Laplace
operator on half-densities transforms as follows:

∆′ = ∆− e−σ/2 ∆ρ eσ/2 = ∆− 1
2

H(ρ′, ρ), (2.10)

where we denote by ∆′ the operator corresponding to the volume form ρ′.
Here H(ρ′, ρ) is the Hamiltonian 2.3. (Notice that the formula ∆′ − ∆ =
−1

2 H(ρ′, ρ) immediately proves that H(ρ′,ρ) is a cocycle.)

Proof. From Theorem 2.3 follows that the operator ∆′ − ∆ commutes with
all functions. Thus ∆′ − ∆ = V (ρ′, ρ) must be a function depending on
ρandρ′. To find it, apply ∆′−∆ to ρ′1/2 and use the normalization condition
∆′(ρ′1/2) = 0. We obtain that −∆(ρ′1/2) = V (ρ′, ρ) ρ′1/2, i.e., by the defi-
nition of the Laplacian on half-densities, −(∆ρeσ/2) ρ1/2 = V (ρ′, ρ) eσ/2ρ1/2,
hence V (ρ′, ρ) = −e−σ/2∆ρeσ/2.

Recall that the condition ∆ρ eσ/2 = 0 specifies the arrows of the master
groupoid.

Corollary 2.1. The odd Laplace operator on half-densities is constant on the
orbits of the master groupoid.

The operator ∆ actually depends not on a volume form ρ, but only on
its orbit under the action of the master groupoid. The situation is drastically
different from that for Laplacians on functions and for densities of weight
6= 1/2.

The master groupoid, which appeared above in relation with the transfor-
mation law of ∆2

ρ on functions, now directly arises from the transformation
law of ∆ on half-densities. In terms of operators on half-densities, the defining
equation ∆ρ eσ/2 = 0 takes the transparent form ∆(ρ′1/2) = 0.

2.3 Analysis of the symplectic case

Now we can briefly review the symplectic case. It is distinguished by the
existence of Darboux charts. With every such chart one can associate a coor-
dinate volume form ρ = D(x, θ). Moreover, one can construct a global volume
form such that for some Darboux atlas this form coincides with the coordi-
nate volume form in every chart of this atlas. The proof uses some facts about
the topology of odd symplectic manifolds [7],[9]. We want to emphasize that
there is no natural volume form preserved by all canonical transformations,
unlike the even case with the Liouville measure. However, all “Darboux co-
ordinate” volume forms are in the same orbit of the master groupoid. This
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orbit is distinguished and it gives rise to the canonical Laplacian on half-
densities (1.22), introduced and studied in [6, 7]. Every other Laplacian on
half-densities in symplectic case can be expressed via the canonical operator
∆ as ∆′ = ∆− ρ−1/2∆(ρ1/2).

For odd symplectic manifolds the modular class vanishes, as follows from
(1.25). Every Darboux coordinate volume form provides a representative of
this class by the zero vector field: the corresponding Laplacian on functions
can be written as (1.21) and its square evidently vanishes. Recall that Wein-
stein’s modular class on even symplectic manifolds vanishes due to Liouville’s
theorem. The odd case is more delicate, as there is no analog of the Liou-
ville volume form. Instead there is a distinguished class of volume forms, con-
tained in the same master groupoid orbit. Lemma 1.1 (the “Batalin–Vilkovisky
Lemma”) can be viewed as a replacement of Liouville’s theorem.

We can try to estimate how “thick” the orbits of the master groupoid are
and how many such orbits there are. Even in the symplectic case this analysis
is nontrivial.

Consider the orbit through some Darboux coordinate volume form, i.e.,
all volume forms eσ(x,θ)D(x, θ) such that ∆0 eσ/2 = 0. For infinitesimal σ,
this reduces to ∆0σ = 0. Such σ correspond to closed differential forms on a
Lagrangian submanifold [9], [7] and the dimension of the orbit is infinite.

