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Abstract. “Thick” or “microformal” morphisms of supermanifolds generalize ordinary
maps. They were discovered as a tool for homotopy algebras. Namely, the corresponding
pullbacks provide L∞-morphisms for S∞ or Batalin–Vilkovisky algebras. It was clear from
the start that constructions used for thick morphisms closely resemble some fundamental
notions in quantum mechanics and their classical limits (such as action, Schrödinger and
Hamilton–Jacobi equations, etc.) There was also a natural question about any connection
of thick morphisms with spinor representation. We answer both questions here. We
establish relations of thick morphisms with fundamental concepts of quantum mechanics.
We also show that in the linear setup quantum thick morphisms with quadratic action
give (a version of) the spinor representation for a certain category of canonical linear
relations, which is an analog of the Berezin–Neretin representation and a generalization
of the metaplectic representation (and ordinary spinor representation).
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1. Introduction and preliminaries

1.1. Introduction. Thick (microformal) morphisms of supermanifolds were discovered as
a tool for constructing L∞-morphisms of homotopy algebras such as S∞- or P∞-algebras.
Their quantum version does the same for Batalin–Vilkovisky algebras. See [19, 21, 22],
also [24] and [20, 23]. (The starting point was a problem concerning higher Koszul brack-
ets introduced in [11]. See also [12].) We recall definitions and main facts in the next
subsection.

Construction used for thick morphisms have remarkable resemblance with fundamental
notions of classical and quantum mechanics such as classical and quantum action. In this
paper, we try to show that it is more than just a resemblance.

The non-linear pullback of functions by a classical thick morphism, which is key for ap-
plication to homotopy structures, is, from the viewpoint of the ambient cotangent bundles,
action on functions on Lagrangian submanifolds. Loosely, it is an “action on functions of
n variables by a transformation of a 2n-dimensional space”. This is literary true for the
case of one manifold Mn: then a “thick diffeomorphism” Φ: M→M can be put into a
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bijection with a (formal) canonical transformation of T ∗M and hence there is an action
on functions on M of canonical transformations of T ∗M . This strongly resembles spinor
representation, if one recalls that the spinor representation (in the orthogonal or symplectic
settings) can be seen as action of linear transformations of a “large” space on objects such
as functions or half-forms that live on a (half-dimensional) maximally isotropic subspace.
(Details depend on a particular setting and some choices e.g. of a real or holomorphic
realization.)

So it is natural to ask, as we did in [22], whether there is an actual link between thick
morphisms and spinor representation. We are able to give a positive answer here.

Namely, here we show that pullback by quantum thick morphisms can be seen as a
generalization of spinor representation — in the sense that for the special case of vector
spaces, a particular class of quantum thick morphisms gives a projective representation of
a category of canonical linear relations. It is close to the spinor representation introduced
by Neretin [14, 15] (as a generalization of Berezin’s construction [2]). The representation
given by quantum thick morphisms differs from the Berezin–Neretin representation by a
multiplier. For a single vector space, it gives, also up to a multiplier, the metaplectic (or
Shale–Weil or symplectic spinor) representation. These multipliers correspond, roughly, to
choices of ordering in the quantization construction. Since we do everything in the super
setting, we in fact obtain representations of super categories and supergroups such as the
symplectic-orthogonal supergroup SpO. The case of ordinary (orthogonal) spinors corre-
sponds to purely odd vector spaces. (Strictly speaking, we obtain pseudo-euclidian spinors
for a particular signature, namely (m,m), which admits real Lagrangian subspaces.) As
for non-linear pullbacks by classical thick morphisms, which came into being for the needs
of homotopy algebras and their L∞-morphisms, they can be seen morally as a general-
ization of “the classical limit of the spinor representation” (for ~ → 0). It is also worth
pointing out that it was Fock’s work [8] first treating the connection between canonical
transformations of classical and quantum mechanics (indicated heuristically by Dirac [5]).

The structure of the paper is as follows. In the next subsection 1.2, we recall defini-
tions and main facts concerning classical and quantum thick morphisms. In Section 2, we
consider one-parameter families of thick morphisms and show how Hamilton–Jacobi and
Schrödinger equations appear in this setting. In Section 3, we establish connection with
the spinor representation.

Throughout the paper, we use standard language of supergeometry. In many cases, we
do not particularly emphasize that we consider super objects, very often referring e.g. to
“supermanifolds” as just “manifolds”, etc.

1.2. Main notions. Let us recall the notions of classical and quantum thick morphisms.
A note on terminology: the word “thick” is used because our constructions give a certain
“thickening” (in several senses) of the ordinary smooth maps. Another adjective which
is applied is “microformal” [22], because of using cotangent bundles similarly to that in
microlocal analysis and of the role played by formal power expansions.

1.2.1. Classical thick morphisms. Let M1 and M2 be two manifolds or supermanifolds.
(Being “super” is not important for the main constructions, but becomes important when
we turn to applications such as to homotopy algebras and, as will appear in this paper, to
spinors.) We shall also work with their cotangent bundles T ∗M1 and T ∗M2.
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A thick (also known as microformal) morphism Φ: M1 →M2 is a (particular type, for-
mal) canonical relation in T ∗M1× T ∗M2 considered with the symplectic form which is the
difference of the canonical symplectic forms on T ∗M1 and T ∗M2.

In contrast with the usual perception of relations as generalized maps (which in our
case would be between T ∗M1 and T ∗M2), in what follows we want to see a relation Φ as a
kind of “mapping” or “morphism” between the manifolds M1 and M2 themselves, not their
cotangent bundles. The key construction to be introduced shortly will be that of pullback
of functions on M2 by a thick morphism Φ: M1 →M2 taking them to functions on M1 and
nonlinear (unlike the familiar ordinary pullback).

