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Abstract
We analyze geometry of the second order differential operators, having in
mind applications to Batalin–Vilkovisky formalism in quantum field theory.
As we show, an exhaustive picture can be obtained by considering pencils of
differential operators acting on densities of all weights simultaneously. The
algebra of densities, which we introduce here, has a natural invariant scalar
product. Using it, we prove that there is a one-to-one correspondence be-
tween second-order operators in this algebra and the corresponding brackets.
A bracket on densities incorporates a bracket on functions, an “upper connec-
tion” in the bundle of volume forms, and a term similar to the “Brans–Dicke
field” of the Kaluza–Klein formalism. These results are valid for even opera-
tors on a usual manifold as well as for odd operators on a supermanifold. For
an odd operator ∆ we show that conditions on the order of the operator ∆2

give an hierarchy of properties such as flatness of the upper connection and
the Batalin–Vilkovisky master equation. In particular, we obtain a complete
description of generating operators for an arbitrary odd Poisson bracket.
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1 Introduction

This paper is a direct continuation of our paper [14]. However, it is com-
pletely independent and can be read as such.

There are two motivations for this work.
The first motivation comes from the Batalin–Vilkovisky formalism in

quantum physics. The problem is to give a description of all the so-called
‘∆-operators’. A particular algebraic problem related to this is to give a
description of all generating operators for a given odd Poisson algebra. The
second motivation is entirely geometrical. The problem is to describe geomet-
ric structures encoded in a differential operator. In particular, the question is,
what is necessary to recover a differential operator from its principal symbol.

It is well known that various quantities in quantum field theory can be
expressed via the Feynman integral

Z =

∫
e

i
~ S[ϕ] Dϕ. (1)

Here integration is over all field configurations and S[ϕ] stands for the classi-
cal action functional. However, if the theory possesses a gauge freedom (like
electrodynamics or Yang–Mills theory), a modification is required. According
to the most up-to-date comprehensive procedure, — the Batalin–Vilkovisky
formalism, — the recipe is as follows [3, 4, 5]. The (infinite-dimensional)
manifold of fields ϕ has to be extended and necessarily becomes a super-
manifold possessing an odd symplectic structure. The classical action S[ϕ]
and the integral (1) are replaced by an “extended” action S[Φ] and by the
integral1

ZBV =

∫
e

i
~ S[Φ] DΦ , (2)

where integration is over a Lagrangian submanifold. The key condition is that
the extended action must satisfy the Batalin–Vilkovisky “quantum master
equation”

∆e
i
~ S[Φ] = 0, (3)

1Strictly speaking, there must be
√

DΦ instead of DΦ, since it is the half-densities that
give volume forms on Lagrangian submanifolds [9, 11].
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and this secures the gauge invariance of the quantum theory. The Batalin–
Vilkovisky ∆-operator is an “odd Laplacian” associated with an odd sym-
plectic structure. We want to emphasize that the precise geometric for-
mulation of the above-said, including the precise definition of the oper-
ator ∆, is a non-trivial task, to which a lot of work has been devoted,
see [8, 12, 13, 9, 10, 11, 14] and [17, 19, 18]. Initially ∆ has been thought
of as an operator acting on functions. In [9, 10] it was shown that ∆ should
be considered as an operator on half-densities (= semidensities) rather than
functions. Moreover, as we have shown in [14], the best understanding of ∆
can be achieved by considering it on densities of various weights. There is a
remarkable similarity between odd Poisson geometry and the usual Rieman-
nian geometry noticed in [14].

The Batalin–Vilkovisky operator “generates” (in a precise sense) the odd
symplectic structure of the extended phase space. In a more abstract setup,
every ‘∆-operator’ on functions generates an odd bracket. A question that
remained open, is how to describe all operators generating a given bracket.
A lot of work was devoted to this problem, in the geometric as well as in
an algebraic setting. (Notice that the Batalin–Vilkovisky quantization for-
malism motivated the introduction of various algebraic structures, such as
the “Batalin–Vilkovisky algebras”, the study of which has developed into an
independent area.) See in particular [1, 2], [12], [15]. The current paper gives
a complete solution of this problem.

A related question is how to obtain an operator on half-densities or den-
sities of any other weight from an operator on functions, or vice versa.

These questions naturally bring us to the second, purely geometrical mo-
tivation for the present paper.

Suppose we are given a differential operator ∆ of order 6 n acting on
functions on a manifold M . Which geometric structures are naturally asso-
ciated with it? We want to stress that we are considering an operator acting
on functions on a manifold without any extra structure (like a Riemannian
structure) given a priori. If we write this operator in local coordinates as

∆ =
n∑

k=0

1

k!
Aa1,...,ak(x) ∂a1 . . . ∂ak

, (4)

the coefficients Aa1,...,ak are transformed in a complicated way under a change
of coordinates. Which geometric information is encoded in them?

First of all, as it is well known, the top order part defines an invariant
object, called the principal symbol of ∆:

σ(∆) =
1

n!
Aa1,...,an(x) pa1 . . . pan . (5)
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The principal symbol σ(∆) is an invariantly defined function on T ∗M . It also
can be approached from a purely algebraic viewpoint (see subsection 4.2).

What about the geometric meaning of the lower order terms in (4)?
Hörmander has introduced the so-called subprincipal symbol of ∆, which
essentially is the principal symbol of ∆ − (−1)n∆∗ where the adjoint op-
erator ∆∗ (acting on the same space as ∆) depends on a choice of volume
element, e.g., given by a coordinate system. Hence the subprincipal symbol
sub ∆ is not a genuine function on T ∗M , but has a non-trivial transformation
law. In the standard approach this is considered as a nuisance that can be
overcome by trading functions for half-densities, for which the adjoint opera-
tor is intrinsically defined. However, a closer look at the transformation law
of the subprincipal symbol sub ∆ for operators on functions reveals that it is
very similar to a connection in the bundle of volume forms Vol M .

This is quite unexpected as, let us repeat, we have started from an op-
erator acting on scalar functions, with no geometric data (like bundles and
connections) being given beforehand. In particular, this prompts to consider
operators acting on densities of various weights w ∈ R together. As soon as
we adopt this viewpoint, the picture immediately clears.

We introduce the algebra of densities V(M) on a manifold M as the al-
gebra of densities of all weights w ∈ R under the tensor multiplication. For-
mally, it is the algebra of sections of the direct sum of the bundles |Vol(M)|w
over all w ∈ R. V(M) possesses a natural invariant scalar product, and it
contains, in particular, functions, volume forms and half-densities. One can
consider differential operators in the algebra V(M), and there is a natural
notion of the adjoint operator. It is possible to give a nice classification of
derivations for V(M).

The main results of the present paper can be summarized as follows.
We describe differential operators in V(M). A differential operator of

order 6 2 in V(M) is equivalent to a quadratic pencil

∆w = ∆0 + w A + w2 B,

where ∆0 is a second-order operator on functions, A and B have order 1 and
0 respectively. We prove that there is a one-to-one correspondence between
the self-adjoint operators with the condition ∆0(1)=0 and the corresponding
brackets in V(M). A bracket in V(M) from the viewpoint of M is a “long
bracket” incorporating a bracket on functions, an “upper connection” in the
bundle of volume forms and a term similar to the “Brans–Dicke field” g55

of the Kaluza–Klein formalism in the relativity theory. This gives a com-
plete description of the geometric information necessary to recover an oper-
ator from the corresponding bracket on functions (= the principal symbol)
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and unfolds the relations between operators acting on densities of different
weights.

These results are valid for even operators as well as for odd operators on
a supermanifold. For odd operators and brackets, analysis can be pursued
further, leading to remarkable results that have no analogs in the even case.
For an odd operator ∆ it is natural to study the operator ∆2 = 1

2
[∆, ∆].

We show that conditions on the order of ∆2 give an hierarchy of properties,
including the flatness condition for the upper connection and the Batalin–
Vilkovisky master equation.

In particular, this gives a complete description of the generating operators
for an arbitrary odd Poisson bracket.

Though we mainly consider operators of order 6 2 here, we discuss how
our results can be generalized to differential operators of higher order. A
generalization is also possible to operators of non-zero weight λ (i.e., those
mapping densities of weight w to densities of weight w + λ).

The structure of the paper is the following.
In Section 2 we study arbitrary operators of the second order on functions

and densities, and the corresponding brackets. We interpret the subprincipal
symbol as an upper connection. We define the algebra V(M) and establish
its properties. We prove the main classification theorem giving a 1−1 corre-
spondence between operators and brackets in V(M), and consider examples.

In Section 3 we consider odd operators and odd brackets. We study the
Jacobi identity for an odd long bracket and conditions on the operator ∆2

corresponding to various properties of brackets.
In Section 4 we discuss generalizations.

