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Abstract: We consider semidensities on a supermanifold E with an odd symplectic struc-
ture. We define a new ∆-operator action on semidensities as the proper framework for
Batalin-Vilkovisky formalism. We establish relations between semidensities on E and
differential forms on Lagrangian surfaces. We apply these results to Batalin-Vilkovisky
geometry. Another application is to (1.1)-codimensional surfaces in E. We construct a
kind of ”pull-back” of semidensities to such surfaces. This operation and the ∆-operator
are used for obtaining integral invariants for (1.1)-codimensional surfaces.
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Semidensities on Odd Symplectic Superspace
1. Introduction

A density of weight σ is a function on a manifold (supermanifold) subject to the condi-
tion that under change of coordinates it is multiplied by the σ-th power of the determinant
(Berezinian) of the transformation. A density of weight σ = 1 is a volume form. (We avoid
discussion of orientation here.)

In this paper we study semidensities (densities of weight σ = 1/2) on a supermanifold
provided with an odd symplectic structure (an odd symplectic supermanifold). We intro-
duce a differential operator ∆, which acts on semidensities. Our considerations lead to a
straightforward geometrical interpretation of the Batalin-Vilkovisky master equation. On
the other hand, we elaborate a new outlook for the invariant semidensity defined on (1.1)-
codimensional surfaces embedded in an odd symplectic supermanifold [12] and construct
integral invariants for these surfaces.

The concept of an odd symplectic supermanifold and a ∆-operator on it appeared
in mathematical physics in the pioneer works of I.A.Batalin and G.A.Vilkovisky [4, 5],
where these objects were used for constructing covariant Lagrangian version of the BRST
quantization (BV formalism). The geometrical meaning of these objects and interpretation
of the BV master equation in its terms were studied in [11, 14, 15] and most notably by
A.S.Schwarz in [22].

Let us briefly sketch the results of [11, 14, 15, 22].
If an odd symplectic supermanifold is provided with a volume form dv, then one can

consider an operator ∆dv such that its action on a function on this supermanifold is equal
(up to a coefficient) to the divergence of the Hamiltonian vector field corresponding to this
function w.r.t. the volume form dv [11]. This second order differential operator is not
trivial because transformations preserving odd symplectic structure do not preserve any
volume form (Liouville theorem does not hold in the case of an odd symplectic structure).

We call coordinates zA = {x1, . . . , xn, θ1, . . . , θn} in an odd symplectic supermanifold
Darboux coordinates if in these coordinates the Poisson bracket corresponding to the
symplectic structure has the canonical form: {xi, θj} = δi

j , {xi, xj} = 0.
Consider a special case, where a volume form in some Darboux coordinates is just the

coordinate volume form:

dv = D(x, θ), (D(x, θ) = dx1 . . . dxndθ1 . . . dθn) . (1.1)

In the following we shall refer to it as to a particular condition for a volume form. Then
in this case the operator ∆dv is given by the following explicit formula

∆dv =
n∑

i=1

∂2

∂xi∂θi
,
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and it obeys the condition
∆2

dv = 0 . (1.2)

(See Section 2 for details.)
The concept of an odd symplectic supermanifold provided with a volume form is

crucial in the geometrical interpretation of BV formalism.
Let f be an even function on an odd symplectic supermanifold with a coordinate

volume form (1.1) in some Darboux coordinates and let dv′ = fdv be a new volume form
on it. In general, for the new volume form dv′ neither condition (1.1) in some Darboux
coordinates, nor condition (1.2) are true. The main essence of the geometrical formulation
of BV formalism can be shortly expressed in the following two statements [14, 22, 15]:

Statement 1. (see [14, 22, 15])
Consider the following three conditions on the volume form dv′ = fdv and the corre-

sponding ∆-operator:

a) there exist Darboux coordinates such that the volume form dv′ = fdv
has the appearence (1.1) in these coordinates ,

(1.3a)

b) ∆dv

√
f = 0 ,

(the BV master-equation for the master-action S = log
√

f) ,
(1.3b)

c) ∆2
dv′ = 0 . (1.3c)

The implications
a) ⇒ b) ⇒ c)

hold. The conditions a), b), c) are equivalent under some assumptions (see details below).

Statement 2. (see [22])
The integrand of the BV partition function is a semidensity

√
fdv, which is a nat-

ural integration object over Lagrangian surfaces in odd symplectic supermanifolds. In the
case if condition (1.3b) is fulfilled, the corresponding integral does not change under small
variations of Lagrangian surface (the gauge-independence condition).

The analysis of these statements in [14, 22, 15] is particularly based on the following
geometrical observations.

Let ΠT ∗M be the supermanifold associated with the cotangent bundle T ∗M for an
arbitrary manifold M . (ΠT ∗M is obtained by changing the parity of fibers in T ∗M .)
Functions on ΠT ∗M correspond to multivector fields on M . The supermanifold ΠT ∗M is
provided with a canonical odd symplectic structure. The Schouten bracket of multivector
fields on M corresponds to the odd Poisson bracket of functions on ΠT ∗M . The manifold
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M is a Lagrangian surface in ΠT ∗M . If dv is a volume form on M , then the odd symplectic
supermanifold ΠT ∗M provided with the volume form dv = dv2 satisfies conditions (1.1)
and (1.2). In this case the action of operator ∆dv on function on ΠT ∗M corresponds
to the divergence operator on multivector fields on M . The most profound and detailed
analysis of these constructions and their relations with Statements 1 and 2 was performed
in the paper [22]. Particularly in this paper some important relations were established
between differential forms on M and volume forms in ΠT ∗M and it was observed that the
square root of an arbitrary volume form in an odd symplectic supermanifold is a natural
integration object over arbitrary Lagrangian surfaces in this supermanifold.

In this paper we consider an odd symplectic supermanifold E = En.n. We consider
semidensities on E. We define a new operator ∆ which acts on semidensities. Our new
operator ∆ is related with the operator considered above, but it does not require any addi-
tional structure on E. We see that semidensities in an odd symplectic supermanifold, not
volume forms (densities) are naturally related with differential forms on even Lagrangian
surfaces. In particularly the action of a ∆-operator on semidensities corresponds to the
action of the exterior differential on differential forms. A detailed analysis of the group of
canonical transformations for an arbitrary odd symplectic supermanifold E leads us to es-
tablishing relations between the calculus of semidensities on E and a calculus of differential
forms on even Lagrangian surface.

Our considerations have the following two applications.
In terms of semidensities the BV master equation (1.3b) gets an invariant formulation

and the difference between conditions (1.3a, b, c) can be formulated exactly. (In papers
[15] and [22] it was stated that conditions (1.3a), (1.3b) and (1.3c) are equivalent, in spite
of the fact that a difference between these conditions implicitly follows from Theorem 5 of
the paper [22].) Note also that symmetry transformations in BV formalism considered in
the paper [23] receive their proper place in the semidensities framework.

Also we come to a new approach for obtaining invariant densities and the correspond-
ing integral invariants on surfaces embedded in an odd symplectic supermanifold with a
volume form. (The problem of constructing integral invariants for an odd symplectic struc-
ture drastically differs from the corresponding problem for the usual symplectic structure
(see in details Section 5)).

The exposition is organized as follows.
In Section 2 we recall the basic definitions of an odd symplectic supermanifold and

the properties of the ∆-operator acting on functions and defined when a volume form is
chosen. Then we consider semidensities and give an intrinsic definition of the ∆-operator
acting on semidensities. Using this operator we formulate the BV master equation in an
invariant way.

In Section 3 we analyze these objects in terms of the underlying even geometry consid-
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ering as the basic example the supermanifold ΠT ∗M associated with the cotangent bundle
of a usual manifold M . We establish a correspondence between differential forms on M and
semidensities on the supermanifold ΠT ∗M and analyze the basic formulae of the calculus
of differential forms in terms of semidensities. We also come to new algebraic operations
on differential forms which naturally appear in terms of semidensities.

In Section 4 we consider even ((n.0)-dimensional) Lagrangian surfaces in an odd sym-
plectic supermanifold E and study the correspondence between differential forms on these
Lagrangian surfaces and semidensities on E. For any given even Lagrangian surface L this
correspondence depends on a symplectomorphism identifying ΠT ∗L with E. We prove the
existence of an identifying symplectomorphism, study identifying symplectomorphisms and
corresponding subgroups of canonical transformations, and investigate in detail to what
extent the correspondence between semidensities and differential forms depends on a choice
of a Lagrangian surface and identifying symplectomorphism. On the base of these consid-
erations we come to statements that generalize results of the paper [22] and we formulate
exactly differences between conditions (1.3a), 1.3b) and (1.3c) in the BV formalism geom-
etry.

In Section 5 we provide a natural interpretation of the odd invariant semidensity on
(1.1)-codimensional surfaces that was constructed in [13, 12]. We show that this semi-
density can be considered as a kind of ”pull-back” of a semidensity in the ambient odd
symplectic supermanifold. This leads us to a construction of another semidensity and two
densities (integral invariants), even and odd, of rank k = 4 on (1.1)-codimensional sur-
faces. These densities seem to be the simplest (having the lowest rank) non-trivial integral
invariants on surfaces in an odd symplectic supermanifold provided with a volume form.

The paper contains also three appendices.
In Appendix 1 we briefly sketch the definition of a supermanifold as a functor from

the category of Grassmann algebras to the category of sets, suggested and elaborated by
A.S.Schwarz [21] (see also [19]), and which we use throughout this paper. This definition
makes possible to use the language of points for supermanifolds. (For basic definitions and
constructions of supermathematics see books [6, 19, 25].)

In Appendix 2 we give a simple proof of the Darboux theorem for odd symplectic
supermanifolds.

In Appendix 3 we prove a technical result about canonical transformations generated
by Hamiltonians.

2. ∆-operator on Semidensities

In this Section we recall the definitions and properties of odd symplectic supermanifold
and of the ∆-operator on functions. Then we consider semidensities in odd symplectic
supermanifold and define the action of ∆-operator on semidensities. Compared to functions
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this definition is intrinsic and does not require any additional structures (like volume form).
Let En.n be (n.n)-dimensional supermanifold and zA = {x1, . . . , xn, θ1, . . . , θn} , be

local coordinates on it (p(xi) = 0, p(θj) = 1, where p is a parity).
We say that this supermanifold is odd symplectic supermanifold if it is endowed with

an odd symplectic structure, i.e. an odd closed non-degenerate 2-form Ω = ΩAB(z)dzAdzB

(p(Ω) = 1, dΩ = 0) is defined on it [6, 18, 19].
In the same way as in the standard symplectic calculus one can relate to the odd

symplectic structure the odd Poisson bracket (Buttin bracket) [8,6, 18, 19]:

{f, g} =
∂f

∂zA
(−1)p(f)p(zA)+p(zA)ΩAB ∂g

∂zB
, (2.1)

where ΩAB = {zA, zB} is the inverse matrix to ΩAB : ΩACΩCB = δA
B .

Hamiltonian vector field

Df = {f, zA} ∂

∂zA
, Df (g) = {f, g}, Ω(Df ,Dg) = −{f, g} (2.2)

corresponds to every function f .
The condition of the closedness of the form defining symplectic structure implies the

Jacoby identity:

{f, {g, h}}(−1)(p(f)+1)(p(h)+1) + cycl. permutations = 0 . (2.3)

.
Using the analog of the Darboux Theorem [24, 22] (see also Appendix 2) one can

consider in a vicinity of an arbitrary point coordinates zA = {x1, . . . , xn, θ1, . . . , θn} such
that in these coordinates symplectic structure and the corresponding odd Poisson bracket
have locally the canonical expressions

Ω = IABdzAdzB : Ω
(

∂

∂xi
,

∂

∂xj

)
= 0, Ω

(
∂

∂θi
,

∂

∂θj

)
= 0, Ω

(
∂

∂xi
,

∂

∂θj

)
= −δij ,

and respectively

{xi, xj} = 0, {θi, θj} = 0, {xi, θj} = −{θj , x
i} = δi

j ,

{f, g} =
n∑

i=1

(
∂f

∂xi

∂g

∂θi
+ (−1)p(f) ∂f

∂θi

∂g

∂xi

)
. (2.4)

These coordinates are called Darboux coordinates. Transformation of Darboux coordinates
to another Darboux coordinates is called canonical transformation of coordinates. Respec-
tively transformation of supermanifold that transforms Darboux coordinates to another
Darboux coordinates is called canonical transformation.
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We consider also odd symplectic supermanifold provided additionally with a volume
form:

dv = ρ(z)Dz = ρ(x, θ)D(x, θ) , (p(ρ) = 0) . (2.5)

Dz = D(x, θ) is coordinate volume form (D(x, θ) = dx1...dxndθ1 . . . dθn). Coordinate
volume forms in different coordinates are related by Berezinian (superdeterminant) of
coordinate transformation [6]:

Dz̃

Dz
= Ber

∂z̃

∂z
, where Ber

(
I00 I01

I10 I11

)
=

det (I00 − I01I
−1
11 I10)

det I11
. (2.6)

We suppose that the volume form (2.5) is non-degenerate, i.e. for the every point z0

the number part m(ρ(z0)) of ρ(z0) is not equal to zero.

In the paper [11] we show that an odd symplectic structure (in fact an odd Poisson
bracket structure, which might be degenerate) and a volume form allow to define the ∆-
operator (or Batalin-Vilkovisky operator; this is the invariant formulation of the operator
introduced in BV-formalism [4]). The construction is as follows. The action of ∆-operator
on an arbitrary function in an odd symplectic supermanifold provided with a volume form
is equal (up to coefficient) to the divergence w.r.t. volume form (2.5) of the Hamiltonian
vector field corresponding to this function. Using (2.2) we come to the formula

∆dvf =
1
2
(−1)p(f)divdvDf =

1
2
(−1)f

(
(−1)p(Df zA+zA) ∂

∂zA
{f, zA}+ DA

f

∂ log ρ(z)
∂zA

)
.