We require that a thick morphism Φ: M1 →M2 is specified in local coordinates on M1

and M2 by a generating function S of a special form: it is a function of position variables
on the source manifold and momentum variables on the target manifold; with respect to
the latter, it is a formal power series:

S(x, q) = S0(x) + ϕi(x)qi +
1

2
Sij(x)qjqi + . . . (1)

(Because of that, a thick morphism is characterized as a “formal” canonical relation.) The
function S(x, q) defines the relation by the formula

qidy
i − padxa = d

(
yiqi − S(x, q)

)
(2)

or

pa =
∂S

∂xa
(x, q) , yi = (−1)ı̃

∂S

∂qi
(x, q) . (3)

Throughout the paper we will be using the following notations: xa and yi for coordinates
on M1 and M2 and pa and qi for the corresponding canonically conjugate momenta (i.e.
fiber coordinates in T ∗M1 and T ∗M2). Warning: qi is used for a momentum variable (on
M2), not a position variable! When working with supermanifolds, we use the tilde for
denoting parity (Z2-grading) of an object; in particular, tensor indices carry the parities
of the corresponding coordinates (e.g. ı̃ = ỹi = parity(yi)).

The function S is regarded as part of structure (so strictly speaking, a thick morphism
is more than just a relation; it is a “framed” relation endowed with a choice of integration
constant contained in S). It is clear that generating functions such as S(x, q) are coordinate-
dependent; their transformation law is given in [22] and it is such that the canonical relation
defined by an S does not depend on a choice of coordinates. (Being a formal power series in
q is essential for that.) An example of a thick morphism and its generating function S(x, q)
is the thick morphism Φ specified by a function S of the form S = ϕi(x)qi. It corresponds
to an ordinary map ϕ : M1 → M2 and Φ is its lifting to the cotangent bundles (so that

pa = ∂ϕi

∂xa
(x)qi). (Note that Φ is not a map.) Adding more terms in the expansion (1) gives

a generalization of ordinary maps. The crucial construction is the following.

Definition 1 (Pullback by a thick morphism). For a thick morphism Φ: M1 →M2 with
a generating function S = S(x, q), the pullback of functions is defined by the formula:

f(x) = g(y) + S(x, q)− yiqi , (4)
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where qi and yi are determined from the equations

qi =
∂g

∂yi
(y) (5)

and

yi = (−1)ı̃
∂S

∂qi
(x, q) . (6)

So a function g(y) on M2 is mapped to a function f(x) on M1, and we write f = Φ∗[g].

Remark 1. Equations (5) and (6) are coupled; if we substitute (5) into (6), we obtain

yi = (−1)ı̃
∂S

∂qi

(
x,
∂g

∂y
(y)
)

(7)

which is then solved by iterations (see [19]) giving a formal perturbation ϕg : M1 → M2

of the ordinary map ϕ : M1 → M2 defined by the second term in (1) and depending on a
function g as a “small parameter” :

yi = ϕi(x) + Sij(x)∂ig(ϕ(x)) + . . . (8)

This is substituted into (5) and then in (4). This results in a nonlinear (in general)
dependence of the function f on a function g. Hence the pullback

Φ∗ : C∞(M2)→ C∞(M1) , (9)

is a nonlinear formal mapping of infinite-dimensional manifolds of functions. (In the su-
percase, one should care about parities. The above construction makes sense only for even
functions or ‘bosonic fields’.)

Example 1. If S = ϕi(x)qi, so Φ corresponds to an ordinary map ϕ : M1 →M2, then one
can check that formula (4) gives

Φ∗[g](x) = g
(
ϕ(x)

)
, (10)

i.e. Φ∗ = ϕ∗ is the ordinary pullback (in particular, linear). (Indeed, equations (5) and (6)
here decouple and give yi = ϕi(x), so Φ∗[g](x) = g(y) + ϕi(x)qi − yiqi = g(y) = g(ϕ(x)).)

Example 2. For a general S(x, q) with an expansion (1), one obtains

Φ∗[g](x) = S0(x) + g
(
ϕ(x)

)
+

1

2
Sij(x) ∂ig

(
ϕ(x)

)
∂jg
(
ϕ(x)

)
+ . . . . (11)

with higher terms involving higher derivatives of g.

Although there is no known closed formula for pullbacks Φ∗, it is possible from the
main construction (4) to obtain various remarkable properties [19, 22]. They include: the
formula for the derivative of the pullback:

TΦ∗ = ϕ∗g , (12)

where ϕg : M1 → M2 is the perturbed map described above; and the composition for-
mula

(Φ32 ◦ Φ21)∗ = Φ∗21 ◦ Φ∗32 (13)
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for thick morphisms Φ21 : M1 →M2 and Φ32 : M2 →M3, where the composition of the
pullbacks Φ∗21 and Φ∗32 is the composition of (formal) mappings, while the composition of
thick morphisms is defined by the formula:

S31(x, r) = S32(y, r) + S21(x, q)− yiqi , (14)

where qi and yi are determined from the equations

qi =
∂S32

∂yi
(y, r) (15)

and

yi = (−1)ı̃
∂S21

∂qi
(x, q) . (16)

Here S32(y, r) and S21(x, q) are generating functions of Φ32 and Φ21, and S31(x, r) is by the
definition the generating function of the composition Φ32 ◦Φ21 : M1 →M3.1 (The notation
used is xa, pa and yi, qi as before, and zµ, rµ for position and momentum variables for M3.)

Remark 2. As already mentioned, there are parallel constructions for odd functions. They
use the anticotangent bundles ΠT ∗M instead of cotangent bundles and odd generating func-
tions. (Above, the generating functions are even.) “Odd thick morphisms” Ψ: M1 ⇒M2 in-
duce nonlinear pullbacks of odd functions or ‘fermionic fields’ Ψ∗ : ΠC∞(M2)→ ΠC∞(M1).
They have many properties similar to the thick morphisms described above (which may be
branded “even”), except for one: they are lacking a “quantum” counterpart (see below).

1.2.2. Quantum thick morphisms. It turns out that there is a certain “quantum version”
of (even) thick morphisms Φ: M1 →M2. To distinguish, we shall call the latter “classi-
cal”. “Quantum thick morphisms” are defined via the corresponding pullbacks, which are
introduced first and quantum thick morphisms as such are then arrows in the dual category.

As for classical thick morphisms, quantum thick morphisms are specified by their gen-
erating functions. In local coordinates they look the same, S = S(x, q), but now they may
depend on Planck’s constant ~ (as a formal power series) and they will have a different
transformation law under a change of coordinates. For distinction, we refer to them as
quantum generating functions.

Functions on which pullbacks by quantum thick morphisms will act are oscillatory wave
functions, i.e. linear combinations of formal exponentials such as w(x) =

∑
A(x)e

i
~f(x)

where both the phase f(x) and the amplitude A(x) are formal power series in ~ (with
nonnegative powers only) and natural rules of manipulation with such expressions are
assumed. Coefficients of these power expansions in ~ are smooth functions on our manifolds
(unless otherwise is stated).