2 Second orders operators and long brackets

2.1 Subprincipal symbol as a connection

Let ∆ be a differential operator acting on functions on a manifold M . Its
principal symbol is a well-defined function on the cotangent bundle T ∗M .
Compared to it, the so-called subprincipal symbol sub ∆ introduced by Hör-
mander is not a genuine function on T ∗M but depends on a choice of coor-
dinates. (Only for operators acting on half-densities the subprincipal symbol
becomes an invariant function.) We want to point out that the transforma-
tion law for the subprincipal symbol sub ∆ for an operator on functions or on
densities of any weight w 6= 1

2
allows to interpret it as a sort of connection.

Indeed, let ∆ be an operator of the second order. (Operators of higher
order will be treated later.) To avoid complications with signs let ∆ be even
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and M be an ordinary manifold. Suppose in local coordinates

∆ =
1

2
Sab ∂b∂a + T a ∂a + R, (6)

where Sab = Sba. Then (with standard conventions) the principal symbol of
∆ is symb ∆ = −Sabpbpa, which is an invariant quadratic function on T ∗M ,
and the subprincipal symbol in local coordinates is [7]:

sub ∆ = i
(
2T a − ∂bS

ba
)
pa. (7)

It is nothing but the principal symbol of ∆ −∆∗ where ∆∗ is a coordinate-
dependent adjoint operator, defined using a coordinate volume element Dx.
Denote

γa = ∂bS
ba − 2T a, (8)

so that sub ∆ = −iγapa. (In the sequel we omit the factors i.) Then under
a change of coordinates the coefficients γa are transformed as follows:

γa′ =
(
γa + Sab ∂b log J

) ∂xa′

∂xa
, (9)

where J = Dx′/Dx is the Jacobian. If we assume that the matrix Sab is
invertible, so that SabS

bc = δa
c, then it is possible to lower indices and get

γa = Sabγ
b with the transformation law

γa′ = (γa + ∂a log J)
∂xa

∂xa′ . (10)

This is the transformation law for the coefficients of a connection in the bun-
dle of volume forms on M . We see that the subprincipal symbol of an operator
of the second order acting on functions defines a connection in Vol M , with

∇aρ = (∂a + γa)ρ, (11)

γa = Sab(2T
a − ∂bS

ba), if the “upper metric” Sab given by the principal
symbol is non-degenerate. In general, the subprincipal symbol of ∆ defines a
so-called upper connection or “contravariant derivative” in the bundle Vol M :

∇aρ = (Sab∂b + γa)ρ, (12)

over the map S# : T ∗M → TM defined by the principal symbol.
“Upper connections” or “contravariant derivatives” were considered ear-

lier, in particular, in the context of Poisson geometry. A natural framework
for them is that of Lie algebroids (vector bundles with a Lie bracket of sec-
tions and a Lie homomorphism of sections to vector fields). However, for
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our purposes this framework is not entirely suitable, since in general we do
not expect to have a Lie bracket of covector fields, — except for the case
of odd Poisson geometry, see later. Instead, we shall use as an appropriate
formalism the following language of “long brackets”. (“Long” is meant to
remind “long derivatives”, the physicists’ term for covariant derivatives.)

Fix a bi-derivation in C∞(M), denoted as a bracket { , }. We do not
assume the Jacobi identity. Let E → M be a vector bundle. A long bracket
between functions and sections of E over a given bracket of functions is
a bilinear operation (f, s) 7→ {f ; s}, where f ∈ C∞(M) is a function and
s ∈ C∞(M, E) is a section, taking values in sections of E, with the properties:

{fg; s} = f{g; s}+ {f ; s}g, (13)

{f ; gs} = {f, g}s + g{f ; s}. (14)

Equation (13) means that the value of {f ; s} depends only on df . A long
bracket is related with an “upper connection” by the formula ∇dfs := {f ; s}.

With an operator on functions ∆ given by formula (6) we can associate
the following bracket of functions and a long bracket over it:

{f, g} := Sab∂bf ∂ag (15)

{f ; ρ} :=
(
Sab∂bf ∂aρ + γb∂bf ρ

)
Dx, (16)

where ρ = ρDx is a volume form. Here γa are given by (8). (If Sab is a metric,
then the bracket {f, g} is the scalar product of gradients.) An alternative
coordinate-free expression is as follows:

{f, g} := ∆(fg)−∆f g − f ∆g + ∆(1) fg, (17)

{f ; ρ} := ∆(fρ)−∆f ρ− f ∆ρ + ∆(1) fρ, (18)

where in (18) we define ∆ on volume forms as the adjoined operator ∆∗.
A direct check shows that (17,18) give (15),(16) and (8); in particular, the
coordinate-free formulae (17,18) yield a proof of the transformation law (9).

Let us summarize.
Any second order differential operator ∆ acting on functions defines a

bracket of functions (17) — essentially, the “polarized” principal symbol of
∆ — and an “upper connection” (8) in the bundle of volume forms Vol M —
essentially, the subprincipal symbol of ∆ — which may be written as a “long
bracket” (18) between functions and volume forms extending the bracket of
functions.

Hence, starting from operators acting on functions, we are naturally
prompted to consider densities. Moreover, the long bracket {f ; ρ} defined
above can be extended by a “Leibniz rule” from densities of weight 1 (volume
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forms) to densities of arbitrary weight. For our purposes we shall need a fur-
ther generalization with the first argument also replaced by a density. As we
shall see below, this will give a “completion” of the theory: after extending
both operators and brackets to arbitrary densities it will become possible to
establish a one-to-one correspondence between them.

2.2 The algebra of densities

Let M be a supermanifold. Consider densities of arbitrary weights w ∈ R.
(To avoid complications, we can assume that all appropriate Berezinians
between local charts are positive.) Under the tensor product densities form

a graded commutative algebra: ψχ = (−1)ψ̃χ̃χψ, w(ψχ) = w(ψ) + w(χ).
Tilde stands for parity, w for weight; we drop ⊗ from the notation. Denote
the algebra of densities on M by V(M).

The commutative algebra V(M) can, in fact, be identified with a certain
algebra of functions on an extended manifold M̂ := (Ber TM) \M , i.e., the
frame bundle of the determinant bundle Ber TM . The natural coordinates
on M̂ induced by local coordinates xa on M are xa, t where t can be identified
with the volume element Dx. A formal sum of densities of various weights
ψ =

∑
ψw(x)(Dx)w ∈ V(M) can be identified with its “generating function”

ψ(x, t) =
∑

ψw(x)tw (summation over a finite number of weights). In the
sequel we shall use elements of V(M) and the corresponding functions on M̂
interchangeably.

The algebra of densities V(M) has a natural bilinear scalar product:

〈ψ, χ〉 :=

∫

M

ψχDx (19)

if w(ψ)+w(χ) = 1; otherwise the scalar product is zero. In terms of functions
on M̂ the scalar product can be expressed as

〈ψ,χ〉 :=

∫

M

Res
(
t−2 ψ(x, t) χ(x, t)

)
Dx, (20)

where Res stands for the residue at t = 0. Notice that this algebra possesses
a unit. The scalar product satisfies the invariance condition

〈ψχ,ϕ〉 = 〈ψ, χϕ〉.

One can consider (formally) adjoint operators w.r.t. the scalar product (19).
In particular, one has t∗ = t, ∂∗t = −∂t + 2t−1, ∂∗a = −∂a; all functions of xa

are self-adjoint. We have ŵ∗ = 1− ŵ.
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Let us describe Der V(M), i.e. vector fields on M̂ . A vector field on M̂
of weight λ has the form

X = tλ
(

Xa(x)
∂

∂xa
+ X0(x) t

∂

∂t

)
, (21)

or
X = tλ

(
Xa(x) ∂a + X0(x) ŵ

)
. (22)

The first term has the meaning of a vector density of weight λ on M , i.e., a
derivation taking functions to densities of weight λ (this is just the restriction
of X to functions on M). The second term has no independent meaning if
Xa 6= 0; notice the transformation law

Xa′ = J−λXa ∂xa′

∂xa

X ′
0 = J−λ (X0 + Xa∂a log J) .

There is a canonical operation div (the divergence) on vector fields on M̂ .
This is no wonder, since there is an invariant scalar product of functions on
M̂ , in other words a generalized volume form. The explicit formula for the
divergence is

div X = tλ
(
∂aX

a(−1)ã(X̃+1) + (λ− 1) X0

)
, (23)

if X is given by (21), (22).