(2.7)
In Darboux coordinates:

∆dvf = ∆0f +
1
2
{log ρ, f} , (2.8)

where ρ(z) is given by (2.5) and

∆0f =
n∑

i=1

∂2f

∂xi∂θi
. (2.9)

∆-operator on functions satisfies the relations [5, 14] :

∆dv{f, g} = {∆dvf, g}+ (−1)p(f)+1{f, ∆dvg} ,

∆dv(f · g) = ∆dvf · g + (−1)p(f)f ·∆dvg + (−1)p(f){f, g} . (2.10)

Operator ∆0 in (2.9) is not an invariant operator on functions (i.e. it depends on
the choice of Darboux coordinates). It can be considered as ∆dv operator for coordinate
volume form D(x, θ) in the chosen Darboux coordinates zA = {x1, . . . , xn, θ1, . . . , θn} . If
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z̃A = {x̃1, . . . , x̃n, θ̃1, . . . , θ̃n} are another Darboux coordinates then from (2.8) it follows
that

∆0f = ∆̃0f +
1
2
{log Ber

∂z

∂z̃
, f} , (2.11)

where ∆̃0 is operator (2.9) in Darboux coordinates z̃A = {x̃1, . . . , x̃n, θ̃1, . . . , θ̃n}.
Now we consider semidensities on odd symplectic supermanifold. In local coordinates

zA = {xi, θj} they have the appearance s = s(z)
√

Dz = s(x, θ)
√

D(x, θ). Under coordi-
nate transformation zA = zA(z̃) the coefficient s(z) is multiplied by the square root of the
Berezinian of corresponding transformation: s(z) 7→ s(z(z̃))Ber1/2(∂z/∂z̃).

We shall define a new operator, which we denote ∆#, and which will act on the space
of semidensities.

Definition Let s be a semidensity and s(z)
√

Dz be its local expression in some Dar-
boux coordinates zA = {x1, . . . , xn, θ1, . . . , θn}. The local expression for the semidensity
∆#s in these coordinates is given by the following formula:

∆#s = (∆0s(z))
√

Dz =
n∑

i=1

∂2s

∂xi∂θi

√
D(x, θ) . (2.12)

The semidensity ∆#s is an odd (even) if semidensity s is an even (odd) semidensity, thus
∆# is an odd operator.

Contrary to the operator ∆dv on functions, the operator ∆# on semidensities does
not need any volume structure.

To prove that ∆#-operator is well-defined by formula (2.12), one has to check that
r.h.s. of (2.12) indeed defines semidensity, i.e. if {z̃A} = {x̃1, . . . , x̃n, θ̃1, . . . , θ̃n} are
another Darboux coordinates then

(
n∑

i=1

∂2

∂xi∂θi
s(z)

)

z(z̃)

·
(

Ber
∂z(z̃)
∂z̃

)1/2

=
n∑

i=1

∂2

∂x̃i∂θ̃i

(
s(z(z̃)) · Ber1/2 ∂z(z̃)

∂z̃

)
. (2.13)

First of all we check this condition for infinitesimal canonical transformations. They are
generated by an odd function (Hamiltonian) via the corresponding Hamiltonian vector
filed. To an odd Hamiltonian Q(z) corresponds infinitesimal canonical transformation
z̃a = zA + ε{Q, zA} generated by the vector field DQ in (2.2). To the action of this
transformation on the semidensity s corresponds differential δQ(s

√
Dz) = ∆0Q · s√Dz−

{Q, s}√Dz, because δs = −ε{Q, s} and δDz = εδBer(∂z/∂z̃)Dz = 2∆0QDz. Using that
∆2

0 = 0 and relation (2.10) we come to commutation relations ∆0δQ = δQ∆0. Thus we
come to condition (2.13), for infinitesimal transformations.

To check condition (2.13) for arbitrary canonical transformation we need the following
Lemma 1 1. Every canonical transformation of Darboux coordinates z̃A = FA(z)

can be decomposed into canonical transformations F(z) = Fs (Fp (Fadj(z))), where
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a) canonical transformation z̃ = Fadj(z), has the following form

{
x̃i(x, θ)

∣∣
θ=0

= xi ,

θ̃i(x, θ)
∣∣
θ=0

= 0 ,
(i = 1, . . . , n) , (2.14a)

we call later this canonical transformation of Darboux coordinates adjusted canonical trans-
formation;

b) canonical transformation z̃ = Fp(z) has the form

{
x̃i = xi(x)
θ̃i = ∂xm(x̃)

∂x̃i θm
(i, j = 1, . . . , n) , (2.14b)

we call later this canonical transformation of Darboux coordinates, which is generated by
transformation x̃i = xi(x) ”point”-canonical transformation;

c) canonical transformation z̃ = Fs(z) has the following form

{
x̃i = xi

θ̃i = θi + Ψi(x)
such that

∂Ψi(x)
∂ xj

− ∂Ψj(x)
∂xi

= 0 , (i = 1, . . . , n) , (2.14c)

we call later this canonical transformation of Darboux coordinates special canonical
transformation.

2. Berezinian of adjusted canonical transformation (2.14a) obeys the condition Ber∂z̃
∂z

∣∣
θ=0

=
1, Berezinian of ”point” canonical transformation (2.14b) is equal to det2 ∂x̃

∂x , and Berezinian
of special canonical transformation (2.14c) is equal to one.

In particular, numerical part of Berezinian of arbitrary canonical transformation is
positive.

3. Adjusted canonical and special canonical transformations of Darboux coordinates
(2.14a, 2.14c) are canonical transformations generated by Hamiltonian, i.e. they can be
included in one-parametric family of canonical transformations of Darboux coordinates
generated by an odd Hamiltonian:

∃Q(z, t):
dzt

dt
= {Q, zt}, 0 ≤ t ≤ 1 such that z0 = z , z1 = z̃ . (2.15)

Special canonical transformation (2.14c) is generated locally by Hamiltonian Q = Q(x),
such that ∂iQ(x) = Ψi(x). There exists unique ”time”-independent Hamiltonian Q = Q(z)
obeying the condition Q(x, θ) = Qikθiθk + . . ., i.e. Q = O(θ2) that generates given adjusted
canonical transformation.

Prove this Lemma.
Let z̃ = F(z) be arbitrary canonical transformation: x̃i = f i(x, θ) = f i

0(x)+O(θ) and
θ̃i = Ψi(x)+O(θ). Consider coordinates {z̄A} = {x̄i, θ̄i} that are related with coordinates
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{z̃A} by the following special canonical transformation: z̃A = Fs(z̄) such that x̃i = x̄i

and θ̃i = θ̄i + Ψi(g(x̄)), where g ◦ f0 = id. Then x̄i = f i(x, θ) and θ̄i = O(θ). Now
consider coordinates {z′A} = {x′i, θ′i} that are related with coordinates {z̄A} by the ”point”
canonical transformation z̄A = Fp(z′) generated by functions x̄i = f i

0(x
′). Then it is easy

to see that initial coordinates {zA} are related with coordinates {z′A} by adjusted canonical
transformation z′A = Fadj(z): x′i = xi + O(θ), θ′i = O(θ).

The second statement of Lemma can be proved by easy straightforward calculation of
Berezinian (2.6) for transformations (2.14a, 2.14b, 2.14c).

We perform the proof of the statement 3 of Lemma for adjusted canonical transfor-
mations in Appendix 3.

Now we return to the proof of relation (2.13).
First we note that from second statement of Lemma it follows that square root oper-

ation in (2.13) is well-defined.
From decomposition (2.14) it follows that it is sufficient to check condition (2.13)

separately for adjusted, ”point”, and special canonical transformations. From the third
statement of Lemma it follows that for adjusted and special canonical transformations the
condition (2.13) can be checked only infinitesimally and this is performed already. For
”point” canonical transformation (2.14b) the condition (2.13) can be easily checked strai-
ghtforwardly using (2.10), (2.11) and the fact that Berezinian of this transformation does
not depend on θ.

The action of differential δQ corresponding to infinitesimal canonical transformation
on semidensities can be rewritten in an explicitly invariant way:

δQs = Q ·∆#s + ∆#(Qs) = [Q, ∆#]+s . (2.16)

On an odd symplectic supermanifold provided with a volume form dv (density of the
weight σ = 1) we can construct new invariant objects, expressing them via the semidensity
related with volume form and operator ∆#:

s =
√

dv semidensity (σ = 1
2 ) , (2.17a)

∆#s = ∆#
√

dv semidensity (σ = 1
2 ) , (2.17b)

s∆#s =
√

dv∆#
√

dv density (σ = 1) , (2.17c)

1
s
∆#s =

1√
dv

∆#
√

dv function (σ = 0) . (2.17d)

From definition (2.12) of ∆#-operator and relations (2.10) it follows that ∆#-operator
obeys the following properties:

(∆#)2 = 0 ,
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∆#(f ·
√

dv) = (∆dvf) ·
√

dv + (−1)ff ·∆#
√

dv , (2.18)

and
∆2

dvf = { 1√
dv

∆#
√

dv, f} . (2.19)

We call semidensity s closed semidensity if ∆#s = 0 and we call s an exact if there
exists another semidensity r such that s = ∆#r.

In the case if an odd symplectic supermanifold is provided with a volume form dv
such that this volume form is equal to coordinate volume form D(x̃, θ̃) in some Darboux
coordinates {x̃1, . . . , x̃n, θ̃1, . . . , θ̃n} then evidently ∆#

√
dv = 0. Considering this relation

in another Darboux coordinates zA = {x1, . . . , xn, θ1, . . . , θn}we come to the formula

∆0Ber1/2

(
∂z̃

∂z

)
=

n∑

i=1

∂2

∂xi∂θi
Ber1/2

(
∂(x̃, θ̃)
∂(x, θ)

)
= 0 . (2.20)

We note that formulae (2.9) and (2.11) for ∆0 operator were first studied by I.A.Batalin and
G.A.Vilkovisky ([4, 5]). In particular they obtained formula (2.20). These results receive
its clear geometrical interpretation in terms of semidensities and action of ∆#-operator on
them.

We say that semidensity s = s(x, θ)
√

D(x, θ) is non-degenerate if a number part
m(s(x, θ)) of s(x, θ) is not equal to zero at any x. Every volume form defines non-degenerate
even semidensity by relation (2.17a) and respectively volume form corresponds to every
non-degenerate even semidensity. We say that even non-degenerate semidensity s obeys
the BV-master equation if it is closed and we denote by Bdeg a set of these densities.

Bdeg = {s: ∆#s = 0 , p(s(x, θ)) = 0, m(s(x, θ)) 6= 0} . (2.21)

BV-master equation (condition (1.3b)) was not formulated invariantly in [14,22]. Condition
∆#s = 0 (closedness of semidensity s) gives invariant formulation to BV master-equation.

3. Differential forms on cotangent bundle and semidensities

We consider in this section basic example of an odd symplectic supermanifold yielded
by cotangent bundle of usual manifolds. We clarify geometrical meaning of previous con-
structions and establish relations between differential forms on manifold and semidensities
on this odd symplectic supermanifold.

In the standard sympelctic calculus cotangent bundle of any manifold can be provided
with canonical symplectic structure and it can be considered as basic example of symplec-
tic manifold [10]. Basic example of an odd symplectic supermanifold is constructed in the
following way. Let M be arbitrary n-dimensional manifold and T ∗M be its cotangent bun-
dle. Consider a supermanifold ΠT ∗M associated with cotangent bundle T ∗M , changing
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the parity of fibers of cotangent bundle T ∗M . Let {x1, . . . , xn, p1, . . . , pn} be canonical
coordinates on T ∗M corresponding to arbitrary local coordinates {x1, . . . , xn} on M , i.e.
for a form w ∈ T ∗M pi(w) = w( ∂

∂xi ). Canonical coordinates zA = (x1, . . . , xn, θ1, . . . , θn)
on ΠT ∗M , (p(θi) = 1) correspond to the canonical coordinates {x1, . . . , xn, p1, . . . , pn}
on T ∗M . Odd coordinates {θ1, . . . , θn} transform via the differential of corresponding
transformation of coordinates {xi} of underlying space M in the same way as coordinates
{p1, . . . , pn} on T ∗M :

x̃i = x̃i(x), θ̃i =
n∑

k=1

∂xk(x̃)
∂x̃i

θk , (i = 1, . . . , n) . (3.1)

We define canonical odd symplectic structure on ΠT ∗M considering these coordinates
as Darboux coordinates (2.4). Thus we assign to every atlas

[
{xi

(α)}
]

of coordinates on

manifold M an atlas
[
{xi

(α), θj(α)}
]

of Darboux coordinates on supermanifold ΠT ∗M .
Pasting formulae (3.1) ensure us that this canonical symplectic structure is well-defined.

Later on we call Darboux coordinates (3.1) on ΠT ∗M induced by coordinates on
M Darboux coordinates adjusted to cotangent bundle structure. Unless otherwise stated
we assume further that Darboux coordinates in a supermanifold associated with cotangent
bundle are Darboux coordinates adjusted to cotangent bundle structure. (Canonical trans-
formations (3.1), induced by coordinate transformations on the manifold M are ”point”
canonical transformations (2.14b).)

The relations between the cotangent bundle structure on T ∗M and the odd canonical
symplectic structure on ΠT ∗M reveal in the properties of the following canonical map τ

M

between multivector fields on M and functions on ΠT ∗M :

τ
M

(
T i1...ik

∂

∂xi1
∧ . . . ∧ ∂

∂xik

)
= T i1...ikθi1 . . . θik

. (3.2)

This map transforms the Schoutten bracket of multivector fields to the odd canonical
Poisson bracket (Buttin bracket) (2.2) of corresponding functions [19,8]:

τM ([T1,T2]) = {τM (T1) , τM (T2)} . (3.3)

Now we construct a map, that establishes correspondence between differential forms on
M and semidensities on ΠT ∗M . We consider arbitrary Darboux coordinates {x1, . . . , xn,

θ1, . . . , θn} on ΠT ∗M adjusted to cotangent bundle structure and define this map in these
Darboux coordinates in the following way:

τ#
M

(1) = θ1 . . . θn

√
D(x, θ),

τ#
M

(dxi) = (−1)i+1θ1 . . . θ̂i . . . θn

√
D(x, θ) ,

τ#
M

(dxi ∧ dxj) = (−1)i+jθ1 . . . θ̂i . . . θ̂j . . . θn

√
D(x, θ) , (i < j),

. . .