Definition 2 (Pullback by a quantum thick morphism). The pullback Φ̂∗ by a quantum

thick morphism Φ̂ : M1 →~M2 specified by a quantum generating function S(x, q) is the

1Formula (14) agrees with the usual set-theoretic composition of relations.
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following integral operator

(Φ̂∗w)(x) =

∫
T ∗M2

D̄(y, q) e
i
~(S(x,q)−yiqi)w(y) , (17)

mapping oscillatory wave functions w(y) on M2 to oscillatory wave functions u(x) on M1.
Integration in (17) is with respect to the normalized Liouville measure on T ∗M2, so that
the notation D̄(y, q) = DyD̄q means that no numerical factors would appear from the
~-Fourier transform.

We stress that an integral operator Φ̂∗ is a primary object, but it is considered as
corresponding to an arrow Φ̂ : M1 →~M2 in the opposite direction introduced formally.

The transformation law for a quantum generating function S(x, q) is such that the inte-
gral (17) is invariant under a change of coordinates. One can see that it is different from
the transformation law for classical generating functions (but the difference is of order ~).

Example 3. Consider S(x, q) = ϕi(x)qi. Then

(Φ̂∗w)(x) =

∫
T ∗M2

D̄(y, q) e
i
~((ϕi(x)−yi)qi)w(y) =

∫
M2

Dy δ(ϕ(x)−y)w(y) = w(ϕ(x)) , (18)

so we have the ordinary pullback by a usual map ϕ : M1 → M2. (Compare the same for
classical thick morphisms in Example 1.)

The general form of a quantum pullback can be seen from the following proposition. We
can write

S(x, q) = S0(x) + ϕi(x)qi + S+(x, q) , (19)

where S+(x, q) contains all terms of order ≥ 2 in q.

Proposition 1. The operator Φ̂∗ corresponding to S(x, q) as in (19) can be written explic-
itly as (

Φ̂∗w
)
(x) = e

i
~S

0(x)
(
e

i
~S

+(x, ~i
∂
∂y )w(y)

)∣∣∣∣∣ yi=ϕi(x)
. (20)

(This is a formal ~-differential operator of infinite order along a map ϕ : M1 →M2.)
The main properties of quantum thick morphisms are the following. Every quantum thick

morphism Φ̂ with a generating function S(x, q) has a classical limit Φ = lim
~→0

Φ̂, which is

the (classical) thick morphism with the generating function Sclass(x, q) obtained by setting

~ = 0 in S(x, q), so that for an oscillatory wave function of the form w(y) = e
i
~g(y),

Φ̂∗[e
i
~g(y)](x) = e

i
~f(x) , (21)

where

f(x) = Φ∗[g](x) (1 +O(~)) (22)

(with the pullback by the classical thick morphism in the right-hand side). Similarly to

the classical case, holds the formula (Φ̂32 ◦ Φ̂21)∗ = Φ̂∗21 ◦ Φ̂∗32, where the composition of two
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quantum thick morphisms with generating functions S32(y, r) and S21(x, q) is the quantum
thick morphism with the generating function S31(x, r) defined by the equation

e
i
~S31(x,r) =

∫
T ∗M2

D̄(y, q) e
i
~(S32(y,r)+S21(x,q)−yiqi) . (23)

By the stationary phase formula (see the Appendix in [22]), one can obtain that the “clas-
sical” composition (14) is the limit of the “quantum” composition (23).

Remark 3. Integrals similar to (17) appeared first in the context of quantum mechanics
in the work by Fock [8] and independently in PDE theory in the works of several people,
notably Egorov [6] and Fedoryuk [7], that paved way for Hörmander’s general theory of
Fourier integral operators [9]. Our pullbacks by quantum thick morphisms can be regarded
as (special type) “~-Fourier integral operators”.

2. Infinitesimal calculus for thick morphisms

We concentrate here on even thick morphisms, though some statements carry over to
odd thick morphisms as well.

2.1. Classical thick diffeomorphisms and Hamilton–Jacobi equation. Let M be a
manifold or supermanifold (the distinction plays no role here). We shall refer to a thick
morphism Φ: M→M as a thick diffeomorphism if Φ is invertible.

We consider the following situation. Let Φt : M→M , where t ∈ R, be a 1-parameter
group of thick diffeomorphisms, i.e. Φt+s = Φt ◦ Φs, Φ0 is the identity and Φ−t = (Φt)

−1.
As in the usual case, thick diffeomorphisms Φt may be defined only on some open U ⊂M ,
but this would make no difference for our analysis. Let St = St(x, q) be the generating
function of Φt in some coordinates on M . (Note that xa are local coordinates of a point x
of M , while qa are the components of a momentum at some other point y of M .) We want
to study the evolution of St as well as that of the pullback by Φt of a function f(x).

Consider first an infinitesimal thick diffeomorphism Φε, ε
2 = 0. Since Φ0 = id, we have

S0(x, q) = xaqa , (24)

the generating function of the identity map. Here qa are momenta at the same point x = y.
For an infinitesimal thick diffeomorphism we therefore have

Sε(x, q) = xaqa + εH(x, q) . (25)

One can observe that here qa are momenta at a point y which is in the infinitesimal “ε-
neighborhood” of x, so in the argument of H(x, q) because of the presence of the factor ε
they can be seen as being at the original point x. Hence H = H(x, p) is a genuine function
on T ∗M , i.e. a Hamiltonian on M .

Lemma 1. For a function f ∈ C∞(M), its infinitesimal pullback by Φε is given by

Φ∗ε[f ](x) = f(x) + εH
(
x,
∂f

∂x

)
. (26)

(Note that f in the Lemma must be even, if we consider the super case.)
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Proof. We have, by the definition,

Φ∗ε[f ](x) = f(y) + xaqa + εH(x, q)− yaqa ,
where

ya = (−1)ã
∂S

∂qa
(x, q) = xa + ε

∂H

∂p
(x, q) , qa =

∂f

∂xa
(y) ,

so in particular ya − xa ∼ ε. Hence in the formula we have

f(y) = f
(
x+ ε

∂H

∂p
(x, q)

)
= f(x) + ε

∂H

∂pa

(
x, q
)
qa = f(x) + ε(ya − xa)qa ,

so

Φ∗ε[f ](x) = f(x) + ε(ya − xa)qa + xaqa + εH(x, q)− yaqa = f(x) + εH
(
x,
∂f

∂x
(x)
)
,

as claimed. �

We refer to the Hamiltonian H ∈ C∞(T ∗M) as the generator of a 1-parameter group
of thick diffeomorphisms Φt. Since a Hamiltonian such as H generates also a Hamiltonian
flow, i.e. a 1-parameter group of canonical transformations Ft : T

∗M → T ∗M , we need to
clarify a relation between Φt and Ft. This is done further below (see Proposition 2 and the
discussion around it).