Theorem 2.1. For λ 6= 1, every derivation of weight λ in the algebra of
densities V(M) can be uniquely decomposed into the sum of a divergence-
free derivation and a derivation of the form tλf(x)ŵ; every divergence-free
derivation has the form

X = tλ
(

Xa(x) ∂a − 1

λ− 1
∂aX

a(−1)ã(X̃+1) ŵ

)
(24)

and is uniquely defined by a vector density X = (Dx)λXa ∂a on M . The
decomposition of a general X is

X = tλ
(

Xa(x) ∂a − 1

λ− 1
∂aX

a(−1)ã(X̃+1) ŵ

)

︸ ︷︷ ︸
divergence-free part

+
1

λ− 1
div X ŵ. (25)
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For λ = 0 the derivation (24) is the Lie derivative along a vector field
X = Xa(x) ∂a on M acting on densities. In general, the divergence-free
derivation (24) can be seen as a “generalized Lie derivative” along the vector
density X = (Dx)λXa ∂a.

Part of what we are doing is of a purely algebraic nature and holds for
arbitrary commutative associative algebras with a unit and with an invariant
(non-degenerate) scalar product. In such an algebra, if an operator ∆ is of
order k, in the algebraic sense, then the adjoint operator ∆∗ is also of order
k; the difference ∆ − (−1)k∆∗ is of order k − 1. For derivations of such an
algebra there exists a canonical divergence.

Recall that in any commutative associative algebra A an abstract diver-
gence operator is a linear map div : Der A → A with the property

div(aX) = a div X + (−1)ãX̃X(a) (26)

(see [16], [15]). For functions on a manifold M an abstract divergence and a
connection in Vol M are equivalent notions. Indeed, such an equivalence is
established by the formula

∫

M

(div X) ρ = −
∫

M

∇Xρ, (27)

and the property (26) translates into the characteristic property of a covariant
derivative. (Of course, this can be transported into a more abstract setting.)
The explicit formulae:

∇aρ = (∂a + γa) ρ, div X = (∂a − γa)X
a(−1)ã(X̃+1).

For abstract divergence operators there is a notion of “curvature” (see [15]).
This is exactly the curvature of the corresponding connection on volume
forms.

Remark 2.1. Second order differential operators on functions for which the
associated upper connections come from genuine connections as γa = Sabγb

are exactly the “Laplacians”

∆f =
1

2
(∂a − γa)

(
Sab∂bf

)
=

1

2
divγ grad f,

where grad f = Sab∂bf and divγ is the divergence operator corresponding to
the connection γa.

If in the algebra A there is an invariant scalar product, we can define a
canonical operation div by either of the equivalent formulae: for X ∈ Der A,

〈div X, a〉 = −〈1, X(a)〉, (28)
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or
div X = −(X + X∗). (29)

Here X∗ stands for the operator formally adjoint to X. Notice that X + X∗

is of order 0, i.e., an element of A. Immediately checked is that div is an
even, linear operation satisfying (26). Also, an identity

div[X, Y ] = X(div Y ) + (−1)X̃Ỹ Y (div X), (30)

holds, meaning that the curvature of the operator div is zero.

Example 2.1. For derivations of V(M) we easily get from (28), (29) the
explicit formula (23).

Remark 2.2. Formula (29) is very close to the usual definition of a sub-
principal symbol. Define div acting on arbitrary operators of order 6 k and
taking them to operators of order 6 k − 1 as div ∆ := −(∆ − (−1)k∆∗).
Then it easily follows that

div[∆1, ∆2] = [div ∆1, ∆2] + [∆1, div ∆2] + [div ∆1, div ∆2],

which implies (30) for derivations. In this abstract setting, the subprincipal
symbol of ∆ can be defined as the principal symbol of div ∆, i.e., as the class
of div ∆ modulo operators of order 6 k− 2. Notice also that div2 = 0, so we
are getting a complex.

2.3 Equivalence between operators and brackets

In this section we shall prove that any bracket on M̂ , i.e., a bracket in the
algebra V(M), is in a 1−1 correspondence with a differential operator of the
second order in V(M). This should be compared with the fact that a bracket
of functions gives only the principal symbol of the generating operator and
does not allow to recover it in full.

In any algebra (commutative associative with a unit) by a bracket we
mean a symmetric bi-derivation:

{a, b} = (−1)ãb̃{b, a} (31)

{ka, b} = (−1)k̃εk{a, b} (32)

{a, bc} = {a, b}c + (−1)(ã+ε)b̃b{a, c}. (33)

Here ε ∈ Z2 is the parity of the bracket. Let us emphasize that in the context
of this paper we consider symmetric brackets and hence exclude the usual
(antisymmetric even) Poisson brackets.

Notice that from (31-33) follows {ab, c} = (−1)ãεa{b, c} + (−1)b̃c̃{a, c}b.
In our notation the parity ε “sits” at the opening bracket.
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Definition 2.1. A long bracket on M is a bracket in the algebra V(M).
Notation: {ψ; χ}.

We use semi-colon for a long bracket, reserving comma for a bracket of
functions. A long bracket has weight λ ∈ R if w({ψ; χ}) = w(ψ)+w(χ)+λ.
For λ = 0 we have a generalization of “long brackets” {f ; s} considered in
section 2.1.

Since a long bracket on M is a usual bracket from the viewpoint of M̂ , it
can be specified by a master Hamiltonian Ŝ ∈ C∞(T ∗M̂) as

{ψ; χ} = ((Ŝ, ψ),χ) (34)

(see [14]). The parentheses denote the canonical Poisson bracket on the
cotangent bundle. For a bracket of parity ε and weight λ the master Hamil-
tonian has to be of the form

Ŝ = tλ
1

2

(
Sabpbpa + 2tγapapt + t2θp2

t

)
, (35)

where pa and pt are the momenta conjugate to xa and t respectively. Ŝ
is of parity ε. That means that for a long bracket we have the following
expression:

{ψ; χ} = tλ
(

Sab ∂ψ

∂xb

∂χ

∂xa
(−1)ãψ̃

+tγa

(
∂ψ

∂xa

∂χ

∂t
+ (−1)ãψ̃ ∂ψ

∂t

∂χ

∂xa

)
+ t2θ

∂ψ

∂t

∂χ

∂t

)
. (36)

Notice that ŵ = t∂t is the weight operator taking eigenvalues w on densities of
weight w. Formula (36) can be rewritten using ŵ applied to ψ and χ. Taking
off the hats, we come to an equivalent description of the long bracket (36) as
a “double pencil” of brackets { ; }w1,w2 :

{ψ(Dx)w1 ; χ(Dx)w2}w1,w2 =
(
Sab ∂bψ∂aχ(−1)ãψ̃

+γa
(
w2 ∂aψ χ + (−1)ãψ̃w1 ψ ∂aχ

)
+ w1w2 θ ψχ

)
(Dx)w1+w2+λ. (37)

We shall often suppress the subscripts w1, w2 in the notation. Equivalently,

{xa; xb} = Sab(Dx)λ

{xa; Dx} = γa(Dx)λ+1

{Dx; Dx} = θ(Dx)λ+2.
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It is useful to have the formulae for the transformation law of the coefficients
of a long bracket under a change of coordinates. One can deduce that

Sa′b′ = J−λ Sab ∂xb′

∂xb

∂xa′

∂xa
(−1)b̃′(ã′+ã) (38)

γa′ = J−λ
(
γa + Sab ∂b log J

) ∂xa′

∂xa
(39)

θ′ = J−λ
(
θ + 2γa∂a log J + Sab ∂b log J ∂a log J

)
(40)

where J = Dx′/Dx is the Jacobian (Berezinian). We shall be mainly inter-
ested in the case λ = 0. Then it follows that a long bracket incorporates a
bracket of functions as well as an “upper connection” γa. The space of all
long brackets is a vector space. For a fixed bracket of functions given by Sab,
upper connections γa form an affine space associated with the vector space
of vector fields on M . Similarly, for Sab, γa fixed, the coefficients θ make up
an affine space associated with the space of functions on M . See examples
later.

Remark 2.3. If we write the components of the tensor on M̂ specifying a
long bracket as a block matrix, then

(Ŝ âb̂) =

(
tλSab tλ+1γa

tλ+1γa tλ+2θ

)
(41)

and we can see a straightforward analogy with the Kaluza–Klein formalism
in field theory, where a metric tensor in a 5-dimensional spacetime combines
the usual metric tensor together with a gauge field and an extra scalar field
(the “Brans–Dicke field” of tensor-scalar theories of gravitation).

Now we are going to formulate the central theorem of this paper. It has
an abstract algebraic counterpart, which is almost trivial if properly stated.

Let A be a commutative associative algebra with a unit. Consider an
operator ∆ in A of parity ε and introduce an operation {a, b} by the formula

{a, b} = ∆(ab)−∆a b− (−1)ãεa ∆b + ∆(1) ab. (42)

Clearly, this operation has parity ε, is bilinear and symmetric: {a, b} =

(−1)ãb̃{b, a}, {ka, b} = (−1)k̃εk{a, b}. We shall call ∆ a generating operator
for (42).

