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Abstract. We show that integral representation of universal volume
function of compact simple Lie groups gives rise to six analytic functions
on CP 2, which transform as two triplets under group of permutations of
Vogel’s projective parameters. This substitutes expected invariance under
permutations of universal parameters by more complicated covariance.

We provide an analytical continuation of these functions and calculate
their change (anomaly) under permutations of parameters (Vogel’s symme-
try). This last relation is universal generalization, for an arbitrary simple Lie
group and moreover to an arbitrary point in Vogel’s plane, of the Kinkelin’s
reflection relation on Barnes’ G(1 + N) function. Kinkelin’s relation gives
asymmetry of the G(1 + N) function (which is essentially reciprocal of the
volume function for SU(N) groups) under N ↔ −N transformation (which
is equivalent of the permutation of Vogel’s parameters for SU(N) groups),
and coincides with abovementioned anomaly of permutations at the SU(N)
line on Vogel’s plane.

Our results also give an anomaly of Vogel’s symmetry of the universal
partition function of Chern-Simons theory on three-dimensional sphere.

This effect is analogous to modular covariance, instead of invariance, of

partition functions of appropriate gauge theories under modular transfor-

mation of couplings.
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1. Introduction

1.1. N ↔ -N. N ↔ −N transformation is the symmetry of simple
Lie algebras and gauge theories. E.g. dimensions of irreps of SU(N)
groups for a given Young diagram Y can be represented as a rational
function of N and in this form it can be uniquely continued to an
arbitrary N . After change of the sign of N they are equal to dimensions
of irreps with transposed Young diagram, up to the sign (−1)Area(Y ).
Similarly dimensions of SO(N) transforms into those of Sp(N), again
with sign change and transposition of Young diagram [13]. Eigenvalues
of appropriate Casimir operators, analytically continued in a similar
way, have the same behavior [4, 24].

Parisi and Sourlas [27] noticed that space with N odd Grassmann
coordinates can be considered in some respects as a space with neg-
ative number (−N) of usual even coordinates. This is in agreement
of abovementioned symmetry w.r.t. the change of the sign of the N ,
since transposition of Young diagram interchange symmetrization and
antisymmetrization. All this became a part of the theory of superalge-
bras and particularly is formulated as an isomorphism of superalgebras
SU(n|m) ∼= SU(m|n), OSp(n|m) ∼= OSp(m|n). E.g., taking into ac-
count that many invariants in superalgebras depend on n − m, from
SU(n|m) ∼= SU(m|n) we obtain SU(n) ∼= SU(−n) (see also [4, 8]).
These dualities appear to be relevant in applications: SU(N) gauge
theory since first work of ’t Hooft [11] is well-known to have 1/N ex-
pansion over even powers of 1/N , SO(N) gauge theories are dual to
Sp(N) theories [20], with the same correspondence in representations
of matter multiplets, and similarly in many other applications.

1.2. Universality. In a more recent time, after work of Vogel [31],
N ↔ −N dualities became a part of invariance of theories under per-
mutation of Vogel’s parameters α, β, γ, in the range of applicability
of both notions. Note that ranges of applicability of universality and
N ↔ −N duality overlap, but neither is included in other one. E.g.
universality, as of now, is dealing with adjoint and its descendant repre-
sentations, while N ↔ −N , as described above, deals practically with
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all representations, but of classical groups, only. More generally one
can declare that this symmetry interchanges symmetric and antisym-
metric tensors, and this feature can appear in many circumstances, see
e.g. [5].

Vogel, motivated by knot theory, studied what can be called group
weights of vacuum Feynman diagrams of gauge theories, but without
any initially assigned Lie group. The problem he addressed was fi-
nally aimed to classify so called finite Vassiliev’s invariants of knots,
but during research he introduced very convenient parametrization of
simple Lie algebras. These are so called universal, Vogel’s, projective
(i.e. relevant up to an arbitrary rescaling) parameters α, β, γ (see for
details [31]). They can be defined as follows.