Lemma 1 leads to a description of a 1-parameter group of thick diffeomorphisms Φt with
a generator H in terms of differential equations. They are Hamilton–Jacobi equations with
the Hamiltonian H.

Theorem 1. Let ft := Φ∗t [f0] for some initial function f0 = f(x). Then ft = ft(x) satisfies
the differential equation

∂ft
∂t

= H
(
x,
∂ft
∂x

)
. (27)

Proof. We have ft+ε = Φ∗t+ε[f0] = (Φt ◦Φε)
∗[f0] = Φ∗ε(Φ

∗
t [f0]) = Φ∗ε[ft] = ft+εH

(
x, ∂ft

∂x
(x)
)
,

which implies the statement. �

Remark 4. The statements of Lemma 1 and Theorem 1 were first observed in [21] and
they led there to introduction of quantum thick morphisms (prompted by the relation of
Hamilton–Jacobi equation and quantum mechanics).

Theorem 2. The generating function St = St(x, q) satisfies

∂St
∂t

= H
(

(−1)q̃
∂St
∂q

, q
)
. (28)

(The sign in the argument is, in greater detail, (−1)ã for the partial derivative in qa.)

Proof. Consider Φt+ε = Φε ◦ Φt and write the corresponding composition formula for gen-
erating functions. We have to consider three copies of M ,

M
xa,pa

Φt

→ M
ya,qa

Φε

→ M
za,ra

,

where we have listed, for clarity, our notations for the positions and momenta. By the
composition formula,

St+ε(x, r) = St(x, q) + Sε(y, r)− yaqa ,
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where we can use formula (25) for Sε. Hence

ya = (−1)ã
∂St
∂qa

(x, q) ,

qa =
∂Sε
∂ya

(y, r) = ra + ε(−1)ε̃
∂H

∂xa
(y, r) = ra + ε(−1)ε̃

∂H

∂xa
(y, q) ,

where in the latter formula we could replace r by q in the argument because r − q ∼ ε.
Therefore

St+ε(x, r) = St(x, q)+yara+εH(y, r)−yaqa = St(x, r + (q − r))︸ ︷︷ ︸
St(x,r)+(q−r)a ∂St

∂qa
(x,r)

−ya(qa−ra)+εH(y, r) =

St(x, r) + (q − r)a
∂St
∂qa

(x, r)− (−1)ã(qa − ra)ya + εH(y, r) .

where ya = (−1)ã ∂S
∂qa

(x, q). Observe that in this formula we can replace q by r in the

arguments (because their difference is of order ε and the coefficients are also of order ε).
Then the middle terms cancel and we arrive finally at

St+ε(x, r) = St(x, r) + εH

(
(−1)ã

∂St
∂qa

(x, q), r

)
(where we can return to q instead of r, for aesthetical purposes). This gives the differential
equation (28). �

Now we shall clarify the relation of generating functions for thick morphisms with the
“textbook” notion of action in classical mechanics (as in e.g. [13, §43]).

Let y = y(t), q = q(t) be the Hamiltonian flow with a Hamiltonian H. Reserve x, p for
the initial conditions and use y, q for the dynamic variables of position and momentum.
Consider the classical action of this system, which is the integral of the 1-form qady

a −
H(y, q)dt taken over the ‘true’ trajectory, i.e. satisfying Hamilton’s equations. Denote it
W = Wt. Here we fix the initial time t = 0 and vary the final time t, as well as the initial
and final position and momentum, which we denote x, p and y, q (note once again that,
contrary to the traditional notation, q in our notation is a momentum, not a position). By
standard argument,

dWt = dyaqa − dxapa −H(y, q)dt . (29)

Now we can take the Legendre transform from y to q and define St = yaqa −Wt. Then we
have

dSt = dyaqa + dxapa +H(y, q)dt , (30)

or 
∂St
∂t

(y, q) = H
(

(−1)q̃
∂St
∂q

(y, q), q
)

∂St
∂qa

(y, q) = (−1)ãya ,
∂St
∂xa

(y, q) = pa .

(31)

Hence we see that St = St(x, q) is the generating function of the Lagrangian submanifold
in T ∗M × T ∗M which is the graph of the canonical transformation (x, p) 7→ (y, q) at time
t. This is of course classical. But St = St(x, q) is also the generating function of the
corresponding thick diffeomorphism Φt : M→M . Hence we can summarize as follows.
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Proposition 2. The generating function St(x, q) of the 1-parameter family of thick dif-
feomorphisms with a Hamiltonian H = H(x, p) is the Legendre transform of the classical
action function W = Wt(x, y) for the corresponding Hamiltonian system. Therefore

St(x, q) = xaqa +

∫ t

0

(
(−1)ãyadqa +H(y(t), q(t))dt

)
(32)

(integral over the trajectory of the Hamiltonian flow). �

In the considered case, the generating function St(x, q) itself can be referred to as “action”
following the traditional practice when quantities related by Legendre transform are called
by the same name (e.g. various types of energy in thermodynamics). This justifies calling,
in general, a generating function S(x, q) of an arbitrary thick morphism Φ: M1 →M2 the
action of Φ (which we shall now do interchangeably with ‘generating function’).