τ#
M

(dxi1 ∧ . . . ∧ dxik) = (−1)i1+...+ik+kθ1 . . . θ̂i1 . . . θ̂ik
. . . θn

√
D(x, θ), (i1 < . . . < ik),
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τ#
M

(f(x)w) = f(x)τ#
M

(w) , for every function f(x) on M , (3.4)

where the sign ̂ means the omitting of corresponding term. For example if M is two-
dimensional space, then τ#

M
(f(x)) = f(x)θ1θ2

√
D(x, θ), τ#

M
(w1dx1 + w2(x)dx2) =

(w1θ2 − w2(x)θ1)
√

D(x, θ), τ#
M

(wdx1 ∧ dx2) = −w
√

D(x, θ).
One can rewrite (3.4) in a more compressed way:

τ#
M (w) =

(∫
w(x, ξ) exp(θiξ

i)dnξ

) √
D(x, θ) , (3.4a)

where w(x, ξ) is a function corresponding to differential form w in the supermanifold ΠTM

associated to the tangent bundle TM : w(x, ξ) = wi1...ik
ξi1 . . . ξik . Odd coordinates {ξi} of

the fibers in ΠTM transform as differentials {dxi}: x̃i = x̃i(x) 7→ ξ̃i = ∂x̃i

∂xk ξk. The square
of the map (3.4a) w → (τ#(w))2 transforms differential forms on M to density (volume
form) on ΠT ∗M and this map was considered in [22].

To prove that (3.4) is well-defined for an arbitrary Darboux coordinates adjusted to
cotangent bundle structure we note that under arbitrary coordinate transformation (3.1)
the integral in r.h.s. of (3.4a) is multiplied on the det(∂x̃/∂x) and coordinate volume form√

D(x, θ) is divided on the module of this determinant, because for transformation (3.1):

Ber1/2

(
∂(x̃, θ̃)
∂(x, θ)

)
= Ber1/2

(
∂x̃i(x̃)

∂xk
∂x̃r

∂xk
∂2xm

∂x̃r∂x̃i θm

0 ∂xk

∂x̃i

)
=

∣∣ det
(

∂x̃i(x)
∂xk

) ∣∣ . (3.5)

Remark Map (3.4) establishes correspondence only up to a sign factor because r.h.s.
of (3.5) is positive for canonical transformation induced by any coordinate transformation
of M . In the case if M is orientable manifold considering only Darboux coordinates such
that Jacobian of coordinate transformations is positive one comes to globally defined map.
Sign factor depends on a orientaion of M.

We say that semidensity s corresponds to differential form w (to the linear combination
of differential forms

∑
wk) if s = τ#

M (w) = τ#
M (

∑
wk).

In the end of this section using correspondence between semidensities and differential
forms we consider some standard constructions of differential forms calculus in terms of
semidensities and two geometrical operations on differential forms, which are naturally
arisen in terms of semidensities.

1) From (3.4a) it is easy to see that an action of operator ξi ∂
∂xi on the function w(x, ξ)

corresponds to the action of exterior differential d on differential form and to the action of
∆#-operator on semidensity, i.e. the action of ∆#-operator corresponds to the action of
exterior differential:

∆# ◦ τ#
M

= τ#
M
◦ d . (3.6)

Closed (exact) semidensity corresponds to closed (exact) differential form.
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2) If the semidensity s in ΠT ∗M corresponds to volume form (differential top-degree
form w on M) and an odd sympelctic supermanifold ΠT ∗M is provided with volume form
such that it is equal to the square of this semidensity then the action of operator ∆dv

corresponds to the divergence w.r.t. to the volume form w on M :

∆dv ◦ τ
M

= τ
M
◦ divw if dv = s2 and s = τ#

Mw . (3.7)

(See also [15, 22].)

3) From (3.2) and (3.4) it follows that

τ#
M

(Tcw) = τ
M

(T) · τ#
M

(w) , (3.8)

where Tcw is the inner product of multivector field T with differential form w.

4) The meaning of relation (2.16) in terms of differential forms is following. In the
special case if Hamiltonian Q corresponds to vector field T i(x) ∂

∂xi (Q = T i(x)θi), then
this Hamiltonian induces infinitesimal canonical transformation that corresponds to the
infinitesimal transformation of M induced by the vector field T i(x) ∂

∂xi . From (3.6, 3.8) it
follows that in this case the standard formula for Lie derivative of differential forms (LT w =
dwcT + d(wcT )) corresponds to relation (2.16). In a general case canonical transforma-
tions of ΠT ∗M destroy cotangent bundle structure and mix forms of different degrees.
For example if we consider the action of Hamiltonian Q = Lθ1 . . . θn on a semidensity
corresponding to form w = dx1 ∧ . . . ∧ dxn then we obtain using (2.16) that δw = dL.

5) If a = ai(x)dxi is 1-form on M then one can see that

τ#(a ∧ w) = ai
∂s

∂θi

√
D(x, θ), where τ#(w) = s . (3.9)

It is more natural from point of view of semidensities to consider the following relation
between 1-forms on M and semidensities in ΠT ∗M . Let a = aidxi be an odd-valued one-
form on M with coefficients in arbitrary Grassmann algebra Λ (see Appendix 1). For this
form and arbitrary semidensity s = s(x, θ)

√
D(x, θ) consider a new semidensity s′, which

we denote by a d s such that it is given by relation

s′ = a d s = s(x, θi + ai)
√

D(x, θ) . (3.10)

Respectively if semidensity s corresponds to differential form w =
∑

wk then we denote
by a dw differential form such that semidensity a d s corresponds to a dw. From (3.10) and
(3.4a) it follows that

a dw =
k∑

p=0

1
p!

a ∧ . . . ∧ a︸ ︷︷ ︸
p times

∧wk−p , (k = 0, . . . , n) . (3.11)
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Relations (3.10) and (3.11) define an action of abelian supergroup of differential odd
valued one-forms on semidensities and differential forms.

6) Consider also the following algebraic operation on differential forms that seems very
natural from the point of view of semidensity calculus. Let w =

∑
wk and w′ =

∑
w′k

be differential forms on Mn such that top-degree forms wn and w′n are not equal to zero.
Then we consider a new form

w̃ = w ∗ w′: τ#w̃ =
√

τ#
M (w1) · τ#

M (w2) . (3.12)

The condition wn 6= 0, w′n 6= 0 for top-degree forms makes well-defined a square root
operation on corresponding semidensities.

4. Semidensities on E and differential forms on even Lagrangian surfaces

In the previous Section we analyzed relations between differential forms on manifold
M and semidensities on supermanifold ΠT ∗M using Darboux coordinates in ΠT ∗M that
are adjusted to cotangent bundle structure of T ∗M . (Relations (3.4) are not invariant with
respect to an arbitrary canonical transformation of Darboux coordinates.)

In this Section we analyze more general situation. We consider relations between
semidensities on an arbitrary odd symplectic supermanifold and differential forms on even
Lagrangian surfaces in this supermanifold. Then we apply these results for analyzing
relations between conditions (1.3a), (1.3b) and (1.3c) for Batalin-Vilkovisky formalism
geometry.

Lagrangian surface in (n.n)-dimensional odd symplectic supermanifold E = En.n is
(k.n− k)-dimensional surface embedded in this supermanifold such that the restriction of
symplectic form on it is equal to zero. We call (n.0)-dimensional Lagrangian surface even
Lagrangian surface. For an odd symplectic supermanifold ΠT ∗M an initial underlying
n-dimensional manifold M can be considered as an even Lagrangian surface embedded
in this supermanifold. (Note that in a case if we consider Λ-supermanifolds, underlying
manifold is not necessarily Lagrangian surface.)

If L is an even Lagrangian surface in odd sympelctic manifold E and ΠT ∗L is su-
permanifold associated with cotangent bundle of L, then one can consider correspondence
between semidensities on E and differential forms on L provided there is an identifying
symplectomorphism between supermanifolds ΠT ∗L and E:

symplectomorphism ϕ
L
: ΠT ∗L → E and ϕ

L

∣∣
L

= id . (4.1)

In this case pull-back ϕ∗s of semidensity s corresponds to differential forms on L via map
(3.4):

τ#
L (wn + wn−1 + . . . + w1 + w0) = ϕ∗

L
s , (4.2)
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where wk is a differential k-form on L.
This correspondence depends on a choice of identifying symplectomorphism (4.1) Thus

at first we study properties of identifying symplectomorphisms.

4.1 Identifying symplectomorphisms for even Lagrangian surfaces

In usual symplectic calculus if L is a Lagrangian surface in a symplectic manifold N

then there exists symplectomorphism between tubular neighborhoods of L in T ∗L and in
N that is identical on L [10]. In general case there is no Lagrangian surface L such that
T ∗L is symplectomorphic to N .

The nilpotency of odd variables leads to the fact that odd symplectic supermani-
folds have more simple structure. Particularly, any (n.0)-dimensional surface in (n.n)-
dimensional supermanifold can be expressed locally by equations θi − Ψi(x) = 0, i =
1, . . . , n in any coordinates {xi, θj}. Hence for every even Lagrangian surface in odd sym-
plectic supermanifold E = En.n its underlying n-dimensional manifold M ′ = M ′n(L) is
an open submanifold in underlying manifold M of E. If E′ is a corresponding restriction
of supermanifold E with underlying manifold M ′ then one can prove that there exists a
symplectomorphism ϕ that identifies ΠT ∗L with E′. We suppose later that M ′ coincides
with M . For example this is a case if M is a closed connected manifold and M ′(L) is also
closed. We call such Lagrangian surfaces closed.

Proposition 1 Let L be an arbitrary closed even Lagrangian surface in odd symplectic
supermanifold E. Then there exists an identifying symplectomorphism (4.1) between ΠT ∗L
and E.

Prove this Proposition.
An identifying symplectomorphism can be constructed for every even Lagrangian sur-

face in terms of a suitable Darboux coordinates.
Namely, consider arbitrary atlas A(E) =

[
{xi

(α), θj(α)}
]

of Darboux coordinates on
a supermanifold E with closed connected underlying manifold M . (Every coordinates
{xi

(α), θj(α)} of this atlas are defined on superdomain Ûα with underlying domain Uα.

Functions xi
0(α) that are numerical parts of functions xi

α, define an atlas
[
{xi

0(α)}
]

on
underlying manifold M .)

We say that Darboux coordinates {xi, θj} in E are adjusted to Lagrangian surface
L if θ1 = . . . = θn = 0 on L. Respectively we say that an atlas of Darboux coordinates
is adjusted to Lagrangian surface L if all coordinates from this atlas are adjusted to this
surface.

Suppose that there already exists an identifying symplectomorphism ϕL (4.1) for a
given closed even Lagrangian surface L. Let A(ΠT ∗L) =

[
{yi

(α), ηj(α)}
]

be an atlas of
Darboux coordinates in ΠT ∗L adjusted to cotangent bundle structure of ΠT ∗L (see (3.1)).
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Consider an atlas A(E) =
[
{xi

(α), θj(α)}
]

of Darboux coordinates on E defined by relations

ϕ∗
L
xi

(α) = yi
(α) , ϕ∗

L
θj(α) = ηj(α) . (4.3)

This atlas is adjusted to the Lagrangian surface L. Moreover from definition of this atlas
and (3.1) it follows that all transition functions Ψαβ of A(E) on superdomains Ûαβ with
underlying domains Uαβ = Uα ∩ Uβ are ”point”-like canonical transformations (2.14b).
We also call this atlas on E an atlas adjusted to cotangent bundle structure of Lagrangian
surface L. It is easy to see that arbitrary atlas of Darboux coordinates on E adjusted to
cotangent bundle structure of a given Lagrangian surface L defines some identifying sym-
plectomorphism for this Lagrangian surface via relations (4.3). (Darboux coordinates in
r.h.s. of (4.3) adjusted to cotangent bundle structure of ΠT ∗L are generated by restriction
on L of coordinates {xi

(α)} in E.) Thus Proposition 1 follows from the following Lemma
Lemma 2. For arbitrary even Lagrangian surface L in an odd symplectic superman-

ifold E there exists an atlas of Darboux coordinates in E adjusted to cotangent bundle
structure of this surface.

Prove this Lemma.
Considering in a vicinity of arbitrary point of E arbitrary Darboux coordinates (see for

details Appendix 2) we come to some atlas
[
{xi

(α), θj(α)}
]

of Darboux coordinates on En.n.
If Lagrangian surface L is defined in this atlas by equations θi(α) − Ψi(α)(xα) = 0, then
the condition that surface L is Lagrangian implies that ∂iΨj − ∂iΨj = 0. Hence changing
θiα → θi(α)−Ψi(α)(xα) we come to the atlas Aadj of Darboux coordinates adjusted to the
surface L (θi(α)|L = 0).

We show that it is possible to change coordinates in every superdomain Uα for atlas
Aadj in a way that all transition functions become ”point”-like canonical transformations
(2.14b). Prove it by induction.

Without loss of generality consider a case, when a number of charts is countable
(α = 1, . . . , n, . . .). Suppose that we already changed coordinates in a required way for
first k charts: all transition functions z(α) = Ψαβ(z(β)) are already ”point”-like canonical
transformations for α, β = 1, . . . , k.

Consider Darboux coordinates {zA
(α)} = {xi

(α), θ(α)} on the superdomain Ûα (with
underlying domain Uα) for α = k + 1. For every β ≤ k consider transition function
(canonical transformation of coordinates) zA

(β) = Ψβα(z(α)) in superdomain Ûβα (with
underlying domain Uβα = Uβ ∩ Uα).