Let g be an arbitrary simple Lie algebra. Consider symmetric square
of its adjoint representation. It can be canonically decomposed [31] into
three irreducible representations:

S2ad = 1 + Y2(α) + Y2(β) + Y2(γ) .

Take a second Casimir operator C2, which is uniquely defined up to
a scalar multiplier. Denote by 2t eigenvalue of C2 on the adjoint rep-
resentation: C2(ad) = 2t. Then the parameters α, β, γ are defined
through values of the Casimir C2 on these irreducible representations
in the following way:

(1)
C2(Y2(α)) = 4t− 2α ,
C2(Y2(β)) = 4t− 2β ,
C2(Y2(γ)) = 4t− 2γ .

One can show that

(2) α + β + γ = t .

We see that these parameters are defined up to a rescaling. Permuta-
tion symmetry between them follows since there is no special order in
these representations.

Definition 1. Parameters (α, β, γ) are called Vogel’s parameters. They
can be considered as homogeneous coordinates on projective plane
CP 2. Plane CP 2 factorized under the action of group S3 of permuta-
tion of homogeneous coordinates α, β, γ is called Vogel plane.

The values of Vogel parameters for all simple Lie algebras are given
in table 1.2, where for exceptional line Exc(n), n = −2/3, 0, 1, 2, 4, 8 for
G2, D4, F4, E6, E7, E8 respectively. (See [6, 7] for study of universality
on exceptional line.) Parameter α is chosen to be equal to −2. This
always can be done due to the scaling invariance. This choice (”minimal
normalization”) is distinguished by the fact that t becomes an integer,
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Table 1. Vogel’s parameters for simple Lie algebras

Algebra/Parameters α β γ t
sl(N) -2 2 N N
so(N) -2 4 N-4 N-2
sp(N) -2 1 N/2+2 N/2+1

Exc(n) -2 2n+4 n+4 3n+6

the dual Coxeter number of corresponding algebra. The square of long
roots in this normalization is equal to 2.

Example 1.1. Duality N ↔ −N is implicitly present in table 1.2 since
Vogel’s parameters are defined up to rescaling and permutations.

Indeed, we see from the table that transformation N ↔ −N for
sl(N) is reduced to the switching of parameters α and β and mul-
tiplication on (−1): (−2, 2,−N) = (−1) · (2,−2, N). In the same
way under changing of sign of N so(N) transforms into sp(N) since
(−2, 4,−N − 4) = (−2) · (1,−2, N/2 + 2).

Consider some quantity for simple Lie algebras, for example dimen-
sion of algebra, dimensions of representations Y2( . ), eigenvalues of
Casimir operators on irreducible representations, etc. The ”reason-
able” function on Vogel plane, which for points corresponding to sim-
ple Lie algebras (see table (1.2)) takes the values of that quantity on
that Lie algebra, will be called universal function corresponding to this
quantity. For example, dimensions of simple Lie algebras are given by
the following universal dimension function

(3) dim =
(α− 2t)(β − 2t)(γ − 2t)

αβγ
, (t = α + β + γ) .

Examples of universal functions include dimensions of some series
of representations in powers of adjoint representation[16], eigenvalues
of higher Casimir operators [25], characters of some representations
on Weyl line and particularly such character for adjoint representation
[26, 33]:

f(x) = χad(xρ) = r +
∑
µ

ex(µ,ρ) =

=
sinh(xα−2t

4
)

sinh(xα
4
)

sinh(xβ−2t
4

)

sinh(xβ
4
)

sinh(xγ−2t
4

)

sinh(xγ
4
)
, (t = α + β + γ) ,(4)

where r is the rank of simple Lie algebra, µ runs over the set of all
roots of this algebra, and ρ is the Weyl vector, which is equal to the
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half of the sum of all positive roots:

(5) ρ =
1

2

∑
µ>0

µ .