Proposition 2.1.
(1) The operation (42) is a bracket, i.e., satisfies (33), if and only if

∆ is of order 6 2, in the algebraic sense. Two operators generate the same
bracket if and only if they differ by an operator of the first order.
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(2) Suppose that the algebra A possesses an invariant scalar product.
Given a bracket in A, a generating operator for it is uniquely determined by
the extra conditions ∆∗ = ∆ and ∆(1) = 0.

The first statement is essentially due to Koszul [16]. Recall that ord ∆ 6 2
if all the triple commutators [[[∆, a], b], c] vanish. The derivation property
of (42) w.r.t. each argument turns out to be equivalent to this condition. As
for the second statement, a proof is straightforward: let ∆′ be an arbitrary
operator generating a given bracket, then one can check that ∆ := ∆′′ −
∆′′(1), where ∆′′ := 1

2
(∆′ + ∆′∗), is a generating operator and it is the only

generating operator satisfying the conditions ∆∗ = ∆ and ∆(1) = 0.
For the algebra of densities V(M) we can find the generating operator

explicitly.
What is an operator of the second order in the algebra V(M)? It is

convenient to use the language of the extended manifold M̂ and then translate
back using the weight operator ŵ. Every operator in V(M) is equivalent to a
pencil of operators ∆w acting on w-densities (and mapping them to (w +λ)-
densities for operators/pencils of weight λ).

Lemma 2.1. An operator of order 6 2 in the algebra V(M) is equivalent to
a quadratic pencil of the form

∆w = ∆0 + wA + w2B, (43)

where ∆0 is an operator of order 6 2 acting on functions, A and B are
operators of order 6 1 and 0 respectively. (Note that A, B do not make
sense independently of ∆0.)

In the language of pencils, the adjoint pencil for any pencil ∆w, corre-
sponding to the adjoint of the operator in V(M), is given by (∆1−λ−w)∗,
because ŵ∗ = 1− ŵ.

Theorem 2.2. For a given long bracket on M , there exists a unique operator
∆ on V(M) that satisfies

∆∗ = ∆, ∆(1) = 0, (44)

i.e., ∆∗
w = ∆1−w, ∆0(1) = 0, and generates the bracket by the formula

{ψ; χ} = ∆(ψχ)−∆ψ · χ− (−1)ψ̃εψ ·∆χ. (45)
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If the bracket is given by (36) or (37), then ∆ is given by

∆ = tλ
1

2

(
Sab∂b∂a +

(
∂bS

ba(−1)b̃(ε+1) + (2ŵ + λ− 1)γa
)

∂a+

ŵ ∂aγ
a(−1)ã(ε+1) + ŵ(ŵ + λ− 1) θ

)
. (46)

Rewriting formula (46) as an operator pencil, we get:

∆w =
1

2

(
Sab∂b∂a +

(
∂bS

ba(−1)b̃(ε+1) + (2w + λ− 1)γa
)

∂a+

w ∂aγ
a(−1)ã(ε+1) + w(w + λ− 1) θ

)
. (47)

We call (47) the canonical pencil corresponding to the long bracket (36, 37).
Consider three important “values” of this pencil (where we set λ = 0).

The operator acting on functions (w = 0)

∆0 =
1

2

(
Sab∂b∂a +

(
∂bS

ba(−1)b̃(ε+1) − γa
)

∂a

)
; (48)

the operator acting on volume forms (w = 1)

∆1 =
1

2

(
Sab∂b∂a +

(
∂bS

ba(−1)b̃(ε+1) + γa
)

∂a + ∂aγ
a(−1)ã(ε+1)

)
; (49)

the operator acting on half-densities (w = 1
2
)

∆1/2 =
1

2

(
Sab∂b∂a + ∂bS

ba(−1)b̃(ε+1)∂a +
1

2
∂aγ

a(−1)ã(ε+1) − 1

4
θ

)
. (50)

All of them have the same principal symbol defined by the bracket on func-
tions. Notice that operators acting on functions and on volume forms do not
depend on the coefficient θ. Given the principal symbol, they are completely
defined by the “upper connection” γa. The operator on half-densities, on the
other hand, depends on γa only via ∂aγ

a(−1)ã(ε+1); instead, it includes θ in
its zeroth-order term. Neither operator allows to recover the long bracket by
itself; knowing the two ∆0 and ∆1/2 or ∆1 and ∆1/2 is sufficient. Outside
of these exceptional cases it is sufficient to know any single operator ∆w0 to
recover γa and θ, i.e. the whole pencil ∆w (see Theorem 2.5 below).

Thus a self-adjoint operator of the second order (in the algebraic sense) on
densities, vanishing on 1, contains and is completely defined by the following
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data: a bracket on functions, an “upper connection” γa on volume forms,
and a quantity θ analogous to the Brans–Dicke field. We shall elucidate the
meaning of this quantity in the examples below.

Theorem 2.2 can be proved by a direct calculation starting from a general
expression for a pencil ∆w with indeterminate coefficients depending on w.
The property (43) will come about automatically.

There is an alternative approach showing that the generating operator for
a given long bracket is nothing but the Laplace operator “div grad”. Though
this adds nothing in terms of explicit formulae, it will be useful for deducing
further properties of ∆.

Let us for a moment come back to a general algebraic situation. Let A be
an algebra with a scalar product as above. Consider a bracket in A. Define
grad a := {a, }. This is a derivation of A of parity ã + ε. The operator
grad: A → Der A is linear of parity ε. We have

grad(ab) = (−1)εãa (grad b) + (−1)(ã+ε)b̃b (grad a). (51)

We can introduce the Laplace operator in the algebra A, corresponding to a
given bracket, as

∆a := div grad a. (52)

It is an operator of parity ε.

Proposition 2.2. The Laplace operator satisfies ∆(1) = 0, ∆∗ = ∆, and

∆(ab) := ∆a b + (−1)εãa ∆b + 2{a, b} (53)

for all a, b.

Proof. Notice that grad(1) = 0. By (28), we have 〈∆a, b〉 = −〈1, {a, b}〉,
which implies 〈∆a, b〉 = (−1)ãε〈a, ∆b〉 due to the symmetry of the bracket.
Identity (53) follows by applying (26) to (51).

It follows that up to a factor of 2, (52) is the unique generating operator
for the bracket given by Proposition 2.1. Thus, for algebras with an invariant
scalar product we have the uniqueness and existence theorem for generating
operators:

Theorem 2.3. Let A be a commutative associative algebra with unit and an
invariant scalar product. For a given bracket in A, the unique generating
operator which is self-adjoint and vanishes on constants is, up to a factor of
2, the Laplace operator div grad.
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In particular, in the algebra V(M) we have for ψ = twψ(x)

grad ψ = tw+λ(−1)ãψ̃
(
Sab∂bψ + γaw ψ

)
∂a + tw+λ+1

(
γa∂aψ + θwψ

)
∂t. (54)

Using the formula for the divergence (23), we after simplification get

∆ψ =
1

2
div grad ψ =

tλ

2

(
Sab∂b∂a+

(
∂bS

ba(−1)b̃(ε+1) + (2w + λ− 1)γa
)

∂a+

w∂aγ
a(−1)θ(ε+1) + w(w + λ− 1)θ

)
(twψ)

(where we have restored the factor 1/2), and finally we arrive at formu-
lae (46), (47).

2.4 Properties of the canonical pencil. Examples

Let us study the change of the canonical pencil under a change of γa, θ with
Sab fixed. Suppose γ̄a = γa + Xa, θ̄ = θ + ξ. Let ∆̄w denote the pencil
corresponding to γ̄a, θ̄, and ∆w denote the pencil corresponding to γa, θ.
Let ∆ and ∆̄ be the corresponding operators in the algebra V(M). Since
the canonical pencil depends linearly on the data Sab, γa, θ, the difference
∆̄w −∆w is the canonical pencil corresponding to the long bracket given by
the matrix (

0 tλ+1Xa

tλ+1Xa tλ+2ξ

)
.

Immediately follows that Xa and ξ transform as

Xa′ = J−λXa ∂xa′

∂xa

ξ′ = J−λ (ξ + 2Xa∂a log J) .