All coordinates are adjusted to Lagrangian surface (θi(α)|L = 0), hence from statement
1 of Lemma 1 it follows that one can consider in every superdomain Ûβα (α = k+1, β ≤ k)
new coordinates {z̃A

αβ} such that zA
(β) = Ψβα(z(α)) = Fp ◦ Fadj(z(α)) = zA

(β)(z̃(βα)(z(α)))
where zA

(β)(z̃(βα)) is point-like canonical transformation and z̃A
(βα)(z(α))) is adjusted canon-

ical transformation.
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To complete the proof of Lemma we have to define in superdomain Ûα (α = k+1) new
coordinates {z̃A

(α)} such that restrictions of these coordinates on superdomains Uβα coincide
with coordinates {z̃A

(βα)} constructed above. From statement 3 of Lemma 1 it follows that

there exist Hamiltonians Q(βα) in Ûβα that generate adjusted canonical transformation
from coordinates zA

α to coordinates z̃A
(βα) (α ≤ k + 1, β ≤ k). From inductive hypothesis

and uniqueness of these Hamiltonians it follows that Q(αβ) = Q(αγ) in superdomains
Ûαβγ . Hence one can consider an odd Hamiltonian obeying the condition Q = O(θ2) on
a superdomain Ûα (α = k + 1) such that restriction of this Hamiltonian on superdomains
Ûβα is equal to Q(βα). This Hamiltonian generates adjusted canonical transformation from
coordinates {zA

(α)} to a new required Darboux coordinates {z̃A
(α)} on a superdomain Ûα.

Certainly, the identifying symplectomorphism (4.1) for a given closed even Lagrangian
surface L is not unique. To study this point consider (infinite-dimensional) supergroup
Can(E) of canonical transformations of supermanifold En.n. Every canonical transfor-
mation is Λ-point (element) of this supergroup (see Appendix 1). Supergroup Can(E)
acts transitively on the superspace of closed even Lagrangian surfaces. Denote by Can(L)
stationary subgroup of supergroup Can(E) for L and consider subgroup Canadj(L) of su-
pergroup Can(L) such that Λ-points of Canadj(L) are canonical transformations that are
identical on the surface L: Canadj(L) 3 F ⇔ F |L = id. It is easy to see that canonical
transformations obeying this condition have following appearance in arbitrary Darboux
coordinates adjusted to the surface L:

{
x̃i = xi + f i(x, θ), where f i(x, θ) = O(θ)
θ̃i = θi + gi(x, θ), where gi(x, θ) = O(θ2)

, if θi|L = 0 . (4.4)

Later we call canonical transformations obeying the condition F |L = id canonical trans-
formation adjusted to Lagrangian surface L. Adjusted canonical transformation (2.14a)
corresponds to transformation (4.4) in adjusted coordinates.

Now consider superspace Φ(L) of identifying symplectomorphisms for given closed
even Lagrangian surface L. (Every identifying symplectomorphism ϕ

L
is Λ-point (element)

of this superspace.) Supergroup Canadj(L) acts free on superspace Φ(L) of identifying
symplectomorphisms: arbitrary two identifying symplectomorphisms ϕ

L
and ϕ′

L
differ on

canonical transformation adjusted to the surface L:

ϕ′
L

= F ◦ ϕL , where F
∣∣∣
L

= id . (4.5)

Consider supergroup Can0(E) that is unity connectivity component of supergroup
Can(E), i.e. canonical transformation F belongs to Can0(E) if it can be included in
one-parametric (continuous) family Ft of canonical transformations (0 ≤ t ≤ 1) such that
F0 = id and F1 = F . Consider also subgroup CanH(E) of Can0(E) such that canonical
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transformation F belongs to CanH(E) if it can be included in one-parametric family
Ft of canonical transformations (0 ≤ t ≤ 1) generated by some Hamiltonian Q(x, θ, t):
Ḟt = {Q,F}, F0 = id and F1 = F . We call canonical transformations belonging to
CanH(E) canonical transformations generated by Hamiltonian.

Consider Lie superalgebra Gadj(L) such that Λ-points (elements) of this superalgebra
are odd functions on E (”time”-independent Hamiltonians Q(x, θ)) that obey the following
condition

Q = Qik(x, θ)θiθk, i.e. Q = O(θ2) (4.6)

in Darboux coordinates adjusted to Lagrangian surface L. (Lie algebra structure is defined
via odd Poisson bracket (2.4).)

One can show that superalgebra Gadj(L) corresponds to supergroup Canadj(L). In-
deed it is is easy to see that arbitrary Hamiltonian obeying condition (4.6) generates
one-parametric family of canonical transformations Ft = Exp tQ (0 ≤ t ≤ 1) adjusted to
the surface L and Exp tQ1 6= Exp tQ2 if Q1 6= Q2. (see for detailes Appendix 3). Thus
the map Exp Q: Gadj(L) → Canadj(L) is well-defined injection. Moreover this exponen-
tial map is bijective map. To find the Hamiltonian Q ∈ Gadj(L) that generates a given
transformation F ∈ Canadj(L) (F = ExpQ) consider the transformation F in arbitrary
atlas A of Darboux coordinates adjusted to cotangent bundle structure of the surface L.
In every coordinates from this atlas transformation F has appearance (4.4), hence accord-
ing to the statement 3 of Lemma 1 in every coordinates from atlas A there exists unique
”time”-independent Hamiltonian Q(α) obeying condition (4.6) such that this Hamiltonian
generates locally this transformation (Q(a) = −θif

i(x, θ) + O(θ3)). One can see that local
Hamiltonians {Q(α)} do not depend on a choice of coordinates from this atlas. Hence they
define uniquely a global Hamiltonian Q in superalgebra Gadj(L). We come to

Proposition 2

For a given closed even Lagrangian surface L in E arbitrary two identifying symplecto-
morphisms are related with each other by canonical transformation adjusted to Lagrangian
surface. This canonical transformation is generated by ”time”-independent Hamiltonian
that is defined uniquely by condition (4.6). In other words supergroup Canadj(L) acts free
on superspace Φ(L) of identifying symplectomorphisms. The exponential map Exp from
Lie superlalgebra Lie Gadj(L) to Canadj(L) is bijection.

For later considerations we need to study difference between supergroups Can0(E)
(unity connectivity component in Can(E)) and supergroup CanH(E) of canonical trans-
formations generated by Hamiltonian. For this purpose we consider decomposition of group
Can(E) of all canonical transformations on subgroups that are isomorphic to Canadj(L),
supergroup Diff(L) of diffeomorphisms of Lagrangian surface L, and supergroup that acts
free on the superspace of all even Lagrangian surfaces.
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To describe this latter supergroup consider abelian supergroup ΠZ1(L) of closed dif-
ferential one-forms on L, where Z1(L) is superspace of closed differential forms on L and Π
is parity reversing functor. (Λ-points of supergroup ΠZ1(L) (Z1(L)) are closed one-forms
with odd (even) coefficients from Grassmann algebra Λ.) Supergroup ΠZ1(L) is subgroup
of abelian supergroup of odd-valued differential one-forms considered in Section 3 (see
(3.10)). Superspace ΠZ1(L) can be identified with superspace of even closed Lagrangian
surfaces in ΠT ∗L, because every odd valued differential one-form Ψidxi can be identified
with (n.0)-dimensional surface embedded in ΠT ∗L given by equations θi−Ψi(x) = 0. Un-
der this identification closed even Lagrangian surfaces in ΠT ∗L correspond to closed forms.
There is a natural monomorphism of supergroup ΠZ1(L) in supergroup Can(ΠT ∗(L)) of
all canonical transformations of supermanifold ΠT ∗L: the special canonical transforma-
tion (2.14c) xi

(α) → xi
(α), θj(α) → θj(α) + Ψi(α)(x(α)) corresponds to an element Ψi(x)dxi

of supergroup ΠZ1(L) in an atlas of Darboux coordinates on ΠT ∗L adjusted to cotangent
bundle structure of L. Abelian supergroup ΠZ1(L) acts free on the superspace of closed
even Lagrangian surfaces in ΠT ∗L. The action of this supergroup on semidensities in
ΠT ∗L and arbitrary differential forms on L is defined by operation (3.10).
There is also natural monomorphism of supergroup Diff(L) in supergroup Can(ΠT ∗(L))
of all canonical transformations of supermanifold ΠT ∗L corresponding to point-canonical
transformation (see (2.14b) and (3.1)).

Now for supergroups Diff(L) and ΠZ1(L) we consider affine supergroup ΠZ1(L)
× Diff(L) such that semidirect product is induced by action of diffeomorphisms of L

on forms: [Ψ1, f1] ◦ [Ψ2, f2] = [Ψ1 + (f−1
1 )∗Ψ2, f1 ◦ f2], where Ψ1,Ψ2 ∈ ΠZ1(L) are

closed odd valued one-forms and f1, f2 ∈ Diff(L) are diffeomorphisms of L. Monomor-
phisms of supergroups ΠZ1(L) and Diff(L) in supergroup Can(ΠT ∗L) considered above
define monomorphism ι of the affine supergroup ΠZ1(L) × Diff(L) in the supergroup
Can(ΠT ∗L). Thus every identifying symplectomorphism ϕL defines monomorphism ιϕ

L
=

ϕ
L
◦ ι ◦ ϕ−1

L
of the supergroup ΠZ1(L)× Diff(L) in the supergroup Can(E).

On the other hand consider for arbitrary canonical transformation F ∈ Can(E)
Lagrangian surface L̃ = ϕ−1

L
◦ F (L) in ΠT ∗L and closed odd valued one-form Ψ on

L corresponding to the Lagrangian surface L̃. Then canonical transformation F ′ =
ιϕ

L
([−Ψ, id]) ◦ F of supermanifold E belongs to supergroup Can(L) of canonical trans-

formations that transform Lagrangian surface L to itself. The restriction of the canonical
transformation F ′ on L defines diffeomorphism f = F ′|L ∈ Diff(L). Thus we define
projection map

pϕ
L
: Can(E) → ΠZ1(L)×Diff(L) (4.7)

that depends on identifying symplectomorphism.
This map projects subgroup Canadj(L) of canonical transformations adjusted to the

surface L to unity element and obeys the condition pϕ
L
◦ ιϕ

L
= id. We come to the
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following result: for a given Lagrangian surface L and identifying symplectomorphism
ϕ

L
arbitrary canonical transformation F ∈ Can(E) can be decomposed uniquely in the

following way:
F = ιϕ

L
([Ψ, f ]) ◦ Fadj = Fs ◦ Fp ◦ Fadj , where

[Ψ, f ] = pϕ
L
(F ) , Fs = ιϕ

L
([Ψ, id]) , Fp = ιϕ

L
([0, f ]) , Fadj ∈ Canadj(L) . (4.8)

(The decomposition (2.14) in Lemma 1 corresponds to this decomposition.)
One can check the following property of projection map (4.7): If ϕ

L
, ϕ′

L
are two

arbitrary identifying symplectomorphisms for a given Lagrangian surface L and pϕ
L
(F ) =

[Ψ, f ], pϕ′
L
(F ) = [Ψ′, f ′] then

Ψ′ −Ψ = dΦ , f ′ = f0 ◦ f , (4.9)

where f0 is diffeomorphism that can be included in one-parametric continuous family ft

of diffeomorphisms such that f1 = f and f0 = id. In other words f0 belongs to group
Diff0(L) that is unity connectivity component of group Diff(L).

According to Proposition 2 conditions (4.9) have to be checked only for infinitesi-
mal canonical transformations (4.4) adjusted to Lagrangian surface L and generated by
Hamiltonian (4.6). This can be done by easy straightforward calculations.

From (4.9) it follows that for a given Lagrangian surface L projection map (4.7) defines
a map

pL: Can(E) → ΠH1(L)×π0(Diff(L)) , (4.10a)

where ΠH1(L) is abelian group of cohomology classes of one-forms on L (with reversed
parity) and π0(Diff(L)) = Diff(L)/Diff0(L) is discrete group of connectivity compo-
nents of Diff(L). Using decomposition (4.8), relations (4.9) and the fact that supergroup
Canadj is normal subgroup in Can(L) one can show that (4.10a) is epimorphism. (Projec-
tion map (4.7) is not epimorphism, because supergroup Canadj is not normal subgroup in
Can(E).)

One can consider also a composition of epimorphism (4.10a) with natural epimorphism
of ΠH1(L)× π0(Diff(L)) on π0(Diff(L)):

p̂L: Can(E)
pL−→ΠH1(L)×π0(Diff(L)) → π0(Diff(L)) . (4.10b)

Epimorphisms (4.10a) and (4.10b) allow to check difference between supergroups Can0(E)
and CanH(E) because

ker pL = CanH(E) and ker p̂L = Can0(E) . (4.11)

Namely consider arbitrary canonical transformation F that belongs to the kernel of epi-
morphism (4.10a). Then for projection map (4.7) pϕ

L
(F ) = [Ψ, f ] where Ψ = dΦ and
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f ∈ Diff0(L). Consider decomposition (4.8) for this canonical transformation F . Then
canonical transformation Fs = ρ([Ψ, id]) is generated by Hamiltonian Q = Φ(x). Canonical
transformation Fs = ρ([0, f ]) is generated by Hamiltonian Q = Ki(t, x)θi where ”time”-
dependent vector field Ki(t, x) is equal to f−1

t ◦ ḟt for a family ft of diffeomorphisms that
connects diffeomorphism f with identity diffeomorphism. Canonical transformation Fadj

is generated by some Hamiltonian Q(x, θ) according to Proposition 2. Hence the kernel
of epimorphism (4.10a) belongs to CanH(E). To prove the converse implication consider
one-parametric family Ft of canonical transformations generated by arbitrary Hamiltonian
Q(x, t). Decompose for every t transformation Ft by formula (4.8) for arbitrary identi-
fying symplectomorphism ϕ

L
: Ft = Fs(t) ◦ Fp(t) ◦ Fadj(t). Transformations Fp(t) and

Fadj(t) are generated by Hamiltonians hence transformation Fs(t) is generated by Hamil-
tonian Q′ also. Hence Ψ = dQ′,where pϕ

L
Fp(t) = [Ψt, 1] and pL(F ) = [0, 1] in ΠH1(L)×

π0(Diff(L)).
The proof of the second relation in (4.11) is analogous. We come to
Proposition 3 Let L be a closed even Lagrangian surface in an odd symplectic super-

manifold E. Let Can0(E) be unity connectivity component of supergroup Can(E) of canon-
ical transformations of E and CanH(E) be supergroup of canonical transformations gener-
ated by Hamiltonian. Then the following relations between supergroups Can(E), Can0(E)
and CanH(E) are obeyed:

Can(E)/Can0(E) = π0(Diff(L)),
Can(E)/CanH(E) = ΠH1(L)×π0(Diff(L)),

Can0(E)/CanH(E) = ΠH1(L) .