One can expect an existence of universal expression for quantities, re-
lated with adjoint representation, as those mentioned above. On the
other hand, there is no known universal expression for e.g vectorial
representations of classical groups.

We shall not discuss here the problem of what kind of analytic con-
tinuation on entire Vogel’s plane in universal formulae is implied, since
in this paper we actually deal with a few explicitly defined analytic
functions.

1.3. Problem. The aim of the present paper is to study the N ↔ −N
duality and Vogel’s permutation symmetry of parameters in more com-
plicated cases than the case when universal function is just a rational
function of Vogel’s parameters. The main objects will be the uni-
versal function of group’s volume and universal partition functions of
Chern-Simons theory on three dimensional sphere. Invariant volume
of compact version of simple Lie group can be considered as parti-
tion function of corresponding matrix model [18]. Partition function of
Chern-Simons theory on three-dimensional sphere is calculated in terms
of gauge group objects in [34]. Volume function also is the part of full
Chern-Simons partition function. Both are represented in the univer-
sal form in [21]. We shall see that corresponding analytic functions are
not invariant w.r.t. the N ↔ −N duality and permutations of Vogel’s
parameters (as naively expected), but instead transform according to
some non-trivial representations of these permutations’ groups.

For example, partition function of SU(N) matrix model is essentially
Barnes’ G-function G(1 + N). At large N its asymptotic expansion
indeed is a series over 1/N2 (see e.g. [1]), in agreement with ’t Hooft
perturbation theory observations [11] :

logG(1 +N) =(
1

2
N2 − 1

12

)
log(N) +

1

2
N log(2π)− 3

4
N2 +

1

12
− logA+

∞∑
g=2

B2g

2g(2g − 2)
N2−2g .

where B2g are Bernoulli numbers.
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However, small N expansion includes both even and odd powers [1]:

2 logG(1 +N) = N log(2π)− γN2 −N(N + 1) +(6)

2
∞∑
k=2

(−1)kζ(k)
Nk+1

k + 1
.

The N ↔ −N asymmetry is given by Kinkelin’s relation [14]:

log
G(1 +N)

G(1−N)
= N log(2π)−

∫ N

0

dx πx cot(πx) .(7)

So, the volume of SU(N) is an analytical function G(1 +N), which is
not invariant w.r.t. the N ↔ −N duality. Functions G(1 + N) and
G(1−N) combine into doublet under duality transformation.

We are going to generalize these observations. We will present the
universal formula for group’s volume (and for Chern-Simons theory),
will show that this universal formula defines several analytic functions,
and will calculate transformation of these functions under permutations
of Vogel’s parameters.

In more details: we will define this universal volume function by inte-
gral representation, which turns out to be piecewise-analytical function
of Vogel’s parameters α, β, γ. Next we will show that this integral rep-
resentation gives rise to six analytical functions on CP 2, constituting
two triplet representations of group of permutations of Vogel’s param-
eters. To study the behavior of these functions under permutation of
arguments one has to analytically continue them to the range of pa-
rameters larger than initially defined by integral representation. In
this way we first calculate difference between functions from different
triplets and then we calculate the difference between initial function
and that with parameters permuted.

As a check of this approach we specialize these results for the SU(N)
line on Vogel’s plane. As mentioned above, in that case volume function
is essentially Barnes’ G-function, permutation of arguments is equiva-
lent to changing of the sign of N , and relation between functions with
permuted arguments leads to relation between G(1 ± N), which will
exactly coincide with Kinkelin’s reflection relation (7).

2. Universal invariant volume of simple Lie groups

Various formulae for volume of compact simple Lie groups are given
by Macdonald [17] (see also [10]), Marinov [19], Kac and Peterson [12],
and Fegan [9]. For certain series of (super)groups volume formulae are
given by Voronov [32]. In this section we derive the universal expression
for volume of compact Lie groups, which generalizes these formulae for
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an arbitrary points on Vogel’s plane, and which presents them in a
uniform way.