On a general odd Poisson manifold M , for an arbitrary volume form ρ0

the modular vector field ∆2
ρ is the same for all points in the orbit of ρ0. So the

orbit of ρ0 is contained in the submanifold ∆2
ρ = ∆2

ρ0
(fixed Poisson vector

field). It makes sense to study orbits in such submanifolds. To estimate their
codimension we use Theorem 2.1: ∆2

ρ−∆2
ρ0

= −XH(ρ,ρ0) = 0, which implies
that H(ρ, ρ0) = 2e−σ/2∆ρ0

eσ/2 is an odd Casimir function. Infinitesimally we
get that ∆ρ0

σ is an odd Casimir. Hence, the codimension of the orbit of ρ0

in the submanifold ∆2
ρ = const equals

dim
∆−1

ρ0
{All odd Casimirs}

∆−1
ρ0
{0} = dim {All odd Casimirs} . (2.11)

In the symplectic case Casimirs are just constants, and the orbits of the
master groupoid with the square of the Laplace operator being fixed are parametrized
by a single modulus, an odd constant ν. For example, if ρ0 is a Darboux coordi-
nate volume form, then ν = ρ−1/2∆ρ1/2, where ∆ is the canonical Laplacian
on half-densities (1.22). This follows from the analysis performed in other
terms in [7].
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2.4 Densities of arbitrary weight

The commutation formula (1.16) for ∆ρ acting on functions (w = 0) is more
complicated than the commutation relation (2.7) for half-densities. The same
is true for the behaviour under a change of volume form. We shall now show
that this is the generic case and that w = 1/2 is an exception.

Consider densities of arbitrary weight w. If we fix a basis volume form
ρ, then they all have the form s = sρw. We define an odd Laplace operator
acting on densities of weight w by the formula

∆ρ s := (∆ρ s)ρw. (2.12)

At the r.h.s. stands the Laplacian on functions. The notation here emphasizes
dependence on ρ.

Proposition 2.3. On densities of weight w the commutator of the Lapla-
cian (2.12) and the multiplication by arbitrary functions is given by the for-
mula

[∆ρ, f ] = 2Lf + (1− 2w)∆ρf. (2.13)

Plugging w = 0 and w = 1/2 we recover formulae (1.16) and (2.7), respec-
tively. Clearly the case w = 1/2 is exceptional as the second term in (2.13)
vanishes identically.

Suppose that we change the basis volume form ρ. What is the transfor-
mation law for ∆ρ?

Proposition 2.4. On densities of weight w the Laplacian ∆ρ transforms as
follows:

∆ρ′ = ∆ρ +(1− 2w)Lσ − 4w(1− w) e−σ/2 ∆ρ eσ/2

= ∆ρ +(1− 2w)Lσ − 2w(1− w) H(ρ′, ρ).
(2.14)

Plugging w = 0 and w = 1/2 we recover formulae (1.19) and (2.10).
We see again that the case w = 1/2 is exceptional, because only then the

transformation (2.14) involves just a scalar additive term. In all other cases
the transformation includes a differential operator of the first order. Functions
and volume forms, i.e., w = 0 and w = 1, are somewhat special too, because
for them this differential operator simplifies to a Lie derivative.

3 Comparison with Riemannian and even Poisson
geometry

3.1 Laplacians in Riemannian geometry

Let us look at Riemannian geometry from the perspective of odd Poisson ge-
ometry (instead of the converse). Slightly abusing language, by a Riemannian

14



structure we mean a symmetric tensor with upper indices gab not necessar-
ily invertible. The non-degenerate situation is then an analog of a symplec-
tic structure. Both Riemannian and odd Poisson structures are specified by
quadratic Hamiltonians, even or odd respectively, which are functions on the
same manifold T ∗M . For simplicity below we will write all Riemannian formu-
lae only for even manifolds, though everything, of course, works in the super
case.

Without assuming that gab is invertible we can use an arbitrary volume
form ρ = ρ dnx to define a Laplace operator on functions:

∆ρ f := divρ grad f =
1
ρ

∂

∂xa

(
ρgab ∂f

∂xb

)
. (3.1)

The following properties are similar to those of odd Laplacian (1.15), (1.18):

∆ρ(fg) = (∆ρ f)g + f(∆ρ g) + 2〈f, g〉, (3.2)

∆ρ ef =
(
∆ρ f − 〈f, g〉

)
ef , (3.3)

where the Poisson bracket is replaced by the “scalar product of gradients”
〈f, g〉 = gab ∂af ∂bg. Under changes of volume form the Laplacian (3.1) trans-
forms as

∆ρ′ = ∆ρ +grad σ, (3.4)

where ρ′ = eσρ. What fails and has no analogy in the Riemannian case is the
formulae involving the action of the Laplacian on the bracket.