2.2. Quantum thick diffeomorphisms and the Schrödinger equation. Consider a 1-
parameter group of quantum thick diffeomorphisms Φ̂t. They correspond to a 1-parameter
group of integral operators Φ̂∗t acting on oscillatory wave functions w(x) by

(Φ̂∗tw)(x) =

∫
T ∗M

D̄(y, q)e
i
~ (St(x,q)−yq) w(y) . (33)

(We remind that notation such as D̄(y, q) means normalized Liouville measure, i.e. sub-
suming factors like 2π~.) Here St = St(x, q) is a formal power series in ~ (which we do
not indicate explicitly) and we may refer to it as a “quantum action”. As a geometric
object, it differs from the “classical” action of a (classical) thick morphism considered in
the previous subsection. Nevertheless, it is clear that for the identity morphism, the action
is still S = xaqa, since∫

D̄(y, q)e
i
~ (xq−yq)w(y) =

∫
D̄(y, q)e

i
~ (x−y)q w(y) =

∫
Dy δ(x− y)w(y) = w(x)

(which is a particular case of (18)). For an infinitesimal quantum diffeomorphism,

Sε(x, q) = xaqa + εH~(x, q) , (34)

where we have emphasized possible dependence on ~ in H~(x, q). The function H~(x, p)
can be seen as the quantum analog of a (classical) Hamiltonian H(x, p) appearing in equa-
tion (25). We shall refer to H~(x, p) as the generator of an infinitesimal quantum thick
diffeomorphism. Its geometric nature will become clearer when we write down the corre-
sponding infinitesimal pullback.

Lemma 2. For an oscillatory wave function w on M , its pullback by an infinitesimal
quantum thick diffeomorphism with a generator H~(x, p) is given by

Φ̂∗ε[w](x) = w(x) + ε
i

~
H~
( 1

x,

2

~
i

∂

∂x

)
w(x) . (35)

Here in H~
( 1

x,
2

~
i
∂
∂x

)
the indices 1 and 2 atop of the non-commuting operators substituted

for the arguments indicate the ordering where all x’s stand to the left of all ~
i
∂
∂x

’s.
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Proof. For the “infinitesimal” quantum action Sε(x, q) given by (34), we have the quantum

pullback Φ̂∗ε, and

Φ̂∗εw(x) =

∫
T ∗M

D̄(y, q) e
i
~ (xaqa+εH~(x,q)−yaqa)︸ ︷︷ ︸(

1+ε i
~H

~(x,q)
)
e
i
~ (xa−ya)qa

w(y) = w(x)+ε
i

~
H~
(
x,

~
i

∂

∂y

)
w(y)|y=x ,

as claimed. �

Remark 5. We see from the lemma that H~(x, p) is the full symbol of a quantum Hamil-

tonian Ĥ as based on xp-quantization. (Which is close to standard coordinate-dependent
full symbol in the theory of pseudodifferential operators.) So the transformation law of
H~(x, p) as a geometric object is different from that for classical Hamiltonians, i.e. genuine
functions on T ∗M . Looking at the expansion in ~, we can see that in the zeroth order
in ~, the function H~(x, p) transforms as a genuine function on T ∗M and then there are
“quantum corrections” in the transformation law.

Theorem 3. Suppose w = wt(x) is obtained from some initial w0(x) by the pullback by a

1-parameter group of quantum diffeomorphisms Φ̂t with a generator H~ = H~(x, p). Then
the function w satisfies the non-stationary Schrödinger equation

~
i

∂w

∂t
= Ĥw , (36)

where Ĥ = H~
( 1

x,
2

~
i
∂
∂x

)
.

Proof. We have wt+ε = Φ̂∗t+ε[w0] = Φ̂∗ε(Φ̂
∗
t [w0]) = Φ̂∗ε[wt] = wt + ε i

~H
~
( 1

x,
2

~
i
∂
∂x

)
w(x). �

2.3. Main derivation formula for thick morphisms. Now we move from 1-parameter
groups of (classical or quantum) thick diffeomorphisms of a single manifoldM to the general
case of thick morphisms Φ: M1 →M2 between possibly different manifolds. Suppose there
is a 1-parameter family of thick morphisms Φt : M1 →M2. Instead of a generator that we
had for 1-parameter groups of thick diffeomorphisms, we now have a “velocity”, which is
a time-dependent “Hamiltonian” Ht(x, q) (it is not a true Hamiltonian). We can consider

the quantum case Φ̂t : M1 →~M2 as well. Since there are no 1-parameter groups now, we
do not obtain differential equations, just derivation formulas for pullbacks in terms of the
original functions, which we shall also assume depending on parameter t.

Consider a (classical or quantum) action St = St(x, q) and define

Ht(x, q) =
∂St
∂t

(x, q) . (37)

Then we have the following statements.

Theorem 4. For a quantum pullback of an oscillatory wave function wt(y),

~
i

d

dt
Φ̂∗t [wt] = (ĤtF̂

∗)(wt) +
~
i

Φ̂∗
[∂wt
∂t

]
, (38)
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where the operator ĤtF̂
∗ taking oscillatory wave functions on M2 to oscillatory wave func-

tions on M1 is defined as

ĤtF̂
∗ = e

i
~S

0(x)

(
Ht

(
x,

~
i

∂

∂y

)
e

i
~S

+(x, ~i
∂
∂y )
)∣∣∣∣∣ y=ϕ(x)

. (39)

(Here we use the expansion (19).)

Theorem 5. For a classical pullback of a function gt(y),

d

dt
Φ∗t [gt](x) = Ht

(
x, ϕ∗gt

(∂gt
∂y

))
+ ϕ∗gt

(∂gt
∂t

)
. (40)

We suppress proofs of Theorems 4 and 5. Note that Theorem 5 in particular contains
formula (12) for the derivative of the non-linear pullback by a (classical) thick morphism.

3. Quantum thick morphisms and spinor representation

3.1. Two words about quantization and spinors. We would like to recall some facts
about the spinor representation in the form that will help us to establish a relation with
classical and quantum thick morphisms (our goal). It will be embracing both “orthogonal
spinors” and “symplectic spinors”. (“Symplectic” version of spinor representation is also
known as metaplectic representation or Shale–Weil representation, and by other names.)
In the orthogonal case, the construction is based on the Clifford algebra (associated with a
given quadratic form), and in the symplectic case, with the Weyl algebra. In fact, these two
setups become indistinguishable if we work with super vector spaces since parity reversion
turns an orthogonal structure into symplectic and vice versa, and the same for Clifford and
Weyl algebras. For concreteness we speak here about Weyl algebra (in the supercase, but
we do not stress it).