This universal formula was obtained in [21] from the more general
universal expression for perturbative part of Chern-Simons partition
function. Universal volume formula is defined by a function which
coincides, at points from Vogel’s table, with volume of corresponding
groups:

(8) V ol(α, β, γ) = V ol
(
G
(
g[α,β,γ]

))
,

where g = g(α,β,g) is simple Lie algebra g with coordinates (α, β, γ) on
Vogel plane (see table (1.2)); G = G(g) is connected, simply connected
compact Lie group corresponding to Lie algebra g, and V ol(G) is a
volume of group’s manifold with invariant metric. An invariant metric
on group is induced by certain invariant scalar product ( , ) on the
Lie algebra. On the simple Lie algebra an invariant scalar product
is proportional to Cartan-Killing form. On the other hand this scalar
product defines canonically second Casimir C2, which in its turn defines
Vogel’s parameters α, β, γ by equations (1), (2). If (x,y) = λφ(x,y),
where φ( , ) is Cartan-Killing form, then C2 has eigenvalue 1

λ
= 2t on

the Lie algebra. Thus Vogel’s parameters α, β, γ of Lie algebra define
invariant scalar product by equation

(9) (x,y) =
1

2t
φ(x,y) , (t = α + β + γ) .

This is a scalar product which defines a metric of the group G =
G
(
g(α,β,γ)

)
and its volume in equation(8). Under rescaling of Vogel’s

parameters volume changes in the following way:

V (λα, λβ, λγ) = λ−
dim
2 V (α, β, γ) .

2.1. Volume function and Chern-Simons partition function.
Recall briefly construction of [21], obtained by considerations of parti-
tion function of Chern-Simons theory.

Let G be a compact Lie group. In [26] it was considered partition
function Z = Z(G)(κ) for Chern-Simons theory corresponding to group
G on 3-dimensional sphere with coupling constant κ. The partition
function Z(G)(k) can be represented as a product of perturbative and

not-perturbative parts Z(G)(κ) = Z
(G)
1 Z

(G)
2 , where non-perturbative

part Z
(G)
1 is shown to be equal, on the basis of Macdonald formula [17],

to

(10) Z
(G)
1 =

(2πδ−1/2)dim

V ol(G)
, δ = κ+ t = κ+ α + β + γ ,
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and perturbative part Z
(G)
2 is equal to

(11) Z2 =
∏
µ>0

sin π(µ,ρ)
δ

π(µ,ρ)
δ

.

Here α, β, γ are Vogel’s parameters of simple Lie algebra which corre-
sponds to group G.
V ol(G) is the volume (8) of the corresponding compact group G,

product
∏

µ>0 is performed over all positive roots µ of Lie algebra g, ρ

is the Weyl vector (5). and ( , ) is invariant scalar product(9).
Note that now scaling transformation of Vogel’s parameters is ex-

tended to κ: (α, β, γ, κ)→ (λα, λβ, λγ, λκ), and Chern-Simons theory
is invariant with respect to exactly this transformation.

An important observation is that partition function Z(k) obeys the
condition

(12) Z(κ) = 1 if κ = 0 .

This immediately implies the volume formula (taking into account that
V ol(G) does not depend on κ):

(13)

V ol(G) =
(2πt−1/2)dim

Z
(G)
2

= (2πt−1/2)dim
∏
µ>0

(
sin

π(µ, ρ)

t
/
π(µ, ρ)

t

)
.

Remark 1. Chern-Simons partition function.
Partition function Z(κ) is equal to S00, where S00 is the (0, 0) el-

ement of the matrix S of modular transformations of characters of
corresponding affine Kac-Moody algebra. Here κ is coupling constant
in front of the Chern-Simons action, which is rescaled simultaneously
with Vogel’s parameters and becomes integer (the level of representa-
tion) just in normalization of table 1.2. Since there is no non-trivial
representations at level zero the S matrix becomes unit in that case.
This implies condition (12).