On densities of arbitrary weight w we can define the Laplacian by the same
formula as (2.12):

∆ρ s := (∆ρ s)ρw, (3.5)

if s = sρw. It has properties analogous to (2.14) and (2.13).
In particular, the case of half-densities is again distinguished. Analogs of

Theorem 2.3 and Theorem 2.4 hold. The Laplace operator on half-densities
∆ satisfies the condition

[∆, f ] = 2Lgrad f . (3.6)

Under the change of volume form ρ → ρ′ = eσρ the Laplacian on half-densities
transforms as

∆′ = ∆− e−σ/2 ∆ρ eσ/2, (3.7)

as in (2.10). We again arrive at a groupoid; the Batalin–Vilkovisky equation
is replaced by the Laplace equation ∆(ρ′1/2) = 0.

Altogether we see that the analogy between odd Poisson and “upper”
Riemannian geometry goes unexpectedly far.
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3.2 Geometries controlled by a tensor T ab

Odd Poisson geometry has analogies with Riemannian geometry as well as
with even Poisson geometry. All three geometries are controlled by a rank 2
tensor, say, T ab. The difference is in the type of symmetry and in the parity
of T ab.

In the even Poisson case, T ab = P ab, P ab = −(−1)ãb̃+ã+b̃P ba and P̃ ab =
ã + b̃. It corresponds to an even bivector field P ∈ C∞(ΠT ∗M). In the odd
Poisson (= Schouten) case, T ab = Sab, Sab = (−1)ãb̃Sba, but S̃ab = ã+ b̃+1.
It corresponds to an odd quadratic Hamiltonian S ∈ C∞(T ∗M). In the
Riemannian case, T ab = gab, gab = (−1)ãb̃gba and g̃ab = ã + b̃. It corresponds
to an even Hamiltonian H = 1

2 gabpbpa ∈ C∞(T ∗M). In all cases the structure
on M is obtained from the tensor T via the canonical brackets on T ∗M or
ΠT ∗M .

It is convenient to draw a table:

Even Poisson Odd Poisson (Schouten) Even Riemannian Odd Riemannian

P ab = (−1)(ã+1)(b̃+1)P ba Sab = (−1)ãb̃Sba gab = (−1)ãb̃gba χab = (−1)(ã+1)(b̃+1)χba

P = 1
2P ab(x)x∗bx

∗
a S = 1

2Sab(x)pbpa H = 1
2gab(x)pbpa χ = 1

2χab(x)x∗bx
∗
a

P̃ = 0 S̃ = 1 g̃ = 0 χ̃ = 1
ΠT ∗M , canonical
Schouten bracket [[ , ]]

T ∗M , canonical
Poisson bracket ( , )

T ∗M , canonical
Poisson bracket ( , )

ΠT ∗M , canonical
Schouten bracket [[ , ]]

{f, g} = [[f, [[P, f ]]]] {f, g} = (f, (S, g)) 〈f, g〉 = (f, (H, g))
= (−1)f̃ ãgab ∂f

∂xb
∂g

∂xa

〈f, g〉 = [[f, [[χ, f ]]]]

f 7→ Xf = {f, } f 7→ Xf = (−1)f̃+1{f, } f 7→ grad f = 〈f, 〉 f 7→ grad f

Jacobi for { , }
⇔ [[P, P ]] = 0

Jacobi for { , }
⇔ (S, S) = 0 None None

∆ρ f = divρ Xf ∆ρ f = divρ Xf ∆ρ f = divρ grad f ∆ρ f = divρ grad f

1st order
even operator

2nd order
odd operator

2nd order
even operator

1st order
odd operator

ρ′ = eσρ

∆ρ′ = ∆ρ +Xσ ∆ρ′ = ∆ρ +Xσ ∆ρ′ = ∆ρ +grad σ ∆ρ′ = ∆ρ +grad σ

Modular class: [∆ρ] Modular class: [∆2
ρ] None None

Laplacian on half-densities: ∆(s) = ρ1/2∆ρ(sρ−1/2)

nothing good
∆′ −∆ = 1

2H(ρ′, ρ)
H(ρ′,ρ) = e−σ/2 ∆ρ(eσ/2)

nothing good

None
Master groupoid:
ρ → ρ′ = eσρ such that ∆ρ eσ/2 = 0 None
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The fourth case included in the table but which we shall not develop here,
is that of odd Riemannian structure. Then, T ab = χab corresponds to an odd
bivector field. In a non-degenerate situation, the tensor with lower indices
corresponding to an odd quadratic Hamiltonian S is an odd 2-form and that
corresponding to an odd bivector field χ is an odd symmetric tensor.