Hence

X = Xa∂a +
1

2
ξ ŵ

is a vector field on M̂ . Recall that there is a canonical divergence on M̂ :

div X = ∂aX
a(−1)ã(ε+1) + (λ− 1)

1

2
ξ. (55)

Theorem 2.4. Under a change of γa, θ with Sab fixed we have

∆̄−∆ =
1

2
X (2ŵ + λ− 1) +

1

2
div X ŵ, (56)

or, in terms of pencils:

∆̄w −∆w =
1

2
(2w + λ− 1)

(
Xa∂a +

1

2
wξ

)
+

1

2
w div X. (57)
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Corollary 2.1. Decomposing X for λ 6= 1 we obtain:

∆̄w −∆w =

(
w − λ + 1

2

)
Lw

X +
w(w − 1)

λ− 1
div X (58)

where by

Lw
X := Xa∂a − w

λ− 1
∂aX

a(−1)ã(ε+1) (59)

we denoted the divergence-free part of X.

In the case λ = 0 which is particularly interesting for us, (59) is the usual
Lie derivative LX of w-densities along the vector field X on M , and we have

∆̄w −∆w =

(
w − 1

2

)
LX − w(w − 1) div X (60)

where the canonical divergence of X = Xa∂a + (1/2)ξŵ is expressed as

div X = ∂aX
a(−1)ã(ε+1) − 1

2
ξ.

In the rest of this subsection we work with operators of weight λ = 0.
Consider important constructions of canonical pencils.
As follows from (60), the subspace of canonical pencils with Sab = 0 is

the direct sum of two natural subspaces: V1 = {(2w− 1)LX |X ∈ Vect(M)}
and V2 = {w(w − 1)f | f ∈ C∞(M)}. The following example provides a
subspace which is complementary to V1 ⊕ V2.

Example 2.2 (Canonical pencil associated with a volume form). Fix
a basis volume form ρ = ρDx. For a given bracket of functions specified by
a tensor Sab, the following “Laplace–Beltrami type” formula

∆LB(ψ(Dx)w) :=
1

2
ρw−1∂a

(
ρSab∂b(ρ

−wψ)
)
(−1)ã(ε+1) (Dx)w (61)

defines a self-adjoint operator ∆LB on densities, vanishing on the unit. Ex-
panding (61) and comparing with (47), it is easy to see that it gives a canon-
ical pencil with the following γa and θ:

γa = −Sab∂b log ρ

θ = Sab∂b log ρ · ∂a log ρ = γaγa.

Here the upper connection comes from a genuine connection γa := −∂a log ρ
in Vol M (which is flat).
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It was exactly the pencil ∆LB
w of Example 2.2 that was the main object

of study in [14].
Using the canonical pencil ∆LB

w associated with a volume form it is pos-
sible to give a convenient parametrization of all canonical pencils. If we fix
a volume form ρ, then every canonical pencil has the appearance

∆w = ∆LB
w +

1

2
(2w − 1)LX + w(w − 1)f (62)

for some vector field X and a scalar function f . Conversely, every pencil (62)
is a canonical pencil. This is a decomposition (depending on a choice of ρ)
of the space of canonical pencils into the direct sum of three subspaces. If
∆w is given by (62), then

γa = −Sab∂b log ρ + Xa

θ = Sab∂b log ρ ∂a log ρ + 2∂aX
a(−1)ã(ε+1) + f.

We can apply this to obtain a coordinate-free decomposition of an ar-
bitrary second order linear differential operator acting on densities of fixed
weight w0 on a manifold M .

Any such operator in local coordinates has the appearance

L =
1

2
Sab ∂b∂a + T a∂a + R. (63)

Clearly, the principal symbol Sab defines a bracket on M ; from the subprin-
cipal symbol of L one can construct an upper connection γa in Vol M by the
formula

γa =
1

2w0 − 1

(
2T a − ∂bS

ba(−1)b̃(ε+1)
)

if w0 6= 1

2
. (64)

In the case w0 = 1/2 the subprincipal symbol 2T a − ∂bS
ba(−1)b̃(ε+1) is a

vector field, so it does not give any upper connection.
If we choose a volume form ρ = ρDx, then we can write L as

L = ∆LB
w0

+ LQ + f (65)

where Q is a vector field and f is a scalar function on M , both uniquely
defined by L. LQ stands for a Lie derivative on w0-densities. Indeed, let
Γa = −∂a log ρ be the connection in Vol M generated by ρ, and Γa = SabΓb

be the corresponding upper connection. The vector field Q is defined by the
formula

Qa =
1

2
(2w0 − 1) (γa − Γa) =

1

2

(
2T a − ∂bS

ba(−1)b̃(ε+1) − (2w0 − 1)Γa
)

.

(66)
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(Notice that Q makes sense for all w0 including w0 = 1/2.) Then one can see
that L−∆LB

w0
−LQ is an operator of the zeroth order, i.e. the multiplication

by a scalar function, hence we get (65). Formula (65) can be viewed as a
replacement of the coordinate description (63) where instead of coefficients
depending on a coordinate system we consider a vector field Q and a scalar
function f depending on a volume form ρ.

What is the relation of an individual operator L with canonical pencils?
We can use decompositions (62) and (65). The general picture is as

follows. There is a specialization map ∆w 7→ ∆w0 = L from the linear space
of all canonical pencils ∆w to the linear space of all second order differential
operators on densities of a fixed weight w0. This map is an isomorphism for
all non-singular values w0 6= 0, 1, 1

2
:

Theorem 2.5. Let L be a second order differential operator acting on densi-
ties of weight w0. If w0 6= 0, 1, 1

2
, then there exists a unique canonical pencil

∆w passing through L, i.e. L = ∆w0. Namely,

∆w = ∆LB
w +

2w − 1

2w0 − 1
LQ +

w(w − 1)

w0(w0 − 1)
f (67)

where Q and f are given by (65).

For w0 = 1
2

the image of the specialization map consists of all self-adjoint
operators (recall that the space of half-densities has a scalar product) and
the kernel is the subspace V1 = {(2w − 1)LX}. For w0 = 0 the image of
the specialization map consists of all operators vanishing on constants and
the kernel is the subspace V2 = {w(w − 1)f}. Similarly we can describe the
specialization map for w0 = 1.

Example 2.3 (Canonical pencil associated with a connection). The
construction of Example 2.2 can be generalized for an arbitrary connection
γa in Vol M : given a bracket of functions, both γa and θ can be defined by
the connection as γa = Sabγb and θ = γaγa. In a more abstract language,
the operator ∆w is (up to 1/2) the Laplace operator div grad on w-densities,
where grad is the covariant gradient w.r.t. the induced connection wγa, and
div = divγ is the divergence of vector fields on M defined by the connection
γa in Vol M . In particular, if a linear connection in TM is given, there is an
associated connection in the bundle Vol M , namely γa = −Γb

ab(−1)b̃, in the
standard notation, with the curvature given by the trace of the Riemann ten-
sor −Rc

abc(−1)c̃. (Notice that this gives an example of a divergence operator
with a possibly non-zero curvature.)

Examples 2.2 and 2.3 explain the geometrical meaning of θ.

20



Consider the restriction of the general formulae for the transformation of
the canonical pencil under a change of γa, θ to canonical pencils defined by
a connection γa. A change of connection is given by a covector field Xa:

γ̄a = γa + Xa. (68)

Since θ is defined by γa as γaγa, we get for its change

θ̄ = θ + 2γaXa + XaXa. (69)

Proposition 2.3. For operators defined by a bracket on M and a connection
γa, the change of the operator under a change of connection is given by the
formula

∆̄−∆ =
1

2
(2w − 1)LX − w(w − 1)

(
divγ X − 1

2
XaXa

)
(70)

where γ̄a = γa + Xa, Xa = SabXb.

It follows that covector fields X considered as functions of two connec-
tions: Xa = Xa(γ, γ̄) = γ̄a − γa, possess the following groupoid property. If
for three connections γ, γ̄,̄̄ γ with γ̄a = γa + Xa, ¯̄γa = γ̄a + Ya the equations

divγ X − 1

2
XaXa = 0 (71)

divγ̄ Y − 1

2
Y aYa = 0 (72)

are satisfied, then the equation

divγ(X + Y )− 1

2
(X + Y )a(X + Y )a = 0 (73)

is satisfied for X + Y . Equations (71), (72), (73) are generalization of the
“Batalin–Vilkovisky equations” of the “master groupoid” discovered in [14].
It follows that the specialization of ∆w to w0 = 1

2
(operators on half-densities)

does not depend on a connection γa but only on its orbit w.r.t. a groupoid
action: γa 7→ γa + Xa where X satisfies (71).

Remark 2.4. A special feature of the connection in Example 2.2 is flat-
ness. Every flat connection in Vol M is locally represented by a 1-form
γa = −∂a log ρ. On the intersections we get log ρ− log ρ′ = log J + c, where
c is a local constant. Clearly, c is a 1-cocycle. The local functions ρ can
be glued to a nonvanishing volume form if and only if the cohomology class
[c] ∈ H1(M ;R) equals zero. We may say that every flat connection in Vol M
comes from a volume form up to the described “twist”.