In particularly supergroup Can0(E) is equal to supergroup CanH(E) if H1(L) = 0.

Groups Diff(L), π0(Diff(L)), ΠZ1(L) and ΠH(L) are isomorphic to groups Diff(M),
π0(Diff(M)), ΠZ1(M) and ΠH(M) respectively, where M is underlying supermanifold,
but isomorphisms are not canonical.

4.2 Relation between semidensities and differential forms on a Lagrangian surface

Now we return to relation (4.2) between semidensities on odd symplectic superman-
ifold E = En.n and differential forms on even Lagrangian surfaces. We assume that un-
derlying manifold is orientable (see Remark after (3.5)) and its orientation is fixed. This
fixes orientation on even Lagrangian surfaces.

We note also that if we consider the points of supermanifold as Λ-points where Λ is
an arbitrary Grassmann algebra, then one have to consider differential forms with coef-
ficients in this algebra Λ (see Appendix 2). It follows from (3.4) that if s is even (odd)
semidensity then k-form in l.h.s. of relation (4.2) has coefficients in Grassmann algebra
Λ with parity p = (−1)n−k (p = (−1)n−k+1). More precisely denote by S a superspace
of semidensities in E. Λ-points of superspace S are even semidensities, i.e. semidensities
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s = s(x, θ)
√

D(x, θ), such that s(x, θ) are even functions with coefficients in Grassmann
algebra Λ. Denote by Ωk superspace of differential k-forms on even Lagrangian surface
L and consider also superspace ΠΩk, where Π is parity reversing functor. Λ-points of
superspace Ωk are differential k-forms with even coefficients from Grassmann algebra Λ,
Λ-points of superspace ΠΩk are differential k-forms, with odd coefficients from Grassmann
algebra Λ. Consider a superspace

Ω∗(L) = Ωn ⊕ΠΩn−1 ⊕ Ωn−2 ⊕ΠΩn−3 ⊕ Ωn−4 . . . (4.12)

Relation (4.2) defines a map:

w(L,ϕ
L
, s) = (τ#

L )−1ϕ∗
L
s (4.13)

between superspace S and superspace Ω∗(L). (Here and later where it will not lead to
confusion we denote by w a linear combination of differential forms wn +wn−1 + . . .+w0.)
At what extent map (4.13) depends on a choice of identifying symplectomorphism and on
a choice of even Lagrangian surface?

If F is arbitrary canonical transformation of E and ϕ′
L

= F ◦ϕ
L

then for map (4.13)

w(L,ϕ′
L
, s) = w(L,F ◦ ϕL , s) = w(L,ϕL , F ∗s) . (4.14)

Thus bearing in mind Proposition 2 we study the action of supergroup Canadj(L) of
canonical transformations on semidensities.

Proposition 4
a)Let s be arbitrary semidensity on odd symplectic supermanifold E = En.n with closed

connected underlying manifold Mn and F be arbitrary canonical transformation of En.n

adjusted to a given even Lagrangian surface L in E (F
∣∣
L

= id, i.e.F ∈ Canadj(L)).
Then (F ∗s− s)

∣∣
L

= 0.
b) Arbitrary canonical transformation F generated by Hamiltonian (F ∈ CanH(E)) chan-
ges arbitrary closed semidensity on an exact form: if ∆#s = 0 then F ∗s − s = ∆#r .
In the case if this transformation is adjusted to Lagrangian surface L (F ∈ Canadj(L)
⊆ CanH(L)), then condition (F ∗s− s)

∣∣
L

= 0 is obeyed also.
c) If s and s1 are arbitrary even closed non-degenerate semidensities ( s, s1 ∈ Bdeg (see
(2.21)), differ on an exact semidensity: s1 − s = ∆#r, and for even Lagrangian surface L

condition (s1− s)
∣∣
L

= 0 is obeyed, then there exists a canonical transformation F adjusted
to L such that s = F ∗s1.

(We say that semidensity s is equal to zero on even Lagrangian surface L (s
∣∣
L

= 0) if
in Darboux coordinates adjusted to L s = s(x, θ)

√
D(x, θ) with s(x, θ)|θ=0 = 0.)

The statement a) follows from explicit expression (4.4) for transformation F adjusted
to Lagrangian surface L. According to Proposition 2 statement b) have to be checked only
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for infinitesimal transformations generated by Hamiltonian. For these transformations this
statement follows from formula (2.16).

To prove statement c) we consider a following ”time”-depending Hamiltonian:

Q(t) =
−r

s + t∆#r
, 0 ≤ t ≤ 1 (4.15)

for any one-parameter family st = s0 + t∆#r, 0 ≤ t ≤ 1 of even closed non-degenerate
semidensities (st ∈ Bdeg at any t).

It is easy to check that during a ”time” t this Hamiltonian generates canonical trans-
formation Ft that transforms st to s (F ∗t st = s). Indeed according to (4.15) and (2.16) if
transformation Ft obeys the conditions Ḟt = {Q,Ft} and F0 = id then

d

dt
F ∗t st = F ∗t ∆#r + F ∗t

(
∆# (Q(t)st)

)
= 0 ⇒ F ∗t st = s0 .

Consider Hamiltonian (4.15) for semidensities s, s1 ∈ Bdeg with ∆#r = s1−s choosing
r in such a way that r = O(θ2) in coordinates adjusted to L. Then Hamiltonian (4.15)
leads to canonical transformation Ft that is adjusted to L at any t and the transformation
F = F1 transforms s1 to s.

Now we use this Proposition for analyzing relation (4.2) for a given even ((n.0)-
dimensional) Lagrangian surface L.

1. According to Proposition 2 two identifying symplectomorphisms for a given even
Lagrangian surface differ on canonical transformation adjusted to this surface. Hence from
statement a) of Proposition 4 and condition (4.14) for map (4.13) it follows that top-degree
form wn in (4.13) does not depend on a choice of identifying symplectomorphism ϕL : for
a given even Lagrangian surface L relations (4.13) induce a well-defined map

V (L, s) = wn(L, s) def= wn(L,ϕ
L
, s) , (4.16)

where ϕ
L

is arbitrary identifying symplectomorphism ϕ
L

for Lagrangian surface L.
Formula (4.16) defines the map from superspace S of semidensities in E = En.n to the

superspace Ωn(L) of top-degree forms on L. This means that semidensity can be consid-
ered as well-defined integration object over even Lagrangian surface. This corresponds to
general result that semidensity can be considered as an integration object over arbitrary
(n − k.k)-dimensional Lagrangian surface. (See [22] for corresponding construction and
[15], [3] for explicit formulae.)

2. Consider restriction of the map (4.13) on the superspace B of closed semidensities.
If semidensity s is closed then it follows from statement b) of Proposition 4 and relation
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(3.6) that for a given even Lagrangian surface L under changing of identifying symplecto-
morphism ϕ

L,E
7→ ϕ′

L,E
= Fadj ◦ϕ

L,E
, corresponding differential forms in (4.13) change on

exact forms: if ∆#s = 0 then

wk(L, ϕ′
L
, s) = wk(L,F ◦ ϕ

L
, s) = wk(L,ϕ

L
, F ∗s) = wk(ϕ

L
, s) + dwk−1(L,ϕ

L
, r) . (4.17)

In particular w0 (constant) as well as wn do not depend on identifying symplectomorphism.
Projection of superspaces Ωk in (4.12) on a superspaces Hk of cohomology classes for

k ≤ n− 1 induces projection of superspace Ω∗ on superspace:

Ωn(L)⊕ΠHn−1(L)⊕Hn−2(L)⊕ΠHn−3(L)⊕Hn−4(L) . . . (4.18)

From (4.17) it follows that considering map (4.13) on closed semidensities for arbitrary
identifying symplectomorphisms and projecting value of this map on the superspace (4.18)
we come to well-defined map

V̂ (L, s) = wn(L, s) + [wn−1](L, s) + . . . + [w0](L, s), if ∆#s = 0 (4.19)

([wk] is cohomology class of form wk). The map V̂ (L, s) is linear surjection map from the
space B of closed semidensity on superspace (4.18).

By definition V̂ (L, s) is Canadj-invariant map: it does not change under arbitrary
canonical transformation adjusted to the surface L:

if s1 = F ∗s2 where F ∈ Canadj(L) then V̂ (L, s1) = V̂ (L, s2) . (4.20)

The opposite implication is obeyed for closed non-degenerate semidensities. Namely con-
sider map (4.19) for the subset Bdeg of closed even non-degenerate semidensities (see 2.21).
If V̂ (L, s1) = V̂ (L, s2) for two arbitrary closed non-degenerate semidensities, then from
statement c) of Proposition 4 it follows that there exists canonical transformation F ad-
justed to surface L such that s1 = F ∗s2.

Now we analyze dependence of map (4.19) under a changing of even Lagrangian surface
L. We study this point from more general point of view considering an action of group
Can(E) of all canonical transformations on maps (4.13) and (4.19).

Projecting superspace Ωn(L) of top-degree forms on superspace Hn(L) of correspond-
ing cohomology classes we come from the map V̂ (L, s) to the map

Ĥ(L, s) = [w](L, s) = [wn](L, s) + . . . + [w0](L, s) (4.21)

that is defined on superspace B of closed semidensities and takes values in a superspace

H∗(L) = Hn(L)⊕ΠHn−1(L)⊕Hn−2(L)⊕ΠHn−3(L)⊕ . . .
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From statement b) of Proposition 4 it follows that this map is CanH(E)-invariant: it does
not change under arbitrary canonical transformations generated by Hamiltonian:

if s1 = F ∗s2 where F ∈ CanH(E) then Ĥ(L,F ∗s) = Ĥ(L, s) . (4.22)

The opposite implication is obeyed under the following restriction. Let s1 and s2 be
two closed non-degenerated semidensities (s1, s2 ∈ Bdeg) such that for the map (4.22)
Ĥ(L, s1) = Ĥ(L, s2). In this case s2 = s1 + ∆#r. If one-parametric family of closed
semidensities st = s1 + t∆#r (0 ≤ t ≤ 1) belongs also to Bdeg then there exists canonical
transformation F generated by Hamiltonian (F ∈ CanH(E)) such that F ∗s1 = s2. One
comes to this transformation considering Hamiltonian (4.15). We note that in the special
case when Can0(E) = CanH(E), i.e. H1(M) = 0 (see Proposition 3), these considerations
lead to the statement of Theorem 5 in the paper [22].

Consider now the action of arbitrary canonical transformation on map (4.21).
From Proposition 3 and (4.22) it follows that under arbitrary canonical transformation

the map Ĥ(L.s) have to be transformed under the action of the group Can(E)/CanH(E) =
ΠH1(L)×π0(Diff(L)). Namely

Ĥ(L,F ∗s) = [f ]∗
(
[Ψ] d Ĥ(L, s)

)
, (4.23)

where [[Ψ], [f ]] is an element of supergroup ΠH1(L)×π0(Diff(L)) defined by the action
of epimorphism (4.10a) on canonical transformation F and the operation d is defined for
semidensities and corresponding differential forms by operations (3.10) and (3.11). The
pull-back [f ]∗ of equivalence class [f ] is well-defined, because pull-back f∗0 of diffeomor-
phism f0 ∈ Diff0(L) acts identically on cohomological classes of differential forms.

On the other hand it follows from (4.14) that

Ĥ(L,F ∗s) = (F |L)∗Ĥ(L̃, s) , (4.24)

where L̃ is an image of Lagrangian surface L under canonical transformation F ,
One can easy derive formulae (4.23) and (4.24) from (4.13) performing calculations

in arbitrary Darboux coordinates adjusted to cotangent bundle structure of Lagrangian
surface L (i.e. choosing arbitrary identifying symplectomorphism ϕ

L
) and using decom-

position formula (4.8).
It is useful to rewrite formulae (4.23) and (4.24) in components:

[wk](L,F ∗s) = (F |L)∗[wk](L̃, s) = [f ]∗




k∑
p=0

1
p!

[Ψ] ∧ . . . ∧ [Ψ]︸ ︷︷ ︸
p times

∧[wk−p]


 . (4.25)
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We note that if for a given pair (L, L̃) of even Lagrangian surfaces canonical transfor-
mation F transforms L to L̃ then cohomological class of odd valued one-form corresponding
to the pair (F, L) by epimorphism (4.10a) is well-defined function of the pair (L, L̃):

ΠH1(L) 3 [Ψ] = [Ψ](L, L̃) . (4.26)

The pull-back (F |L)∗ of restriction F |L of canonical transformation F on Lagrangian sur-
face L induces bijective map between differential forms and corresponding cohomological
classes on surfaces L and L̃. Using (4.25) we can compare cohomological classes of differ-
ential forms corresponding to a given closed semidensity for two different even Lagrangian
surfaces. In particular, from (4.25) it follows that for arbitrary closed semidensity s and
for arbitrary pair of closed Lagrangian surfaces (L, L̃)

[wk](L̃, s) = 0 if [w0](L, s) = . . . = [wk](L, s) = 0 ,

and in the case if cohomological class of one-form [Ψ](L, L̃) in (4.26) is equal to zero, then

[wk](L̃, s) = 0 iff [wk](L, s) = 0 . (4.27)

The simple but important consequence of these considerations is following: [w0]-
component of function Ĥ(L, s) (4.21) does not depend on canonical transformation and it
is invariant constant on all Lagrangian surfaces.