We view the Weyl algebra as an associative algebra over C generated by elements p̂a, x̂
b

and ~ satisfying the Heisenberg relation

[p̂a, x̂
b] =

~
i
δba , (41)

where the square bracket means commutator, and all other commutators between the
generators vanish (in particular, the element ~ is central). Clearly, the quotient by the
ideal generated by ~ (i.e. “setting Planck’s constant to zero”) is the commutative algebra
of polynomials in pa and xb, the images of p̂a, x̂

b. Since in the Weyl algebra the commutator
of arbitrary elements is divisible by ~

i
, we can define the quantum Poisson bracket on the

Weyl algebra by

{f̂ , ĝ}~ :=
i

~
[f̂ , ĝ] (42)

(Dirac’s definition) and the classical Poisson bracket on functions in p, x by

{f, g} := {f̂ , ĝ}~ mod ~ , (43)

where f = f̂ mod ~ and g = ĝmod ~ (so f̂ and ĝ are arbitrary liftings of f and g to the
Weyl algebra). The latter is well-defined and is of course the usual Poisson bracket. We
can refer to elements of the Weyl algebra as “quantum Hamiltonians” and to the elements
of the polynomial algebra as “classical Hamiltonians”. The natural projection that sends
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a quantum Hamiltonian f̂ to the classical Hamiltonian f = f̂ mod ~ is the principal symbol
map (it is exactly the ~-principal symbol if elements of the Weyl algebra are realized
as ~-differential operators). So in particular, the principal symbol map is a Lie algebra
homomorphism with respect to the Poisson brackets. There is no, of course, natural map in
the opposite direction, i.e. that sends a classical Hamiltonian f to a quantum Hamiltonian f̂
for which f is the principal symbol, f = f̂ mod ~. Each such a map is a “quantization”, and
there are many quantizations. They in general do not preserve Poisson brackets. (Since the
beginning of quantum mechanics it is well known that a choice of quantization is basically a
choice of ordering of p̂a and x̂b.) By “extending scalars” for classical Hamiltonians so make
it possible for them to depend on ~, one can make a quantization into a linear bijection
between classical and quantum Hamiltonians, the inverse map being a full symbol map
(non-canonical, as opposed to the principal symbol map). Through the non-uniqueness
of quantization, classical Hamiltonians can receive “quantum corrections” by applying
first a quantization map Q1 and then an inverse quantization (or full symbol) map Q−1

2 ,
f 7→ Q−1

2 Q1(f) = f + ~(...). (In this way, “quantized classical Hamiltonians” can change
their behavior as geometrical objects. An example is the transformation law for full symbols
of ~-differential or ~-pseudodifferential operators, which we already mentioned.)

How all that applies to spinor representation?
In the Weyl algebra consider a linear subspace spanned by p̂a and x̂b. Denote it L. We

shall refer to its elements as linear (quantum) Hamiltonians. (In the Clifford algebra one
takes the subspace spanned by γ̂µ.) Inside the group of all invertible elements of the Weyl
algebra (or its suitable completion making possible to consider e.g. exponentials) one can
distinguish a closed subgroup G specified by the condition that

ĝLĝ−1 ⊂ L (44)

for all ĝ ∈ G. The group G is essentially the (symplectic) spinor group. (In traditional
usage, this name may be reserved to the orthogonal version.) By construction, it is defined
together with a group homomorphism ĝ 7→ Tĝ to the group of linear transformations
of the vector space L, Tĝ(â) = ĝâĝ−1. Since the adjoint action preserves commutation
relations, it follows that Tĝ takes values in the group of linear symplectic (=linear canonical)
transformations. (By expanding the “new” canonical variables Tĝ(p̂a), Tĝ(x̂

a) over p̂a, x̂
a

and taking the coefficients, we can obtain a realization of Tĝ as a symplectic matrix.)
The spinor representation of the symplectic or orthogonal group is the inverse map

Tĝ 7→ ĝ combined with a (unique up to equivalence) realization of Weyl or Clifford algebra
by linear operators acting on the space of spinors 2. It is multi-valued because Tĝ 7→ ĝ is
multi-valued. Extra normalization conditions may be imposed on elements of G to reduce
the kernel of the group homomorphism ĝ 7→ Tĝ and thus the multi-valuedness of the inverse
map. To see the nature of possible conditions, it is convenient to consider the infinitesimal
case. Infinitesimal elements of the group G have the form ĝ = 1+εĤ and the condition (44)
becomes

[Ĥ, L] ⊂ L . (45)

2E.g. the standard realization x̂a = xa and p̂a = ~
i ∂/∂x

a on functions of coordinates or alternatively by
using creation-annihilation operators and the holomorphic realization in the Bargmann–Fock space. For
Clifford algebra one needs to use differential operators with odd variables (see [3], also [18]), particular
options depending on the signature of the quadratic form.
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This can hold only for the quantum Hamiltonians Ĥ of degree ≤ 2 in p̂a and q̂a. They are
referred to as “quadratic”, but they contain also linear and constant terms. While linear
Hamiltonians make invariant sense, one cannot canonically separate “strictly quadratic”
Hamiltonians from scalars because a change of order results in adding a constant. It is
known that there are different recipes for ordering: when all x̂a’s are to the left of p̂b’s, the
other way round, the symmetric or Weyl ordering, and actually it is possible to interpolate
these cases with a parameter s ∈ [0, 1] (see [4]). It is possible to express all these choices
using integrals. Consider classical quadratic Hamiltonians, i.e. linear combinations of papb,
pax

b and xaxb. They make the Lie algebra of the symplectic group (= the group of linear
canonical transformations). Consider the quantization map Qs based on the ordering with
parameter s, so that

Qs(pax
b) = s p̂ax̂

b + (1− s) x̂bp̂a = x̂bp̂a + s
~
i
δba .

By a direct check we can get the following well-known statement:

Proposition 3. For quadratic classical Hamiltonians H1 and H2,

{Qs(H1), Qs(H2)}~ = Qs ({H1, H2}) + (1− 2s)
~
i
c(H1, H2) , (46)

where c(H1, H2) is a certain 2-cocycle.

(If we write the coefficients of quadratic Hamiltonians in the matrix form, then the
cocycle c(H1, H2) will be expressed via (super)trace and matrix commutator.)

Hence only the Weyl ordering (s = 1/2) does not lead to an extra term and the Weyl-
ordered quadratic quantum Hamiltonians form a Lie algebra (under the quantum Poisson
bracket) isomorphic to the symplectic algebra of classical quadratic Hamiltonians.