Let us comment on some of the similarities and differences. Algebraic
similarity of even/odd Poisson brackets as well as of even/odd metrics is clear.
However, the second order Laplace operator on functions in the odd Poisson
and even Riemannian cases corresponds to a vector field in the even Poisson
and odd Riemannian cases. Algebraically responsible for arising of the “master
groupoid” are formulae like ∆ρ ef = ef

(
∆ρ f − {f, f}). They do not appear

in even Poisson geometry. For the same reason, in it and in odd Riemannian
geometry there is no interesting theory of Laplace operators acting on various
densities. (Notice that analogies and differences come in pairs in this picture.)

3.3 BV formalism and quantum mechanics

Without going into details we want to point out a geometric analogy between
the Batalin–Vilkovisky quantization and ordinary quantum mechanics.

Let us make a simple but important remark: the wave function in the
Schrödinger equation is a half-density. Hence the quantum Hamiltonian in the
Schrödinger picture is an operator acting on half-densities. Let it have the form
Ĥ = −~22 ∆+U , where ∆ is the Laplace operator on half-densities. It satisfies
the commutator condition (3.6). −~22 ∆ is a quantization of the classical “free”
Hamiltonian H0 = 1

2 gabpbpa. The quasiclassical solution of the Schrödinger
equation is obtained by substituting the wave function as ψ = eiS/~u where
u =

∑
(i~)nun is a half-density and S is a function independent of ~. The

classical term is 〈gradS, gradS〉. The first semiclassical term is i~Lgrad Su0,
etc. The commutator formula (3.6) (which is equivalent to the vanishing of
the subprincipal symbol) implies that the l.h.s. of the transport equations
will contain only the Lie derivative along the gradient of the classical action
defined from the classical Hamilton–Jacobi equation.

Likewise, the “quantum master equation” of the Batalin–Vilkovisky quan-
tization procedure (the Batalin–Vilkovisky equation) is the equation ∆s = 0
for a half-density s on an odd symplectic manifold, where ∆ is the canoni-
cal odd Laplacian. Writing formally s = eiS/~u as above (S is a function,
u a half-density) and using the commutator identity (2.7), one gets a similar
expansion in i~ starting from {S, S} = 0 (the “classical master equation”).

Hence, we have the following analogy: the quantum master equation corre-
sponds to the Schrödinger equation; its solution (a half-density, often formally
written in the purely exponential form eiS/~ via the so-called “quantum effec-

17



tive action”) corresponds to the wave function; the classical master equation
corresponds to the Hamilton–Jacobi equation or the eikonal equation; the next
quantum corrections, as in the Schrödinger case, are expressed in terms of Lie
derivative along the Hamiltonian vector field LS , where S is a solution of the
classical master equation.

Acknowledgement: The authors want to thank the referee for suggesting
numerous style improvements of the original manuscript.

References

[1] I. A. Batalin and G. A. Vilkovisky. Gauge algebra and quantization. Phys.
Lett., 102B:27–31, 1981.

[2] I. A. Batalin and G. A. Vilkovisky. Quantization of gauge theories with
linearly dependent generators. Phys. Rev., D28:2567–2582, 1983.

[3] I. A. Batalin and G. A. Vilkovisky. Closure of the gauge algebra, gen-
eralized Lie equations and Feynman rules. Nucl. Phys., B234:106–124,
1984.

[4] O. M. Khudaverdian. Geometry of superspace with even and odd brack-
ets. Preprint of the Geneva University, UGVA-DPT 1989/05-613. Pub-
lished in: J. Math. Phys. 32 (1991), 1934–1937.

[5] O. M. Khudaverdian and A. P. Nersessian. On geometry of Batalin-
Vilkovisky formalism. Mod. Phys. Lett, A8(25):2377–2385, 1993.

[6] O. M. Khudaverdian. ∆-operator on semidensities and integral invari-
ants in the Batalin–Vilkovisky geometry. Preprint 1999/135, Max-Planck-
Institut für Mathematik Bonn, 19 p., 1999. math.DG/9909117.

[7] Hovhannes (O. M.) Khudaverdian. Semidensities on odd symplectic su-
permanifold. math.DG/0012256.

[8] Y. Kosmann-Schwarzbach and Juan Monterde. Divergence operators
and odd Poisson brackets. Ann. Inst. Fourier, 52: 419–456, 2002.
math.QA/0002209.

[9] A. S. Schwarz. Geometry of Batalin-Vilkovisky quantization. Commun.
Math. Phys., 155:249–260, 1993.

[10] Th. Voronov. Graded manifolds and Drinfeld doubles for Lie bialgebroids.
math.DG/0105237.

18



[11] Alan Weinstein. The modular automorphism group of a Poisson manifold.
J. Geom. Phys., 23(3-4):379–394, 1997.

19