Corollary 1 To every closed semidensity s (∆#s = 0) corresponds a positive constant
c(s). If in arbitrary Darboux coordinates

s = s(x, θ)
√

D(x, θ) = (ρ(x) + bi(x)θi + . . . + cθ1θ2 . . . θn)
√

D(x, θ)

then c(s) = |c|. This constant does not depend on the choice of Darboux coordinates
and on the changing of density under arbitrary canonical transformation. This constant
is equal (up to a sign) to cohomological class [w0] of zeroth order differential form corre-
sponding to semidensity s on arbitrary even Lagrangian surface L. (A sign of c(s) depends
on orientation.)

Note that c(s) can be considered as integral of semidensity s over Lagrangian (0.n)-
dimensional surface x1 = x1

0, . . . , x
n = xn

0 : c =
∫

L
s =

∫
s(x0, θ)dnθ.

4.3 Application to BV-geometry

Now using results obtained in this Section we analyze Statement 1 (see Introduction)
of Batalin-Vilkovisky master equation.

Let s be an arbitrary closed semidensity in Bdeg, i.e. non-degenerate semidensity that
obeys BV-master equation (1.3b, 2.21).
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For arbitrary Λ-point α in the odd symplectic supermanifold E = En.n consider
arbitrary closed even Lagrangian surface L such that this point belongs to this surface and
choose arbitrary identifying symplectomorphism ϕ

L
, corresponding to this surface, i.e.

atlas of Darboux coordinates adjusted to cotangent bundle structure of this Lagrangian
surface. Consider on L differential form

w(L,ϕ
L
, s) = wn + wn−1 + . . . + w0 (4.28)

defined by the map (4.13).
Locally all closed differential forms except zeroth-forms are exact and [w0] = ±c(s) is

invariant constant according to Corollary 1. Hence using statement c) of Proposition 4 one
can find canonical transformation adjusted to this Lagrangian surface and correspondingly
another identifying symplectomorphism ϕ′

L
such that in (4.28) all differential forms wk for

k = 1, . . . , n − 1 vanish in a vicinity of the point α. Consider Darboux coordinates zA =
{x1, . . . , xn, θ1, . . . , θn} on E in a vicinity of this point from the atlas of Darboux coor-
dinates corresponding to the identifying symplectomorphism ϕ′

L
and by suitable ”point”

canonical transformation (2.14b) choose them in a way that differential form wn is equal
to dx1 ∧ . . . ∧ dxn in these coordinates. Thus we come to Darboux coordinates in a vicin-
ity of the point α such that in these Darboux coordinates semidensity s has following
appearance:

s = s(x, θ)
√

D(x, θ) = (1 + cθ1θ2 . . . θn)
√

D(x, θ) , (4.29)

where c is equal up to sign to the invariant constant c(s) corresponding to the semidensity
s (see Corollary 1). The condition c(s) 6= 0 is the obstacle to condition (1.3a).

Consider now the value of the map (4.19) on this Lagrangian surface:

V̂ (L, s) = wn + [wn−1] + . . . + [w0] . (4.30)

If V̂ (L, s) = wn + c, i.e. all cohomological classes [wk] for k = 1, . . . , n− 1 in (4.30) vanish
on the surface L, then one can consider identifying symplectomorphism ϕ

L
such that

τ#
L (wn + c) = ϕ∗

L
s for the map (4.13). It means that there exists an atlas

[
{xi

(α), θj(α)}
]

of Darboux coordinates on En.n adjusted to cotangent bundle structure of Lagrangian
surface L such that in arbitrary coordinates from this atlas semidensity s is expressed by
relation (4.29). Semidensity s has appearance

√
D(x, θ) in any Darboux coordinates from

this atlas if invariant constant c(s) = 0. In other words in this case supermanifold can be
identified with ΠT ∗L with volume form on ΠT ∗L induced by volume form on L.

It follows from (4.23—4.27) that this statement holds for another even Lagrangian sur-
face L̃ iff cohomological class [Ψ] of one-form corresponding to a pair (L, L̃) of Lagrangian
surfaces (see 4.26) is equal to zero. In particular this statement is irrelevant to a choice of
Lagrangian surface if H1(M) = 0. (M is underlying manifold for E.)
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Now we analyze condition (1.3c) for even-nondegenerate semidensity s =
√

dv. From
(2.19) it follows that condition (1.3c) means that function (2.17d) is equal to an odd
constant ν, and ∆#s = νs. One can see using correspondence between semidensities and
differential forms that all solutions to this equation are following: s = ∆#h− νh, where h
is an arbitrary semidensity. The odd constant ν 6= 0 is the obstacle to condition (1.3b), if
condition (1.3c) is obeyed.
We come to the

Corollary 2
Let E = En.n be an odd symplectic supermanifold with connected orientable underlying

manifold M and this supermanifold is provided with a volume form dv, such that ∆2
dv = 0.

Then
1) to the volume form dv corresponds the odd constant ν: ∆#

√
dv = ν

√
dv and

√
dv

= ∆#h− νh for some odd semidensity h.
2) If the odd constant ν is equal to zero, then the master-equation ∆#

√
dv = 0 holds for

semidensity
√

dv. In this case to the volume form dv corresponds non-negative constant
c = c(

√
dv) and there exists an atlas of Darboux coordinates on En.n such that dv =

(1± 2c)D(x, θ) in any coordinates from this atlas.
3) In the case if the constant c(s) = 0 then, there exists an atlas of Darboux coordinates

on E such that dv = D(x, θ) in any coordinates from this atlas.
4) In the case if all cohomological classes of differential forms of degree less than n

corresponding to the semidensity
√

dv on even Lagrangian surface L are equal to zero also,
then there exists an atlas of Darboux coordinates on En.n adjusted to cotangent bundle
structure of L such that dv = D(x, θ) in any coordinates from this atlas, i.e. E can be
identified with ΠT ∗L with volume form on ΠT ∗L induced by volume form on L.

This statement holds for another (n.0)-dimensional Lagrangian surface L̃ if cohomo-
logical class of odd valued one-form [Ψ](L, L̃) is equal to zero.

This Corollary removes uncorrectness of the considerations about equivalence of con-
ditions (1.3a), (1.3b) and (1.3c) in the Statement 1 of Introduction, which was done in [15]
and [22]. On the other hand some statements of this Proposition in non explicit way were
contained in the statements of Lemma 4 and Theorem 5 of the paper [22].

5. Invariant densities on surfaces

First we recall shortly the problem of construction of invariant densities in sympelctic
(super)manifolds. Then we consider explicit formulae for the odd invariant semidensity
on non-degenerate surfaces of codimension (1.1) embedded in an odd symplectic super-
manifold E provided with a volume form dv ([12,13]). We consider this semidensity as
a kind of pull-back of semidensity s from the ambient odd symplectic supermanifold on
embedded (1.1)-codimensional surfaces in the case if s =

√
dv. Using this construction for
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the semidensity ∆#
√

dv we will construct the new densities on embedded non-degenerated
surfaces.

In the case if we consider a volume form not only on the space (superspace) but on
arbitrary embedded surfaces we come to the concept of densities on embedded surfaces.
The density of weight σ and rank k on embedded surfaces is a function A(z, ∂z

∂ζ , . . . , ∂kz
∂ζ...∂ζ )

that is defined on parameterized surfaces z(ζ), depends on first k derivatives of z(ζ) and
is multiplied on the σ-th power of determinant (Berezinian) of surface reparametrization.

A density of a weight σ defines on every given surface σ-th power of volume form. Such
a concept of density is very useful in supermathematics where the notion of differential
forms as integration objects is ill-defined. It was elaborated by A.S.Schwarz, particularly
for analyzing supergravity Lagrangians [20, 9, 21].

In usual mathematics, for every 2k-dimensional surface C2k embedded in a symplectic
space, so called Poincaré-Cartan integral invariants (invariant volume forms on embedded
surfaces) are given by the formula

∫

C2k

w ∧ ṡ ∧ w︸ ︷︷ ︸
k−times

=
∫ √

det
(

∂xµ(ξ)
∂ξi

wµν
∂xν(ξ)

∂ξj

)
d2kξ , (5.1)

where a non-degenerate closed two-form w = wµνdxµ ∧ dxν defines symplectic structure,
and functions xµ = xµ(ξi) define some parameterizations of the surface C2k.

In supermathematics one can consider even and odd symplectic structures on super-
manifold generated by even and odd non-degenerate closed two-forms respectively [6,18,19].

In the case of an even symplectic supermanifold, the l.h.s. of (5.1) is ill-defined but
the r.h.s. of this formula can be straightforwardly generalized, by changing determinant on
the Berezinian (superdeterminant). The properties of the integral invariant do not change
drastically. In particular one can prove that the integrand in (5.1) (the density of the
weight σ = 1 and of the rank k = 1) is locally total derivative and all invariant densities
on surfaces are exhausted by (5.1) as well as in the case of usual symplectic structure [16,
1].

The situation is less trivial in the case of an odd symplectic supermanifold. Formula
(5.1) cannot be generalized in this case because transformations preserving odd symplectic
structure do not preserve any volume form . One can consider invariant densities only in
an odd symplectic supermanifold provided with a volume form.

The problem of the existence of invariant densities on non-degenerate surfaces em-
bedded in an odd symplectic supermanifold provided with a volume form was studied in
[12, 13]. In particularly it was proved that there are no invariant densities of the rank
k = 1 (except of the volume form itself), and invariant semidensity of the rank k = 2 that
is defined on non-degenerate surfaces of the codimension (1.1) was obtained. We briefly
expose here its construction.
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The surface embedded in symplectic supermanifold is called non-degenerate if the sym-
pelctic structure of the supermanifold generates the symplectic structure on the embedded
surface also, i.e. if the pull-back of the symplectic 2-form on the surface is non-degenerate
2-form. This symplectic structure on an embedded surface is called induced symplectic
structure.

Let {zA} be Darboux coordinates on an odd symplectic supermanifold E = En.n

provided with volume form dv = ρ(z)Dz. It is convenient in this section to use for
Darboux coordinates notations zA = (xµ, θµ), (µ = (0, i) = (0, 1, . . . , n−1), i = (1, . . . . , n−
1)). Let z(ζ) be an arbitrary parameterization of an arbitrary non-degenerate surface of
codimension (1.1), embedded in E. (ζ = (ξi, ηj), ξi and ηj are even and odd parameters
respectively, (i, j = 1, . . . , n− 1)). The invariant semidensity of the rank k = 2 (depending
on first and second derivatives of z(ζ)) is given by the following formula [12]:

A

(
z(ζ),

∂z

∂ζ
,

∂2z

∂ζ∂ζ

) √
Dζ =

(
ΨA ∂ log ρ(z)

∂zA
− ΨAΩAB

∂2zB

∂ζα∂ζβ
Ωαβ(z(ζ))(−1)p(zB(ζα+ζβ)+ζα

) √
Dζ , (5.2)

where ΩABdzAdzB is the two-form defining the odd sympelctic structure on En.n and Ωαβ

is the tensor inversed to the two-form that defines induced symplectic structure on the
surface. The vector field Ψ = ΨA ∂

∂zA is defined as follows: one have to consider the pair of
vectors (H,Ψ), H even and Ψ odd that are symplectoorthogonal to the surface and obey
the following conditions:

Ω (H,Ψ) = 1, Ω(Ψ,Ψ) = 0 (symplectoorthonormality conditions) , (5.3)

dv
({

∂z

∂ζ

}
,H,Ψ

)
= 1 (volume form normalization conditions) . (5.4)

These conditions fix uniquely the vector field Ψ. (See for details [12]).
The explicit expression for this semidensity was calculated in [13] in terms of dual

densities: If (1.1)-codimensional surface C is given not by parameterization, but by the
equations f = 0, ϕ = 0, where f is an even function and ϕ is an odd function then to the
semidensity (5.2) there corresponds the dual semidensity:

Ã
∣∣∣
f=ϕ=0

=
1√
{f, ϕ}

(
∆dvf − {f, f}

2{f, ϕ}∆dvϕ− {f, {f, ϕ}}
{f, ϕ} − {f, f}

2{f, ϕ}2 {ϕ, {f, ϕ}}
)

.

(5.5)
One can check that r.h.s. of (5.5) restricted by conditions f = ϕ = 0 is multiplied by the
square root of the corresponding Berezinian (superdeterminant) under the transformation
f → af + αϕ, ϕ → βf + bϕ, which does not change the surface C [13].
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This invariant semidensity takes odd values. It is an exotic analogue of Poincaré–
Cartan invariant: the corresponding density (the square of this odd semidensity) is equal
to zero, so it cannot be integrated nontrivially over surfaces. On the other hand this
semidensity can be considered as an analog of the mean curvature of hypersurfaces in the
Riemanian space [12].

This odd semidensity in an odd symplectic supermanifold is unique (up to multi-
plication by a constant) in the class of densities of the rank k = 2 that are defined on
non-degenerated surfaces of arbitrary dimension [13]. This means that one have to search
non-trivial integral invariants (invariant densities of weight σ = 1) in higher order deriva-
tives (rank k ≥ 3). Tedious calculations, which lead to the construction of the odd invariant
semidensity in the papers [12,13] did not give hope to go further for finding them, using
the technique used in these papers.

Now we develop another approach rewriting the semidensity (5.2) straightforwardly
via the semidensity

√
dv on the ambient odd symplectic supermanifold E = En.n.

Consider for every given non-degenerate surface C of codimension (1.1) embedded in
odd symplectic supermanifold E Darboux coordinates such that in these Darboux coordi-
nates the surface C locally is given by equations

x0 = θ0 = 0 . (5.6)

We call these Darboux coordinates adjusted to the surface C. (The existence of Dar-
boux coordinates obeying these conditions can be proved using technique considered in
Appendices 2 and 3).

If {xµ, θν} are Darboux coordinates in E adjusted to the surface C, then {xi, θj}
are Darboux coordinates on the surface Cn−1.n−1 w.r.t. the induced symplectic structure
(µ, ν = 0, . . . , n− 1, i, j = 1, . . . , n− 1).