If Weyl ordering is used to get rid of the ambiguity, then the spinor representation can
be made isomorphism on the level of Lie algebras. It will still be two-valued on the level of
groups (as a section of a non-trivial double cover). That is how the spinor representation is
usually presented. The aim of discussion here is to stress dependence on a choice of ordering
that in general leads to appearing of a cocycle, i.e. the spinor representation becoming pro-
jective. (In the finite-dimensional case, the cocycle is coboundary because of the existence
of the Weyl ordering. This is not the case in infinite dimensions as found by Berezin [2].
It is argued in Vershik[17] that it is more natural to consider the spinor representation as
projective and respectively view the spinor group as the central extension — not a double
cover — of the symplectic or orthogonal group in all cases.)

By combining the above analysis with Lemma 2, we immediately conclude the following.

Corollary 1. For a vector space V , infinitesimal quantum thick diffeomorphisms Φ̂ε : V →~V
with quadratic generators H~(x, q) give a projective version of the spinor representation of
the symplectic Lie superalgebra spo(W ), where W = V ⊕ V ∗ ∼= T ∗V .

Proof. Indeed, the xp-ordering (s=0) has the cocycle ~
i
c(H1, H2). �

As for non-infinitesimal case, it is convenient to consider it in the general setting of thick
morphisms between different vector spaces, which we shall do in the next subsection.

Remark 6. Why there is no analog of spinor representation for non-linear canonical trans-
formations? One may notice that if the condition ĝLĝ−1 ⊂ L is dropped, the commutation
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relations are still preserved and the formulas (xa, pa) 7→ (ĝx̂aĝ−1, ĝp̂aĝ
−1) mod ~ define a

non-linear canonical transformation in the space with coordinates x, p. It is a natural (not
depending on any choices) homomorphism of groups (as well as in the infinitesimal version,
of Lie algebras) generalizing that for the linear case. What will be missing, is an inverse
quantization map which would preserve the Lie brackets. As discussed, the problem exists
already in the linear case, but there the ambiguity is only in a scalar term, which is some-
what masked by a choice of Weyl ordering. In the non-linear case, the obstruction is no
longer a scalar.

3.2. Quantum pullbacks as spinor representation. The basis of our analysis will be
the intertwining relation

∆1 ◦ Φ̂∗ = Φ̂∗ ◦∆2 . (47)

Here Φ̂ : M1 →~M2 is a quantum thick morphism and ∆1 and ∆2 are ~-differential opera-
tors acting on oscillatory wave functions on M1 and M2 (see [22]). In [22], it was applied
to obtaining L∞-morphisms of quantum Batalin–Vilkovisky algebras generated by ∆1 and
∆2 regarded as BV-operators (and S∞-algebras which are their classical limits). We shall
show that the same intertwining relation leads to a version of spinor representation.

Together with (47) we shall consider its classical limit

H1

(
x,
∂S

∂x
(x, q)

)
= H2

(
(−1)q̃

∂S

∂q
(x, q), q

)
(48)

(see [19, 22]), where H1 and H2 are Hamiltonians on M1 and M2 that are the (~-)principal
symbols of the operators ∆1 and ∆2.

Let M1 = V1 and M2 = V2 be vector spaces (which can also be treated as affine spaces for
the purpose of affine transformations). Consider linear quantum Hamiltonians (including
scalar terms)

∆1 = x̂aAa +Bap̂a +K1 , ∆2 = ŷiCi +Diq̂i +K2 , (49)

and the classical Hamiltonians H1 and H2 with the same coefficients. Consider a quantum
thick morphism Φ̂ with a quadratic action

S(x, q) = s0 + xaSa + Siqi +
1

2
xaxbSba + xaSiaqi +

1

2
Sijqjqi (50)

and explore the conditions given by the intertwining relation (47) and its classical limit (48).

Theorem 6. For operators ∆1 and ∆2 given by (49) and a quantum thick morphism with
an action (50), the intertwining relation (47) and the Hamilton–Jacobi equation (48) are
both equivalent to the following system of equations

BaSa +K1 = SiCi +K2 , (51)

Aa + (−1)b̃(ε+1)SabB
b = SiaCi , (52)

BaSja = (−1)ı̃(ε+1)CiS
ij +Dj (53)

for the coefficients of ∆1, ∆2 and S(x, q). (Here ε stands for the parity of ∆1, ∆2.)

Proof. By a direct calculation. �
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Note that there are no constraints on the coefficients K1, Ba and Ci imposed by equa-
tions (51), (52), and (53), so K2, Aa and Di are completely determined by K1, Ba and Ci
and the coefficients of the action S.

We can fix Φ̂ defined by an action (50) and consider the intertwining relation (47) as an
equation for pairs of linear Hamiltonians (∆1,∆2).

Corollary 2. For a given Φ̂ with a quadratic action as above, the intertwining relations

(−x̂aSab(−1)b̃ + p̂b) ◦ Φ̂∗ = Φ̂∗ ◦ (Sibq̂i + Sb) , (54)

x̂aSia ◦ Φ̂∗ = Φ̂∗ ◦ (ŷi − Sij q̂j(−1)ı̃ − Si) , (55)

hold for all b and i. Conversely, pairs of operators in the left-hand and right-hand sides
of (54) and (55), together with ∆1 = ∆2 = const, give a basis in the space of all pairs of

linear Hamiltonians (∆1,∆2) that satisfy the intertwining relation (47) with a given Φ̂.

Corollary 3. The above is equivalent to the formulas

pb = xaSab(−1)b̃ + Sibqi + Sb , (56)

yi = xaSia + Sijqj(−1)ı̃ + Si (57)

holding on the Lagrangian submanifold in T ∗V1 × T ∗V2 corresponding to Φ̂.

Observe that the constant term s0 in the action S(x, q) cannot be found from here. This

corresponds to the fact that the intertwining relation can determine Φ̂ only up to a factor.
Consider now three vector spaces, V1, V2 and V3 with the cotangent bundles T ∗V1

∼=
W1 = V1 ⊕ V ∗1 , T ∗V2

∼= W2 = V2 ⊕ V ∗2 and T ∗V3
∼= W3 = V3 ⊕ V ∗3 .

We want to compare the “classical” composition of thick morphisms with the “quantum”
composition.