It is tempting to relate flatness of a connection with properties of the
operator ∆ and the long bracket. This we shall do in Section 3.
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3 Jacobi identity and flatness

In this section we shall focus on the case of odd operators and odd brackets.
For them the general analysis performed above can be advanced further.
The main tool of classification will become the operator ∆2. There is a sharp
contrast with even operators and the corresponding even brackets, for which
no similar development is possible.

3.1 Jacobi identity for a long bracket

In the previous sections, a “bracket” meant just a bilinear concomitant sat-
isfying the derivation property w.r.t. each of its arguments. Now we want
to move further and explore the possibility of imposing a Jacobi identity. It
turns out, however, that this will be possible only for odd brackets. Indeed,
notice that all brackets considered above are symmetric — compared to Lie
brackets, which are antisymmetric. What kind of a Jacobi identity can be
introduced for a symmetric bracket? The usual Jacobi identity in Lie al-
gebras can be reformulated as either of the following properties: the linear
map a 7→ [a, ] takes the bracket to the commutator of operators, or the
operator [a, ] for each element of the algebra is a derivation of the bracket.
The symmetry and linearity conditions for our brackets have the form

{a, b} = (−1)ãb̃{b, a} (74)

{ka, b} = (−1)k̃εk{a, b}, {a, bk} = {a, b}k; (75)

hence it would make sense to consider a modified bracket [a, b] := (−1)ãε{a, b},
for which the same conditions read as

[a, b] = (−1)ãb̃+ãε+b̃ε[b, a]

[ka, b] = k[a, b], [a, bk] = [a, b]k.

Now, for an even bracket we have [a, b] = {a, b}, and symmetry: [a, b] =

(−1)ãb̃[b, a], still holds. Since the commutator of operators is antisymmetric,

[A,B] = −(−1)ÃB̃[B, A], there is no hope for a 7→ ad a = [a, ] to take
brackets to brackets. Is it possible, however, to have ad a as a derivation of
the even bracket? Suppose this is satisfied:

[a, [b, c]] = [[a, b], c] + (−1)ãb̃[b, [a, c]] (76)

for all a, b, c. Rearranging cyclically and adding with suitable signs, we arrive
at the following
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Proposition 3.1. If for an even symmetric bracket the “fake Jacobi” prop-
erty (76) is satisfied, then all triple brackets vanish: [[a, b], c] = 0.

In the differential-geometric situation for a bracket [f, g] = Sab∂bf∂ag
with a symmetric even tensor Sab, this implies Sab ≡ 0.

Conclusion: there is no way of imposing Jacobi identity for an even sym-
metric bracket. Hence, we have to concentrate on odd brackets.

From now on all brackets are odd.
For an odd symmetric bracket {a, b}, we have [a, b] = (−1)ã{a, b}, and

the symmetry condition (74) for {a, b} becomes the antisymmetry condition
for [a, b] with a shift of parity:

[a, b] = −(−1)(ã+1)(b̃+1)[b, a]

The standard Jacobi condition w.r.t. the shifted parity for [a, b] = (−1)ã{a, b},
translates into the condition

{a, {b, c}} = (−1)ã+1{{a, b}, c}+ (−1)(ã+1)(b̃+1){b, {a, c}}, (77)

or
(−1)ãc̃{{a, b}, c}+ (−1)c̃b̃{{c, a}, b}+ (−1)b̃ã{{b, c}, a} = 0 (78)

for the symmetric bracket {a, b}. Notice that in {a, b} the left opening bracket
is odd. Historically, when Lie superalgebras first appeared in topology, they
were written using a symmetric bracket, and the Jacobi identity appeared
for them exactly in the form (78).

In the sequel we continue to work with the symmetric brackets. (Notice
the different choice of signs in [14].)

After this algebraic digression, let us return to our geometric situation.
Suppose on a manifold M is given an odd symmetric bracket. It is specified
by the master Hamiltonian as

{f, g} = ((S, f), g) = Sab ∂bf∂ag(−1)ãf̃ (79)

where S = 1
2
Sabpbpa is an odd function on T ∗M . Parentheses stand for the

canonical Poisson bracket on T ∗M . Clearly, see, e.g., [14], the Jacobi identity
for (79) is equivalent to the equation

(S, S) = 0 (80)

on T ∗M . (Notice that for an even symmetric bracket with the even master
Hamiltonian this would be an empty condition.)

Let us apply this to a long bracket on M , which is a usual bracket on the
manifold M̂ . Consider for simplicity long brackets of weight 0.

23



For an odd long bracket specified by a master Hamiltonian Ŝ by for-
mula (34) (with λ = 0) we see that it satisfies the Jacobi identity if and only
if Ŝ satisfies the equation (Ŝ, Ŝ) = 0, with the canonical Poisson bracket on
T ∗M̂ .

To get it more explicitly, we can express the canonical bracket on T ∗M̂
in a “(D + 1)-formalism”, separating variables related to M from the extra
variables t, pt. For Hamiltonians on the extended space M̂ we have:

(F, G)M̂ = (F,G)M +
∂F

∂pt

∂G

∂t
− ∂F

∂t

∂G

∂pt

,

where for clarity we denoted by (F, G)M̂ the canonical bracket on T ∗M̂ and by
(F, G)M the bracket on T ∗M with t, pt considered as parameters. Applying
this to

Ŝ =
1

2

(
Sabpbpa + 2tγapapt + t2θp2

t

)
, (81)

we obtain the following theorem. Let

S =
1

2
Sabpbpa (82)

be the master Hamiltonian for the bracket on M , and

γ = γapa (83)

be the local Hamiltonian specifying the upper connection in Vol M .

Theorem 3.1. The Jacobi identity for an odd long bracket of weight zero
specified by the “extended” master Hamiltonian (81) is equivalent to the fol-
lowing equations:

(S, S) = 0 (84)

(S, γ) = 0 (85)

(S, θ) + (γ, γ) = 0 (86)

(γ, θ) = 0 (87)

Let us analyze the geometric meaning of these equations.
Equation (84) means that the bracket on M satisfies the Jacobi identity,

i.e., M is an odd Poisson (Schouten) manifold with the Poisson tensor S. It
follows that the operator D := (S, ) on functions on T ∗M is a differential.
Hence we can rewrite (85) as

Dγ = 0, (88)
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and (86) as
Dθ + (γ, γ) = 0. (89)

Equation (88) is nothing but the condition of flatness for the upper connec-
tion γ. Let us explain.

For any upper connection associated with an odd bracket, curvature
makes sense if the bracket is a Poisson bracket. Since for “curvature” we
need a Lie bracket (a commutator) we cannot discuss curvature for upper
connections associated with arbitrary symmetric tensors Sab, for example,
when Sab is even.

Remark 3.1. The curvature of a usual (“lower”) connection is defined either
in terms of the exterior differential of a local connection form or by comparing
the commutator of covariant derivatives with the commutator of vector fields.
For an upper connection or a “contravariant derivative” ∇ω, curvature can
be introduced in terms of the bracket of 1-forms that comes from a Poisson
structure.

Remark 3.2. This bracket of 1-forms is a particular case of the bracket
on arbitrary forms known as the “Koszul bracket” for the even Poisson case.
Any even Poisson structure induces an odd Koszul bracket of forms such that
raising indices by the Poisson tensor takes it to the canonical odd Schouten
bracket of multivector fields. The usual exterior differential d is mapped
to the “Lichnerowicz operator”, i.e. the Schouten bracket with the Poisson
tensor. Hence, for an even Poisson bracket, the “curvature form” of any
associated upper connection can be defines as a 2-vector field. An analog of
this construction can be carried over for odd Poisson brackets. Such bracket
induces an even bracket on forms (an analog of the Koszul bracket), such
that it is mapped by raising indices by Sab to the canonical Poisson bracket
of functions on T ∗M . In this case the exterior differential d is mapped to
the operator D = (S, ). In particular, both upper “connection form” and
“curvature form” are Hamiltonians linear and quadratic in pa, respectively.

Example 3.1. Since D2 = 0, the condition of flatness (88) will be identically
satisfied if γ = −D log ρ = −Sab ∂b log ρ for some ρ. This is exactly the case of
the upper connection coming from a volume form. Substituting this into (89)
we get Dθ + (D log ρ,D log ρ) = 0, or D

(
θ − (D log ρ, log ρ)

)
= 0, since D is

a derivation of the canonical bracket. As the last term is {log ρ, log ρ}, we
have θ = {log ρ, log ρ} + (Casimir functions). Notice that (87) is then satisfied
identically.