Consider a semidensity (5.2) on arbitrary non-degenerated surface C = Cn−1.n−1 of
codimension (1.1) in Darboux coordinates (5.6) adjusted to this surface. Conditions of
symplectoorthonormality in (5.3) give that H = 1

a
∂

∂x0 + β ∂
∂θ0

and Ψ = a ∂
∂θ0

, where a is
even and β is odd. The condition (5.4) of the volume form normalization gives that

a =
√

ρ Ber1/2

(
∂(xi, θj)
∂(ξi, ηj)

)
,

where a volume form dv is equal to ρ(x, θ)D(x, θ) and ζ = (ξi, ηj) are parameters (x0 =
θ0 = 0, xi = xi(ξ, η), θj = θj(ξ, η)).

Hence the semidensity (5.2) on a surface (5.6) is reduced to

A

(
z(ζ),

∂z

∂ζ
,

∂2z

∂ζ∂ζ

) √
Dζ = a

∂ log ρ

∂θ0

√
Dζ = 2

∂
√

ρ

∂θ0

√
D(xi, θj) .
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We come to the following statement
Theorem To every semidensity s in the odd symplectic supermanifold E corresponds

semidensity K(s) of an opposite parity defined on non-degenerated (1.1)-codimensional
surfaces embedded in this supermanifold.

If semidensity s is given by expression s = s(x, θ)
√

D(x, θ) in Darboux coordinates
{xµ, θν} = {x0, xi, θ0, θj} adjusted to given non-degenerate surface C of codimension (1.1)
(x0|C = θ0|C = 0), then semidensity K(s) on this surface in these Darboux coordinates is
given by the following expression:

K(s)
∣∣
C

=
∂s(xµ, θν)

∂θ0

∣∣∣
x0=θ0=0

√
D(xi, θj) , (5.7)

where D(xµ, θν) is coordinate volume form on the supermanifold E and D(xi, θj) is
coordinate volume form on the surface C.

The considerations above lead to the statement of this Theorem for semidensities
related with a volume form on an odd symplectic supermanifold (s =

√
dv), i.e. for even

non-degenerate even semidensities. Continuity considerations lead to the fact that the
formula (5.7) is well-defined for an arbitrary semidensity e.g. for an odd semidensity, when
the corresponding volume form is equal to zero.

Alternatively one can prove this Theorem checking in a same way as for (2.12) that the
semidensity in r.h.s. of (5.7) is well defined. For example consider canonical transformation
that has the following appearance in Darboux coordinates adjusted to surface C:

{
x̃0 = x̃0(x0, θ0) , θ̃0 = θ0(x0, θ0)
x̃i = xi , θ̃i = θi

One can see that these canonical transformations are exhausted by transformations x̃0 =
f(x0), θ̃0 = β(x0) + θ0/fx, x̃i = xi, θi = θi, where f(x) and β(x) are even-valued and
odd valued functions on x respectively. Hence for transformation of adjusted coordinates
x̃0 = f(x0), θ̃0 = θ/fx. Obviously r.h.s. of formula (5.7) transforms as semidensity under
this transformation. This is the central point of the construction (5.7) and also of (5.2)
(see for details [12]).)

We can consider a semidensity K(s) in (5.7) as a kind of pull-back of semidensity s on
C, but this construction does not obey a condition of transitivity for pull-back: consider
arbitrary (k.k)-dimensional non-degenerate surface embedded in En.n and include it in a
flag of non-degenerated surfaces:

Y k.k ↪→ Y k+1.k+1 . . . ↪→ Y n−1.n−1 ↪→ En.n . (5.8)

then one can consider semidensity K(. . .K(s) . . .) on Y k.k corresponding to the semidensity
s depending on flag (5.8).
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The statement of Theorem allows us to construct semidensity on embedded surfaces
via odd semidensities on the ambient supermanifold, which cannot be yielded from volume
forms.

In an odd sympelctic supermanifold provided with a volume form dv on (1.1)-codi-
mensional non-degenerate surfaces except an odd semidensity K(

√
dv), that is nothing but

semidensity (5.2), one can consider also an even semidensity K(∆#
√

dv) corresponding to
an odd semidensity ∆#

√
dv. The semidensity K(∆#

√
dv) cannot be represented (5.2)-like

because the square of the odd semidensity ∆#
√

dv is equal to zero.
We note that for semidensities K(∆#s) and K(s) for arbitrary (1.1)-codimensional

surface C the following condition is obeyed:

K(∆#s)
∣∣∣
C

= −∆̃#K(s)
∣∣∣
C

, (5.9)

where ∆̃# is ∆#-operator on surface C w.r.t. induced symplectic structure. This relation
can be immediately checked in Darboux coordinates (5.6) adjusted to the surface C.

The semidensities K(
√

dv) and K(∆#
√

dv) can be integrated over Lagrangian sub-
surfaces in C, according (4.16).

On the other hand one can consider the following non-trivial densities of weight σ = 1
constructed via the semidensities K(

√
dv) and K(∆#

√
dv):

P0 = K2(∆#
√

dv) and P1 = K(
√

dv)K(∆#
√

dv) . (5.10)

The density P0 takes even values, the density P1 takes odd values. In general case these
densities give non-trivial integration objects (volume forms) over non-degenerated (1.1)-
codimensional surfaces embedded in an odd symplectic supermanifold with volume form
dv.

The densities P0 and P1 have rank k = 4 (i.e. depend on derivatives of the param-
eterization z(ζ) up fourth order). It follows from the fact that according to (5.9) the
semidensity K(∆#

√
dv) has the rank k = 4, because the semidensity K(

√
dv) has the rank

k = 2. This is hidden in representation (5.7), where the function ρ(z) corresponding to
the volume form in adjusted coordinates depends non-explicitly on derivatives of surface
parameterization z(ζ).

Finally we consider a simple example of these constructions and their relations with
differential forms.

Let E3.3 be a superspace associated to cotangent bundle of 3-dimensional space E3,
E3.3 = ΠT ∗E3. We assume that coordinates x0, x1, x2 are globally defined on E3. We
consider on E3 the differential form

w = −dx0 ∧ dx1 ∧ dx2 + b0dx0 + b1dx1 + b2dx2 .
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According to (3.4) a semidensity

s = τ#(w) = (1 + b0θ1θ2 + b1θ2θ0 + b2θ0θ1)
√

D(x0, x1, x2, θ0, θ1, θ2)

in ΠT ∗E corresponds to this differential form. Let C be a surface in E3.3 that is defined
by equations x0 = θ0 = 0 and E2 is subspace in E3 defined by equation x0 = 0. (2.2)-
dimensional superspace C provided with coordinates x1, x2, θ1, θ2 can be identified with
superspace ΠT ∗E2 associated with cotangent bundle T ∗E2 of subspace E2.

Then the value of the odd semidensity K(s) on C = ΠT ∗E2 is equal to (b2θ1 −
b1θ2)

√
D(x1, x2, θ1, θ2). This semidensity corresponds to differential form b1dx1 + b2dx2,

the pull-back of w on E2. The value of even semidensity K(∆#s) on C is equal to (∂2b1−
∂1b2)

√
D(x1, x2, θ1, θ2). This corresponds to differential form d(b1dx1 + b2dx2) = (∂2b1 −

∂1b2)dx1 ∧ dx2, the pull-back of dw on E2.
The even density (volume form) on M is equal to P0 = (∂2b1− ∂1b2)2D(x1, x2, θ1, θ2)

and the odd density P1 = (∂2b1 − ∂1b2)(b1θ2 − b2θ1)D(x1, x2, θ1, θ2).

6. Discussion

The definition (2.7) of the ∆dv-operator is applicable not only for a symplectic su-
permanifold but also for a Poisson supermanifold (provided with a volume form) even if
corresponding Poisson bracket is degenerate. Is it possible to define ∆#-operator on semi-
densities in odd Poisson supermanifold? This question is studied in [17]. It turns out that
on general odd Poisson supermanifold there is a canonical ∆-operator on semidensities
depending only on the class of a volume form modulo the action of a natural ”master”
groupoid (see [17]).

We note also that from relations (2.10) it follows that one can express odd Poisson
bracket via the operator ∆dv. Moreover every second order odd differential operator Â on
functions on a supermanifold obeying the condition Â2 = 0 defines Poisson structure via
relations (2.10). This approach was elaborated by I.A. Batalin and I.V. Tyutin [2]. (The
exhaustive study of these questions giving in particular a complete description of the BV
operators can be found in [26].)

On an odd symplectic supermanifolds the integration theory on surfaces interplays
with symplectic geometry. Using our approach one can consider integrands (differential
forms) of in terms of semidensities corresponding to these differential forms. In this case
symmetry transformations of the corresponding functionals are not exhausted by trans-
formations induced by diffeomorphisms of underlying space. General canonical transfor-
mations of supermanifold induce mixing of corresponding differential forms with different
degrees.

In Sections 3 and 4 we investigated relations between semidensities on an odd sym-
plectic supermanifold and differential forms on even Lagrangian surfaces. It is interesting
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to generalize these results to the case when Lagrangian surface is (n−k.k)-dimensional for
k 6= 0 using the analysis of arbitrary Lagrangian surfaces performed in the paper [22]. In
this case there exist analogies of differential forms considered as integration objects. (See
[7, 1] and for a more detailed analysis [27, 25].) For example if ΠT ∗M is (r + s.r + s)-
dimensional supermanifold associated with the cotangent bundle of an (r.s)-dimensional
supermanifold M then considering analogue of formula (3.4a) we obtain relations between
semidensities in ΠT ∗M and the so called pseudodifferential forms: functions on the super-
manifold ΠTM . Pseudodifferential forms are well-defined integration objects over super-
manifold and embedded surfaces [7, 1, 27, 25]. In this way it is possible to come to an
analogue of the map (4.16) (see [22], [15]). It is interesting to construct analogues of the
maps (4.19) and (4.21) for (n− k.k)-dimensional Lagrangian surfaces.

We note that our considerations in subsections 4.2 and 4.3 overlap partially with some
results of the paper [22]. A distinctive feature of our approach is the use of semidensities
where a calculus analogous to the calculus of differential forms arises. In particularly this
leads to the statements in Corollary 2. Also, by using Λ-points we come to the difference
between supergroups Can0(E) and CanH(E).

We hope that considerations presented in Section 5 of this paper can be generalized
for constructing densities depending on higher order derivatives for surfaces of arbitrary
dimension embedded in an odd symplectic supermanifold provided with a volume form
and for finding a complete set of local invariants of this geometry. In particular, from
considerations which lead to Theorem follows that if k(p) is the rank of a non-trivial
invariant densities on non-degenerated surfaces of codimension (p.p), then k(2) ≥ 5 and
k(p + 1) > k(p).

In [12] some relations of the semidensity (5.2, 5.7) with mean curvature in Riemanian
geometry were indicated. It is interesting to analyze these relations in terms of geometry
of semidensities presented in this paper.

Densities presented in formula (5.10) are needed to be investigated in greater detail.
Particularly one have to present explicit formulae for them and consider the corresponding
functionals over surfaces. These functionals are equal to zero in the special case if the
volume form in the ambient odd symplectic supermanifold obeys the BV-master equation.
Are Euler-Lagrange equations for these functionals satisfied identically in a general case,
as for the usual Poincare-Cartan integral invariants (5.1)?

Results presented in Section 5 strongly indicate that there exists non-trivial geometry
in an odd symplectic supermanifold provided with a volume form.
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Appendix 1. Λ-points on Supermanifolds

Let
[
{xi

(α)}
]

be a smooth atlas of coordinates on m-dimensional manifold Mm, where

coordinates {xi
(α)} are defined on domain Uα and xi

(α) = Ψi
αβ(x(β)) are transition functions.

Consider an atlas
[
{xi

(α), θ
j
(α)}

]
, where odd variables {θj

(α)} (j = 1, . . . , n) are generators
of Grassmann algebra and transition functions

{
xi

(α) = Ψ̃i
αβ(x(β), θ(β))

θj
(α) = Φj

αβ(x(β), θ(β))
(Ap1.1)

obey the following properties:
1) they are parity preserving, i.e. p(Ψ̃αβ) = 0, p(Φαβ) = 1, where p(xi) = 0, p(θj) = 1,
2) Ψ̃αβ(x(β), θ(β))

∣∣
θj=0

= Ψαβ(x(β)) and ∂Φj/∂θi
(β) are inverting matrices.

Coordinates {xi
(α), θ

j
(α)} define (m.n)-dimensional superdomain Ûm.n

(α) with underly-
ing domain Um

(α). Pasting formulae (Ap1.1) define (m.n)-dimensional supermanifold with
underlying manifold Mm. In this definition of supermanifold which belongs to F.Berezin
and D.Leites (see [6] and [19]) a supermanifold ”has no points”.

If E is supermanifold and Λ is an arbitrary Grassmann algebra one can construct a set
EΛ of Λ-points of supermanifold E. For example if Em.n is superdomain with underlying
domain Mm, we define EΛ as a set of rows (a1, . . . , am, α1, . . . , αn), where a1, . . . , am are
arbitrary even elements and α1, . . . , αn are arbitrary odd elements of Grassmann algebra
Λ and (m(a1), . . . , m(am)) ∈ Mm, where m is a standard homomorphism of Λ on IR.
A map of superdomains generates a map of corresponding sets of Λ-points. Thus one
comes to definition of a set EΛ for arbitrary supermanifold E. To every parity preserving
homomorphism ρ: Λ → Λ′ of Grassmann algebras one can naturally assign a map ρ̃

E
:

EΛ → EΛ′ . If ρ: Λ → Λ′ and ρ′: Λ′ → Λ′′ are two parity preserving homomorphisms,
then ˜(ρ ◦ ρ′)E = ρ̃E ◦ ρ̃′

E
. Supermanifold can be considered as functor on the category of

Grassmann algebras taking values in category of sets.
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This definition of supermanifolds is used in the paper. It was suggested and widely
used by A.S. Schwarz [21]. It makes possible to use a language of ”points” and is more
convenient for supergeometry and in applications in theoretical physics.