2.2. Kac-Peterson formula. Kac and Peterson in 1984 derived an
expression for the volume of compact (connected, simply connected)
simple Lie group defined with Cartan-Killing metric [12] (see also [9]):

V ol(G) = (2
√

2π)dim
∏
µ>0

sin 2πφ(ρ, µ)

2πφ(ρ, µ)
,(14)

where product is over positive roots of Lie algebra, and φ( , ) is Cartan-
Killing form.
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Remark 2. Kac-Peterson formula can be immediately deduced from
our formula (13) for volume. Indeed according to (9) scalar product
defining metric of the group coincides with Cartan-Killing form if t =
1/2. If this condition is obeyed then r.h.s. of equations (13) and (14)
coincide. So, if one wishes, it is possible to completely discard Chern-
Simons approach and start from equation (14), since equation (13) is
obviously equivalent to equation (14).

2.3. Universal expressions. Now we rewrite the expressions for vol-
ume function and partition function in universal form, following [21].

It suffices to rewrite universal expressions for (11), since the universal
formula for volume form (13) can be expressed via this function due to
equation (3).

We have

logZ
(G)
2 =

∑
µ>0

log

(
sin(π(ρ, µ)/δ)

π(ρ, µ)/δ

)
=

(15) =
∑
µ>0

(log (Γ (1− (ρ, µ)/δ))) + log(Γ(1 + (ρ, µ)/δ))) ,

where we use well-known representation

sin(πx)

πx
=

1

Γ(1− x)Γ(1 + x)
.

Next using the following integral representation of gamma-function:

log Γ(1 + z) =

∫ ∞
0

e−zx + z(1− e−x)− 1

x(1− e−x)
dx ,

we come to the integral expression for perturbative partition function:

(16) logZ
(G)
2 = −

∫ ∞
0

∑
µ>0

(
ex

(ρ,µ)
δ + e−x

(ρ,µ)
δ − 2

)
ex − 1

dx

It follows from equations (3) and (4) that:∑
µ>0

(
ex

(ρ,µ)
δ + e−x

(ρ,µ)
δ − 2

)
= f(x/δ|α, β, γ)− dim(α, β, γ) ,

where we stress dependence of f(x) and dim from universal parameters.
We use special notation [26] for universal function in r.h.s.:

F (x) = F (x|α, β, γ) = f(x|α, β, γ)− dim(α, β, γ) ,

and arrive at universal formula

(17) logZ2(α, β, γ) = −
∫ ∞
0

F (x/δ)

x(ex − 1)
dx .
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In the same way as in equation (8) we denote by Z2(α, β, γ) a function
on Vogel parameters (α, β, γ) such that it coincides with the function

Z
(G)
2 if (α, β, γ) are Vogel’s parameters of Lie algebra g corresponding

to Lie group G.
Now using equation (13) for volume function we come to final uni-

versal expression for volume function V ol(α, β, γ):

(18) V ol(α, β, γ) = (2πt−1/2)dim exp

(
−
∫ ∞
0

F (x/t)

(ex − 1)

dx

x

)
,

and to universal expression for Chern-Simons partition function on S3:

(19) logZ =

∫ ∞
0

F (x/t)− F (x/δ)

(ex − 1)

dx

x
=

∫ ∞
0

f(x/t)− f(x/δ)

(ex − 1)

dx

x
.

We would like to emphasize again that universal volume formula(18)
can be deduced straightforwardly from Kac-Peterson formula (14) dis-
regarding all considerations related with Chern-Symon partition func-
tion (see remark 2).

3. Volume function as Barnes’ quadruple
gamma-functions

Our main aim is to study properties of analytical volume functions.
It seems reasonable to establish connection of these functions with
known functions such as Barnes’ multiple gamma functions. In this sec-
tion we will express volume function through Barnes’ multiple gamma
functions, following [22]. We first recall definition of Barnes’ multiple
gamma functions, then we will formulate a proposition. Using this
proposition we express universal formulae (17) and (18) for perturba-
tive partition function Z2 and volume of group in terms of Barnes’
multiple gamma functions.