There is an important application to the case when the bracket of func-
tions on M is non-degenerate. Then M is an odd symplectic manifold with
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the symplectic form

ω =
1

2
dxa dxb ωba (90)

where (ωab) is the inverse matrix for (Sab). To the upper connection γa

corresponds the usual connection γa = ωabγ
b. The equation (88) for γa

is equivalent to d(dxaγa) = 0, i.e., to the flatness of γa in the usual sense.
Any flat connection in Vol M comes from a volume form up to a twist (see
Remark 2.4), so we can rewrite γa as γa = −∂a log ρ. We find ourselves in
the situation of Example 3.1. In particular, for the “Brans–Dicke field” θ we
get θ = {log ρ, log ρ} = γaγa (if we assume that there are no odd constants).
We arrive at the following theorem:

Theorem 3.2 (“Existence of action”). If Sab is non-degenerate, then the
Jacobi identity for the long bracket is equivalent to the following conditions:
(1) M is symplectic
(2) γa = −Sab∂b log ρ for some ρ = eA (a local volume form)
(3) θ = γaγa.

The logarithm of a volume form has the physical meaning of “action”.
Theorem 3.2 tells that if an odd symplectic bracket can be extended to a long
bracket of densities satisfying the Jacobi identity, there is an action function
A (at least, local) such that the long bracket comes from the volume form
ρ = eA Dx determined by this action.

For an arbitrary long bracket the coefficients Sab, γa and θ are indepen-
dent degrees of freedom. We see that the Jacobi identity eliminates some de-
grees of freedom, reducing a long odd Poisson bracket in the non-degenerate
case to the Poisson bracket of functions plus a volume form (in general,
twisted) as an extra piece of data.

The long bracket arising from a volume form ρ is simply

{ψ; χ} = {ρ−w1ψ, ρ−w2χ}ρw1+w2 (91)

for densities of weights w1 and w2, where at the r.h.s. stands the bracket of
functions defined by Sab. Notice that the r.h.s. of (91) is well-defined even
for local volume forms with a non-trivial twist (see Remark 2.4).

3.2 ∆2 and flatness

Let us first discuss a purely algebraic situation.
Let ∆ be a second order operator in a commutative associative algebra

A with a unit. Consider the operator ∆2. In general, ord ∆2 6 4. If,
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however, ∆ is odd, then ∆2 = 1
2
[∆, ∆], hence ord ∆2 6 3. In the sequel we

consider odd operators. What is the meaning of the conditions ord ∆2 6 k
(for k = 2, 1, 0)?

Proposition 3.2. The condition ord ∆2 6 2 is equivalent to the Jacobi
identity for the bracket generated by ∆.

Recall that the formula for the bracket is (for odd ∆)

{a, b} = ∆(ab)− (∆a) b− (−1)ãa (∆b) + ∆(1) ab. (92)

By redefining ∆ as ∆−∆(1) the last term can be eliminated.
Proposition 3.2 must be evident, since the bracket (92) is nothing but the

polarized principal symbol of ∆, and vanishing of [∆, ∆] modulo operators
of order 6 2 is equivalent to the vanishing of the canonical Poisson bracket
of the principal symbol of ∆ with itself.

Proposition 3.3. The condition ord ∆2 6 1 is equivalent (in addition to
the Jacobi identity for the bracket) to the derivation property

∆{a, b} = {∆a, b}+ (−1)ã{a, ∆b}. (93)

Notice that if ∆(1) = 0, then ord ∆2 6 1 means that ∆2 is a derivation
of the algebra A. Proposition 3.3 then means that ∆2 is a derivation of
the associative multiplication if and only if ∆ is a derivation of the bracket.
(Then ∆2 is also a derivation of the bracket.) See [15].

Finally, if ord ∆2 = 0, this basically means that ∆2 = 0. All previous
properties hold, i.e., ∆ generates an odd Poisson bracket for which it is a
derivation; and in addition ∆ is a differential.

Odd Poisson algebras endowed with an operator ∆ generating the bracket
and satisfying ∆2 = 0 have received the name of Batalin–Vilkovisky algebras.
We see that imposing the conditions ord ∆2 6 k, k = 2, 1, 0, allows to recover
the defining identities of the Batalin–Vilkovisky algebras step by step.

Now let us return to the differential-geometric situation. Let A be the
algebra of smooth functions on a manifold M . Any odd operator ∆ in A of
order 6 2,

∆ =
1

2
Sab ∂b∂a + T a ∂a, (94)

is specified by a quadratic Hamiltonian S = 1
2
Sabpbpa and an associated

upper connection γa = ∂bS
ba − 2T a in the bundle Vol M (compare (48)).

(We have set for convenience ∆(1) = 0.)
Suppose ord ∆2 6 2. That means (S, S) = 0, and the odd bracket gener-

ated by ∆ makes M into a Schouten ( = odd Poisson) manifold.
By Proposition 3.3, ∆ is a derivation of the Schouten bracket if and only

if ∆2 is a vector field (which is, moreover, a Poisson vector field).
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Theorem 3.3. Let ∆ be an arbitrary odd second order operator (94), such
that ∆(1) = 0. The properties that ∆ is a derivation of the corresponding
Schouten bracket and that ∆2 is a Poisson vector field, are equivalent to the
flatness of the upper connection:

Dγ = 0, (95)

where D = (S, ) and γ = γapa.

Corollary 3.1. Let the upper connection γa come from a usual connection
γa in Vol M as γa = Sabγb. Then ∆ is a derivation of the Schouten bracket
(equivalently, ∆2 is a Poisson vector field) if and only if γa is flat “in the
directions of Hamiltonian vector fields”, i.e. S∗(dγ#) = 0 where S∗(dxa) =
Sabpb and γ# = γa dxa. In particular, ∆ is a derivation of the Schouten
bracket in the case if γa is flat.

Indeed, Dγ = S∗(dγ#), as raising indices by Sab takes d to D, see Re-
mark 3.2.

Remark 3.3. A statement equivalent to Corollary 3.1 was obtained in the
important paper [15]. Notice that the class of operators (94) where γa comes
from a connection in Vol M coincides with the class of operators given by
“abstract divergences” (see Remark 2.1). Divergence operators in Vect(M)
and connections in Vol M are equivalent notions. In particular, a connection
is flat if the corresponding divergence is flat, i.e., satisfies (30).

Consider now the algebra of densities V(M) endowed with the canonical
scalar product (20) and an odd operator ∆ in it. Suppose ∆∗ = ∆ and
∆(1) = 0. Such operators (in other words, odd canonical pencils) are in 1−1
correspondence with odd brackets in V(M), i.e., odd long brackets on M
(Theorem 2.2).

Theorem 3.4. Let ∆w be the canonical pencil corresponding to an odd long
bracket on M . If the long bracket satisfies the Jacobi identity, then

∆2
w = LX

where X is a Poisson vector field on M . Here LX stands for the Lie derivative
on w-densities.

(Let us emphasize that X is a vector field on M , which is Poisson w.r.t.
the odd bracket of functions.)

Indeed, by Proposition 3.2, the Jacobi identity for a long bracket is equiv-
alent to ord ∆2 6 2. However, since ∆ can be constructed as the Laplace
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operator corresponding to the canonical divergence on M̂ (see Theorem 2.3),
there is a “jump”: if ord ∆2 6 2, then automatically ord ∆2 6 1. This is
an algebraic fact following from the flatness of the canonical divergence (30);
compare with Corollary 3.1 and the remark after it. Hence ∆2 = X is a
vector field on M̂ .

Lemma 3.1. The vector field X = ∆2 on M̂ is divergence-free:

div X = 0, (96)

where div in (96) is the canonical divergence (23).

Not proving this simple lemma (compare Proposition 2.2 in [14]), we
conclude, by Theorem 2.1, that X = LX for a vector field on M (which
must be Poisson), and Theorem 3.4 follows.

Example 3.2. Consider the symplectic case, i.e., when the bracket on M
is non-degenerate. Then, by Theorem 3.2, the Jacobi identity for the long
bracket implies that γa comes from a flat connection γa = −∂a log ρ in Vol M ,
and the canonical pencil ∆w = ∆LB

w is the Laplace–Beltrami pencil of Ex-
ample 2.2. Then ∆2

w = LX for the Hamiltonian vector field

X = grad
∆can(ρ

1/2)

ρ1/2
, (97)

where ∆can stands for the canonical Laplacian on half-densities [10, 11]. No-
tice that the Hamiltonian in (97) is well-defined even if the volume form exist
only locally. A condition ∆2

w = 0 will be equivalent to the Batalin–Vilkovisky
equation

∆can(ρ
1/2) = 0 (98)

or
∆can

(
eA Dx

)1/2
= 0 (99)

if ρ = eA.

4 Generalizations

4.1 Operators and brackets of non-zero weight

The study of operators and brackets of non-zero weight can have a consider-
able interest.