Consider quantum thick morphisms Φ̂32 : V2 →~V3 and Φ̂21 : V1 →~V2 with quadratic
actions S32(y, r) and S21(x, q) respectively. (Here xa, pa are positions and momenta on V1,
yi, qi on V2, and zµ, rµ on V3.) Suppose

S21(x, q) = s0 + xaSa + Siqi +
1

2
xaxbSba + xaSiaqi +

1

2
Sijqjqi (58)

and

S32(y, r) = t0 + yiTi + T µrµ +
1

2
yiyjTji + yiT µi rµ +

1

2
T µνrνrµ . (59)

Theorem 7. The action for the composition of quantum thick morphisms

Φ̂31 := Φ̂32 ◦ Φ̂21 : V1 →~V3 (60)

has the form

S31 = Sclass
31 − ~

i
c
(
Φ̂32, Φ̂21

)
, (61)

where Sclass
31 is given by the “classical” composition formula

Sclass
31 (x, r) = S32(y, r) + S21(x, q)− yiqi , (62)

and

c
(
Φ̂32, Φ̂21

)
=

1

2
ln Ber

(
δji − TikSkj(−1)k̃

)
(63)

is a “quantum correction”.
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Proof. By the general formula for the composition of quantum thick morphisms, see [22],

e
i
~S31(x,r) =

∫
D̄(y, q) e

i
~ (S32(y,r)+S21(x,q)−yq) . (64)

To calculate the integral in our particular case, we can use the fact that it is Gaussian in
the variables y, q and that for Gaussian integrals the main term in the stationary phase
formula gives the whole answer. For our integral it is just the value of the exponential at
the critical point divided by the square root of the Hessian (since the numerical factors are
conveniently subsumed in the element of integration D̄(y, q), see formulas in the Appendix
in [22]). Therefore

e
i
~S31(x,r) =

(
Ber d2F

)−1/2
e

i
~ (S32(y,r)+S21(x,q)−yq) , (65)

where by F we have denoted S32(y, r) + S21(x, q) − yq as function of y, q and it should
be evaluated at the critical point. Setting the derivatives ∂F/∂ya and ∂F/∂qa to zero, we
obtain the following linear system from which y and q are to be determined as functions
of x and r :

qi − yjTji = Ti + T µi rµ , (66)

−Sijqj + yi = Si + xaSia . (67)

The expression F = S32(y, r)+S21(x, q)−yq into which y and q are substituted as the solu-
tion of the system (66), (67) is by the definition the generating function of the composition
of the classical thick morphisms corresponding to S32 and S21; we denote it Sclass

31 (x, r).
The matrix of the system (66), (67) is basically the Hessian matrix d2F . It is easy to see

that its Berezinian up to a sign is Ber
(
δji − TikSkj(−1)k̃

)
. (The matrix (δji − TikSkj(−1)k̃

)
arises itself in connection with the system (66), (67); the solution of the system is expressed
via its inverse.) Hence

e
i
~S31(x,r) =

(
Ber
(
δji − TikSkj(−1)k̃

))− 1
2
e

i
~S

class
31 (x,r) . (68)

By taking logarithms and multiplying through by ~
i
, we arrive at (61). �

Remark 7. Denoting S
(32)
11 := (Tij) and S

(21)
22 := ((−1)ı̃Sij), we can re-write

c
(
Φ̂32, Φ̂21

)
=

1

2
ln Ber

(
1− S(32)

11 S
(21)
22

)
, (69)

and it can be expressed also as

c
(
Φ̂32, Φ̂21

)
=

1

2
str ln

(
1− S(32)

11 S
(21)
22

)
, (70)

by using the Liouville formula Ber eX = estrX (see e.g. [10]). Note str ln(1 − A) =∑
n≥1

1
n

strAn.

Remark 8. The quantum correction changes only the constant term in the action and

introduces an extra phase factor e−
~
i
c
(

Φ̂32,Φ̂21

)
into the operator Φ̂31, but it does not change

the underlying linear relation. Note that we can allow the functions S32 and S21 to depend
on ~ as formal power series. Then the relations corresponding to them will also depend on
~, but will still be considered as “classical” objects having the usual composition law.
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We conclude that we have arrived at a projective representation of the category of linear
canonical relations by pullbacks by quantum thick morphisms, which can be viewed as a
“quantization” of these canonical relations. It generalizes the spinor representation of the
symplectic and orthogonal groups discussed in the previous subsection3

To elaborate the comparison: the intertwining relation (47) is a replacement of the
adjoint action ĝ 7→ Tĝ; to the homomorphism from the spinor group to the symplectic or
orthogonal group here corresponds the map sending a quantum thick morphism with a
quadratic generating function S(x, q) to the underlying canonical relation; and the spinor
representation is the inverse map, i.e. reconstructing S(x, q) from the relation. Roughly,

the direct map (the analog of Spin(V )→ SO(V )) assigns to Φ̂ with a quadratic S(x, q) as
in (50) the matrix of the coefficients appearing in (54),(55),(56), (57) ,

Φ̂ 7→
(
Sab(−1)b̃ Sib Sb

Sia Sij(−1)ı̃ Si

)
. (71)

Clearly, the inverse map to that (which is the spinor representation) cannot be single-valued
because the constant term s0 in S(x, q) is undefined. It can be made single-valued however,
if we consider (as we do for classical thick morphisms) not just canonical relations, but
“framed” relations, i.e. basically fixing the constants. The so defined representation (from
“framed” canonical relations to quantum pullbacks, i.e. integral operators) is nevertheless
projective because of the “quantum correction” (61).

The possibility of extending the spinor representation of the orthogonal and symplectic
groups as constructed by Berezin in [2] to categories of linear relations was discovered by
Neretin [14, 15], see also book [16]. We see that quantum thick morphisms specialized
to the linear case lead naturally to an analog of the Berezin–Neretin construction. It is
interesting to compare these constructions in greater detail. One can notice that action
for a thick morphism S = S(x, q) as a function of position on the source manifold and
momentum on the target manifold, corresponds to “Potapov–Ginzburg transform” of [14,
15, 16] 4. Spinor representation in the Berezin–Neretin approach is based on holomorphic
realization of Fock spaces and on normal (Wick) ordering. Our formulas for quantum thick
morphisms generalize the xp-quantization. Following that, it should be interesting to look
at description of quantum thick morphisms using other types of action.
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