However, for further progress we need a sufficiently developed theory
of that functions as analytic functions of both argument and parame-
ters, which is seemingly absent.

Barnes’ multiple (N -tuple) gamma function ΓN = ΓN(w|a1, . . . , aN)
can be defined via Barnes’ multiple zeta-function ζN = ζN(s, w|a1, . . . , aN)
in the following way [2, 28]:

(20) ΓN(w|a1, . . . , aN) = exp

(
∂

∂s
ζN(s, w|a1, . . . , aN)

∣∣
s=0

)
,

where multiple zeta-function ζN(s, w|a1, . . . , aN) is a function on com-
plex variables s, w such that it is defined for Re s > N by power series

(21) ζN(s, w|a1, . . . , aN) =
∑ 1

(w + k1a1 + · · ·+ kNaN)s
,
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where summation goes over all non-negative integers k1, . . . , kN . It
has meromorphic continuation in s with simple poles only at s =
1, 2, . . . , N .

Parameters {a1, . . . aN} are complex numbers which obey the follow-
ing condition: there exist a line passing through the origin, such that
all parameters are on the same side of this line.

Barnes’ zeta-function obviously obeys the scaling condition: for ev-
ery complex number λ,

(22) ζN(s, λw|λa1, . . . , λaN) = λ−sζN(s, w|a1, . . . , aN) ,

and recurrent relations:
(23)
ζN(s, w+ai|a1, . . . , aN) = ζN(s, w|a1, . . . , aN)−ζN−1(s, w|a1, . . . , ai−1, ai+1, . . . , aN) .

It is very useful to establish integral representation for Barnes’ function
(20). We do it first for Barnes’ zeta-function. We have

(24) ζN(s, w|a1, . . . , aN) =
1

Γ(s)

∫ ∞
0

xs−1A(x)dx ,

where

(25) A(x) =
e−wx∏N

j=1(1− e−ajx)
.

Indeed, it is easy to see that r.h.s. of equations (24) and (21) coincide
for Re s > N , by expansion of the integrand over powers of exponents.
To calculate zeta-function for other s, and in particular for s = 0
we consider expansion of function A(x) defined by equation (25) in a
vicinity of origin:

A(x) =
e−wx∏N

j=1(1− e−ajx)
=

1

xN
∏N

j=1 aj
+ · · · =(26)

=
∞∑

k=−N

Akx
k = A−(x) + A0 + A+(x) ,(27)

where A−(x) =
∑
k<0

Akx
k , A+(x) =

∑
k>0

Akx
k ,(28)

Remark 3. Coefficients of this expansion are multiple Bernoulli poly-
nomials Bn(w|a1, . . . , aN):

A(x) =
1

xN

∞∑
n=0

(−1)nxn

n!
BN,n(w|a1, . . . , aN)(29)



12 H.M.KHUDAVERDIAN AND R.L.MKRTCHYAN

In particular

A−(x) =
N−1∑
n=0

(−1)nxn−N

n!
BN,n(w|a1, . . . , aN) ,(30)

A0(x) =
(−1)N

N !
BN,N(w|a1, . . . , aN) .(31)

Let us perform meromorphic continuation in variable s of multiple
zeta-function. We use integral representation (24). It is well-defined,
particularly, if

(32) Rew > 0,Re ai > 0 .