Let us briefly indicate some of the statements and formulae for λ 6= 0
which we have omitted in the previous sections.
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For a canonical pencil ∆w the singular points will be w = 0, w = 1−λ
2

,
w = 1−λ. In particular, the role of half-densities will be played by densities
of weight 1−λ

2
for general λ.

Sab is no longer a tensor field; it is a tensor density of weight λ. Similar
is true for γa. It is an upper “connection-density”. In contrast, γa (when
it appears) has to be a genuine connection; it will acquire weight by raising
indices with the help of Sab.

An interesting example of operators of non-zero weight acting on densi-
ties is well known in integrable systems. Namely, consider a one-dimensional
manifold M with a coordinate x, and set λ = 2. By inspection of formu-
lae (38)–(40) we see that the parameters s, γ, θ of the canonical pencil (which
we have for convenience multiplied by 2)

∆w = s ∂2 +
(
sx + (2w + 1)γ

)
∂ + w γx + w(w + 1) θ,

where ∂ = d/dx, under a change of a coordinate y = y(x) transform as
follows:

s′ = s (100)

γ′ =
yxγ + yxxs

(yx)2
(101)

θ′ =
(yx)

2θ + 2yxyxxγ + (yxx)
2s

(yx)4
(102)

We used dashes for the parameters in a new coordinate system. As s is
invariant, we can set s = 1. Then we get

∆w = ∂2 + (2w + 1) γ ∂ + w γx + w(w + 1) θ

where γx = dγ/dx. In particular, for w = −1
2

we obtain a ‘Sturm–Liouville’
operator

L = ∆− 1
2

= ∂2 − 1

2

(
γx +

1

2
θ

)
(103)

with the potential U = 1
2

(
γx + 1

2
θ
)
. It maps densities of weight −1

2
to

densities of weight 3
2
. A known fact about such Sturm–Liouville operators

L = ∂2−U is that U has a transformation law involving the Schwarz deriva-
tive:

U ′ = (yx)
−2

(
U − 1

2
S[y(x)]

)
,

where S[y(x)] = yxxx

yx
− 3

2

(
yxx

yx

)2
(see, e.g., [6]). In our parametrization (103),

it follows from the transformation laws (101), (102) for γ and θ, which are
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a very special case of the transformation law for the coefficients of a long
bracket.

It will be interesting to study the geometrical meaning of this relation
further, in particular, to explore possible links of our constructions with
projective connections.

Speaking about odd brackets of weight λ 6= 0, we can notice that in the
odd case “Poisson brackets of functions” make no sense separately from the
brackets of densities, since the bracket of functions is a density of weight λ,
so the Jacobi identity has to involve densities of all weights. Theorem 3.1 is
generalized for arbitrary λ as follows:

Theorem 4.1. The Jacobi identity for an odd long bracket of weight λ spec-
ified by the master Hamiltonian (35) is equivalent to the following equations:

(S, S) = 2λSγ (104)

(S, γ) = λSθ (105)

(S, θ) + (γ, γ) = λγθ (106)

(γ, θ) = 0 (107)

In equations (104)–(107) the quantities S, γ and θ are considered as
functions on T ∗M whose definition depends on coordinates or on a choice
of volume form on M . In particular, as for λ 6= 0 the Hamiltonian S takes
values in λ-densities, the canonical bracket (S, S) does not have an invariant
meaning. This is indicated by the presence of a non-invariant term Sγ in the
r.h.s. of (104).

It will be interesting to study for λ 6= 0 the examples of a non-degenerate
Sab (a “symplectic structure taking values in densities”) and a long bracket
coming from a connection or a volume form.

4.2 Operators of higher order

It is tempting to extend the classification of operators and brackets that we
have obtained for the operators of order 6 2 to operators of higher order. At
the moment, we have more questions than answers concerning this case.

First of all, the algebraic framework for brackets generated by an operator
∆ is as follows. For simplicity of notation let ∆ be even and A be purely
even. Of course, the interesting case is that of an odd ∆. Recall that an
operator ∆ acting in a commutative associative algebra A has order 6 n
if and only if all (n + 1)-fold commutators [. . . [[∆, a1], a2], . . . , an+1] vanish
(where ai are arbitrary elements of A). Define a sequence of “higher brackets”

31



corresponding to the operator ∆ as k-fold commutators with elements of A
applied to 1:

{a} = [∆, a](1) = ∆a−∆(1) · a
{a, b} = [[∆, a], b](1) = ∆(ab)−∆(a) · b− a ·∆(b) + ∆(1) · ab

{a, b, c} = [[[∆, a], b], c](1) = ∆(abc)−∆(ab) · c−∆(ac) · b−∆(bc) · a
+ ∆a · bc + ∆b · ac + ∆c · ab−∆(1) · abc

. . .

up to the n-fold bracket, which simply coincides with the n-fold commuta-
tor. The brackets higher than the n-th vanish. Notice that all the brackets
{a1, . . . , ak} are symmetric. Each of them is the obstruction for the previous
bracket to be a derivation (w.r.t. each of the arguments). The k-th bracket is
an operator of order n−k+1 on each of its arguments. The top n-th bracket
{a1, . . . , an} is a multi-derivation. It is exactly the polarized principal symbol
of ∆, i.e., the principal symbol considered as a symmetric multilinear func-
tion. We can call the constructed sequence of higher brackets the sequence
of polarizations of the operator ∆.

For example, for an operator of order 6 2 we essentially have just one
bracket,

{a, b} = [[∆, a], b](1) = ∆(ab)−∆(a) · b− a ·∆(b) + ∆(1) · ab,

which is a bi-derivation. It was our main object in the previous sections.
(The unary bracket {a} = [∆, a](1) = ∆a − ∆(1) · a was used when we
redefined ∆ so to have ∆(1) = 0.)

Remark 4.1. The definition of the order of an operator in terms of commuta-
tors is traced back to Grothendieck. The above sequence of polarizations for
∆ essentially coincides with the operations Φk considered by Koszul in [16].

For an odd operator ∆ of order 6 n, imposing the conditions ord ∆2 6 r,
with r = 2n − 2, 2n − 3, . . ., as in Section 3, will lead to an hierarchy of
identities involving the associative multiplication, brackets of various orders
and ∆. The resulting structure can be loosely called a “homotopy Batalin–
Vilkovisky algebra”. This should be further explored.

It is instructive to write down the higher brackets explicitly for an oper-
ator of order 6 3 in a differential-geometric setting. Consider

∆ =
1

6
Sabc ∂c∂b∂a +

1

2
P ab ∂b∂a + T a ∂a + R. (108)
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Let us set R = 0 for simplicity. Then {f} = ∆f ,

{f, g} =
1

2
Sabc

(
∂cf · ∂b∂ag + ∂c∂bf · ∂ag

)
+ P ab ∂bf · ∂ag

and
{f, g, h} = Sabc ∂cf ∂bg ∂ah.

An analog of the question considered in the previous sections is how to recover
∆ from the binary and ternary brackets, {f, g} and {f, g, h}. Clearly, the
problem is to identify in geometrical terms extra data that can be constructed
from ∆ and together with the brackets will allow to recover ∆.

For operators of the second order such information is contained in the
subprincipal symbol, which we are able to interpret as an upper connection.
However, for the an operator of the third order (108), this will not give a
solution, since T a will not enter sub ∆. One could look for something like
iterated “sub-subprincipal” symbols, possibly defined using several volume
forms.

With this might be related the following construction for operators of the
second order: consider the subprincipal symbol as a vector field depending on
a connection and take its divergence w.r.t. the other connection. Notice that
for operators defined by a (genuine) connection this is an object depending
on three connections. Taking one of them at the midpoint of the segment
joining the other two, we arrive at a construction of a scalar function from
two genuine connections in Vol M if a second order principal symbol S is
given:

c(γ0, γ1) = div γ0+γ1
2

(γ1 − γ0) = ∂a(γ
a
1 − γa

0 )− 1

2
(γ0a + γ1a)(γ

a
1 − γa

0 ) (109)

(indices are raised by the tensor Sab). It is exactly the ‘Batalin–Vilkovisky’
term divγ X− 1

2
XaX

a appearing in the equation (70) for the transformation
of the canonical pencil corresponding to a connection under a change of
connection. (Notice that a convex combination of connections like 1

2
(γ0 +γ1)

makes good sense.)
The function (109) satisfies the cocycle property

c(γ0, γ1) + c(γ1, γ2) = c(γ0, γ2)

or
div γ0+γ1

2
(γ1 − γ0) + div γ1+γ2

2
(γ2 − γ1) = div γ0+γ2

2
(γ2 − γ0)

which is just the groupoid property of the ‘Batalin–Vilkovisky equations’ (71).
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