In terms of Λ-points one can easy to generalize the standard geometrical definitions
on supercase [21]. For example

1. A map F from supermanifold E in supermanifold N can be considered as a functor
from category {Λ} of Grassmann algebras to category {FΛ}, where for every Grassmann
algebra Λ FΛ is a map from the set EΛ to the set NΛ such that FΛ′ ◦ ρ̃

E
= ρ̃

N
◦ FΛ for

every parity preserving homomorphism ρ: Λ → Λ′.
2. The action of supergroup G on supermanifold E can be considered as a functor

that assigns to every Grassmann algebra the pair [GΛ, EΛ] where GΛ is a group of Λ-points
of supergroup G, that acts on the set EΛ of Λ-points of supermanifold E.

Appendix 2. A simple proof of Darboux Theorem
for odd symplectic structure

Using nilpotency of odd variables one can directly prove Darboux theorem for an odd
symplectic supermanifold presenting finite recurrent procedure for constructing Darboux
coordinates starting from arbitrary coordinates.

Let { , } be odd non-degenerated Poisson bracket (2.1) corresponding to the sym-
plectic structure. According to (2.1) for arbitrary two functions f and g

{f, g} = ∂f
∂xi {xi, xj} ∂g

∂xj + ∂f
∂xi {xi, θj} ∂g

∂θj
+ (−1)p(f)+1 ∂f

∂θi
{θi, x

j} ∂g
∂xj

+(−1)p(f)+1 ∂f
∂θi
{θi, θj} ∂g

∂θj

(Ap2.1)

and Jacoby identities (2.3) are obeyed.
For given arbitrary coordinates {x1, . . . , xn, θ1, . . . , θn} denote by

Eij(x, θ) = {xi, xj} , Fij(x, θ) = {θi, θj} , Ai
j(x, θ) = δi

j + P i
j (x, θ) = {xi, θj} . (Ap2.2)

From definition of symplectic structure it follows that Eij = Eji, Fij = −Fji are odd-
valued matrices taking values in Grassmann algebra Λ and Ai

j(x, θ) is even non-degenerate
matrix taking values in Grassmann algebra Λ. In Darboux coordinates matrices Eij , Fij

and P i
j have to be equal to zero.

First of all we note that in the case if for coordinates {xi, θj} the conditions

Eik(x, θ) = 0 , P i
k(x, θ) = 0 (Ap2.3)

are obeyed then Jacoby identities {xm, {θi, θj}}+cycl. permut. = 0 imply that Fij do not
depend on θ and Jacoby identities {θi, {θj , θm}}+ cycl. permut. = 0 imply the condition
∂iFjm(x)+ ∂jFmi(x)+ ∂mFij(x) = 0. (In other words two-form Fij(x)dxi ∧ dxj is closed).
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Locally it means that there exist functions Ai(x) such that Fij(x) = ∂iAj(x) − ∂jAi(x).
Under transformation θi → θi + Ai(x), Fij(x) transform to zero also and we come to
Darboux coordinates.

Thus we have to find transformation from arbitrary coordinates to new coordinates
such that in new coordinates conditions (Ap2.3) will be obeyed.

Consider a set M of all coordinates {xi, θj}. Denote by M(p.q) a subset of M such
that for coordinates {xi, θj} belonging to the subset M(p.q) the following conditions are
obeyed for matrices Eij(x, θ) and P i

j (x, θ) in (Ap2.2):

Eij(x, θ) = O(θp) , P i
j (x, θ) = O(θq) . (Ap2.4)

M0.0 = M and condition {xi, θj} ∈ Mn+1.n+1 means that relations (Ap2.3) are obeyed
for these coordinates, because θi1 . . . θik

= 0 if k ≥ n + 1.
Consider four maps F1,F2,F3,F4 defined on the set M of coordinates, such that

these maps obey the following conditions:

F1 maps Mr.0 in Mr.1 for r = 0, 1, . . . ,
F2 maps M0.1 in M1.0 ,

F3 maps Mr.1 in Mr+1.1 for r ≥ 1 ,
F4 maps Mn+1.r in Mn+1.r+1 for r ≥ 1 .

(Ap2.5)

Provided conditions (Ap2.5) are obeyed the map Fn
4 ◦Fn

3 ◦F1◦F2◦F1 transforms arbitrary
coordinates to coordinates that belong to subset Mn+1.n+1, i.e. conditions (Ap2.3) are
obeyed for transformed coordinates.

Now we present maps F1,F2,F3,F4 obeying conditions (Ap2.5).
1. Definition of the map F1:

F1({xi, θj}) = {x̃i, θ̃j}, where x̃i = xi, θ̃j = θm(A−1)m
j , (Ap2.6)

where matrix A−1 is inverse to the matrix A defined by relations (Ap2.2) for coordinates
{xi, θj}. It is easy to see from (Ap2.1) that map (Ap2.6) obeys condition (Ap2.5).

2. Definition of the map F2:

F2({xi, θj}) = {x̃i, θ̃j}, where x̃i = xi − θmRmi, θ̃j = θj , (Ap2.7)

where symmetrical odd-valued matrix R is solution to matrix equation

2R + RFR = E , (Rij = Rji) (Ap2.8)

and matrices E and F for coordinates {xi, θj} are defined by (Ap2.2).
The solution to this equation is well-defined because elements of symmetric matrix E

and antisymmetric matrix F take odd values in Grassmann algebra Λ. R is given by finite
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power series R = E
2 − EFE

8 + . . . containing less than [n2

2 ] terms. One can present explicit
solution to equation (Ap2.8):

R =

n(n−1)
2∑

k=0

ck(EF )kE, where
∞∑

k=0

cktk =
√

1 + t− 1
t

. (Ap2.9)

Now it follows from (Ap2.1) and (Ap2.8) that under transformation (Ap2.7) matrix
Eij = {xi, xj} transforms to the matrix Ẽij = {x̃i, x̃j} such that

Ẽij = Eij − 2Rij −RimFmkRmj + O(θ̃) = O(θ̃) , (Ap2.10)

if coordinates {xi, θj} belong toM0.1 (i.e. Ai
j = δi

j +O(θ)) and matrix R obeys to equation
(Ap2.8). Hence map (Ap2.7) obeys condition (Ap2.5).

3. Definition of the map F3:

F3({xi, θj}) = {x̃i, θ̃j}, where x̃i = xi − θm

∫ 1

0

τEmi(x, τθ)dτ, θ̃j = θj . (Ap2.11)

From (Ap2.1) it follows that transformation (Ap2.11) maps Mr.1 in Mr.1 if r ≥ 1. Matrix
Eij(x, θ) transforms to matrix

Eij − 2Eij

r + 2
+

1
r + 2

(
θm

∂Emj

∂θi
+ (i ↔ j)

)
+ O(θr+1) . (Ap2.12)

On the other hand from Jacoby identity (2.3): {xi{xj , xm}}+{xj{xm, xi}}+{xm{xi, xj}}
= 0 and from (Ap2.1) it follows that

θm
∂Emj

∂θi
+ (i ↔ j) = −θm

∂Eij

∂θm
+ O(θr+1) = −rEij(x, θ) + O(θr+1) . (Ap2.13)

Hence (Ap2.12) is equal to zero up to O(θ̃r+1) and condition (Ap2.5) is obeyed for trans-
formation (Ap2.11).

4. Definition of the map F4:

F3({xi, θj}) = {x̃i, θ̃j}, where x̃i = xi, θ̃j = θj − θm

∫ 1

0

Pm
j (x, τθ)dτ . (Ap2.14)

We prove that (Ap2.10) maps Mn+1.r in Mn+1.r+1 analogously to the proof for (Ap2.11).
Suppose that coordinates {xi, θj} belong to Mn+1.r (r ≥ 1). Then transformation
(Ap2.14) maps matrix P i

j (x, θ) to matrix

P i
j −

P i
j

r + 1
+

θm

r + 1
∂Pm

j

∂θi
+ O(θr+1) = P i

j −
P i

j

r + 1
− θm

r + 1
∂P i

j

∂θm
+ O(θr+1) = O(θr+1) ,

because of Jacoby identity {xi, {xm, θj}} + {xm, {xi, θj}} + {θj , {xi, xm}} = 0. Hence
condition (Ap2.5) is obeyed for transformation (Ap2.14).
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Appendix 3. Hamiltonians of adjusted canonical transformations

In this Appendix we prove that for any given adjusted canonical transformation
{xi, θj} → {x̃i, θ̃j} (2.14a) there exists time-independent Hamiltonian Q(x, θ) that gen-
erates this transformation via differential equations (2.15) and this Hamiltonian is defined
uniquely by the condition

Q(x, θ) = Qikθiθk + . . . , i.e. Q = O(θ2) . (Ap3.1)

For every Hamiltonian (odd function) Q(x, θ) obeying condition (Ap3.1) consider one-
parametric family of functions (Darboux coordinates) {yi(t), ηj(t)} (i, j = 1, . . . , n) that
are solution to differential equation (2.15):

{
dyi(t)

dt = {Q(y, η), yi} = −∂Q(y,η)
∂ηi

,
dηj(t)

dt = {Q(y, η), ηj} = ∂Q(y,η)
∂yi ,

(0 ≤ t ≤ 1) , (Ap3.2)

with initial conditions
yi(t)

∣∣
t=0

= xi, ηi(t)
∣∣
t=0

= θi .

It is easy to see from explicit expression (2.4) for odd Poisson bracket that if {xi, θj}
and {x̃i, θ̃j} are Darboux coordinates such that x̃i = xi and θ̃j = O(θ) then θ̃j = θj also.
Hence every adjusted canonical transformation {xi, θj} → {x̃i, θ̃j} is uniquely defined by
functions {f i(x, θ)} that obey the conditions:

{xi + f i(x, θ), xj + f j(x, θ)} = 0 and f i(x, θ) ∈ O(θ) . (Ap3.3)

Statement 3 of Lemma 1 follows from the Lemma:
Lemma 3 For every set of functions {f i(x, θ)} (i = 1, . . . , n) obeying conditions

(Ap3.3) there exists unique Hamiltonian Q obeying condition (Ap3.1) such that functions
{yi(t)} solutions to differential equation (Ap3.2) obey conditions yi(t)|t=1 = xi + f i(x, θ)
(i = 1, . . . , n).

Prove this Lemma.
Consider a ring A of functions on coordinates (x1, . . . , xn, θ1, . . . , θn). (As always

functions take values in an arbitrary Grassmann algebra Λ. Consider in A the following
gradation: A(p) is a space of functions that are linear combinations of p-th order monoms
on variables {θ1, . . . , θn}: f ∈ A(p) iff

∑
k θk

∂f
∂θk

= pf . A(p) = 0 for p ≥ n + 1. For every
function f ∈ A we denote by f(p) its component in A(p): f = f(0) + f(1) + . . . + f(n). It is
evident that for canonical Poisson bracket (2.4)

{f, g}(p) =
n∑

i=0

{f(i), g(p+1−i)} . (Ap3.4)
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Consider also a corresponding filtration:

0 = A(n+1) ⊂ A(n) ⊂ . . . ⊂ A(1) ⊂ A(0) = A ,

where A(p) = ⊕k≥pA(k).
We denote by A+ (A−) a subspace of even-valued (odd valued) functions in A. Re-

spectively we denote by A±(k) = A(k) ∩A± and A±(k) = A(k) ∩A±.
We note first that condition (Ap3.1) implies that solutions to equations (Ap3.2) are

well defined. Indeed consider arbitrary function ϕ(x, θ), odd Hamiltonian Q ∈ A−(2) and
differential equation ϕ̇ = {Q,ϕ}. Projecting this differential equation on the subspace A(p)

we come using (Ap3.4) to equations ϕ̇(p) = {Q(p+1), ϕ(0)}+ . . . + {Q(2), ϕ(p−1)}. Function
ϕ(0) does not depend on t (ϕ̇0 = 0) and these equations can be solved recurrently:

ϕ(p)

∣∣
t=a

= ϕ(p)

∣∣
t=0

+ a{Q(p+1), ϕ(0)}+ . . . , (Ap3.5)

where we denote by dots terms depending on Q(2), . . . , Q(p) and functions ϕ(0), ϕ(1)|t=0, . . . ,

ϕ(p−1)|t=0.
Denote byN a space of sets of even-valued functions {f i(x, θ)} (i = 1, . . . , n) such that

these functions obey condition (Ap3.3). Consider a map that assigns to every Hamiltonian
Q ∈ A−(2) the solutions {yi(t)|t=1} = xi + f i(x, θ) to differential equations (Ap3.2). Thus
we define map U : A−(2) → N . Relations (Ap3.5) for ϕ = xi imply that

f i
(p) = −∂Qp+1

∂θi
+ terms depending on Q(2), . . . , Q(p) . (Ap3.6)

Consider also a following map δ: N → A−(2) such that for every {f i} ∈ N

δ({f i(x)}) = −
n∑

i=1,p=1

θi

f i
(p)(x, θ)

p + 1
= −

n∑

i=1

θi

∫ 1

0

f i(x, τθ)dτ . (Ap3.7)

From condition (Ap3.3) for functions {f i} and (2.4) it follows that

f i = −∂Q̃

∂θi
+

∑
m

θm

∫ 1

τ=0

{f i, fm}|x,τθdτ if Q̃ = δ({f i}) .

Projection of this equation on subspaces A(p) implies

f i
(p) = −∂Q̃(p+1)

∂θi
+ terms depending on f i

(1), . . . f
i
(p−1). (Ap3.8)

Hence δ is injection. Comparing this relation with relation (Ap3.6) we see that the map
δ ◦ U : A−(2) → A−(2) is bijection. Hence the map U is also bijection. For every {f i} ∈ N
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the odd function Q = (δ ◦ U)−1◦ δ({f i})) is the unique Hamiltonian in A(2) required by
Lemma.
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