Assume that condition (32) is obeyed. Then represent integral (24)
as sum of integrals from 0 to 1, and from 1 to infinity. Integral∫∞
1

converges and it is an analytical function on s. Using expan-
sion (27) , and the fact that meromorphic continuation of the function

f(s) =
∫ 1

0
xs−1+ndx is equal to function 1

s+n
, we perform meromorphic

continuation in s of integral
∫ 1

0
. Thus we perform meromorphic con-

tinuation in s of integral (24). In particular for point s = 0 we come to
the following answers. Using expansions (27) we see that for small s

ζ(s, w|a1, . . . , aN) =
1

Γ(s)

(∑
k≤0

Ak
k + s

)
+(33)

1

Γ(s)

(∫ 1

0

xs−1A+(x)dx+

∫ ∞
1

xs−1A(x)dx

)
.(34)

Since Γ(s) ≈ 1
s

in the vicinity of origin, hence this equation implies
that

(35) ζ(0, w|a1, . . . , aN) = A0 =
(−1)N

N !
BN,N(w) ,

where BN,N(w) is multiple Bernoulli polynomial defined by (31).
Performing further elementary calculations for equation (33) in the

case when condition (32) is obeyed we come to the following integral
representation of Barnes’ function (20):

(36) ΓN(w|a1, . . . , an) = exp

(∫ ∞
0

(
A(x)− A−(x)− A0e

−x) dx
x

)
,

where function A(x), A−(x) and A0 are defined by equations (25) and
(27). If condition (32) is not obeyed one has to use also relations (22)
and (23).
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Remark 4. Integral representation (36) of Barnes’ function appears in
[28]. For a modern review of the theory of multiple Barnes’ functions
see [30].

It is instructive to write down equations for transformations of Barnes
gamma-functions under rescaling and under shift of argument on pa-
rameter. They follow from definition (20) of Barnes’ functions and cor-
responding properties of zeta-function (see equations (22),(23)). Scal-
ing property (22) implies that

(37) ΓN(λw|λa1, . . . , λaN) = λ−cΓN(w|a1, . . . , aN) ,

where c = ζN(0, w|a1, . . . , aN) = A0 = (−1)N
N !

BN,N(w|a1, . . . , aN). This
formula can be also deduced straightforwardly from integral represen-
tation (36), with the use of Frullani’s integral.

Recurrent relation (23) implies that

ΓN(w + ai|a1, . . . , aN) =
ΓN(w|a1, . . . , aN)

ΓN−1(w|a1, . . . , ai−1, ai+1, . . . , aN) .

One can say that N -tuple Barnes’ function Γ(w|a1, . . . , aN) is com-
pletely defined by function A(x) in equation (25). We shall call A(x)
the main term in the integral representation of given multiple gamma
function, or simply the main term.

More formally equation (36) defines a linear map, the functional

(38) A(x) 7→
∫ ∞
0

(
A(x)− A−(x)− A0e

−x) dx
x

on the linear space of functions which have finite Laurent series in
a vicinity of origin and decrease exponentially at infinity. In par-
ticular the function A(x) in equation (25)) belongs to this class (if
Rew,Re ai > 0), and the value of the functional on this function is
equal to log ΓN(w|a1, . . . , an). This simple observation implies the fol-
lowing proposition on properties of multiple gamma-functions.

Proposition 1. Let {Ap(x) = Ap(x,wi|a(p)1 , . . . , a
(p)
Np

)} (p = 1, . . . , k)

be a finite set of functions of the form (25)

Ap(x) =
e−wpx∏Np

j=1

(
1− e−a

(p)
j x
) .

Consider the linear combination of these functions:

G(x) =
k∑
p=1

lpAp(x) =
k∑
p=1

lpe
−wpx∏Ni

j=1(1− e
−a(p)j )

.



14 H.M.KHUDAVERDIAN AND R.L.MKRTCHYAN

If G(x)/x is non-singular at origin, then

(39) exp

[∫ ∞
0

G(x)
dx

x

]
=

k∏
p=1

(
ΓNp(wp|a

(p)
1 , . . . a

(p)
Ni

)
)lp

.

In the special case when function G(x) vanishes, G(x) ≡ 0, we have

M∏
p=1

(
ΓNp(wp|a1, . . . , aNp)

)lp ≡ 1 .

Remark 5. Proposition 1 provides the rigorous proof of all identities
between multiple gamma functions used in [22, 23]. We expect that it
is contained in some papers of past or current century, however we did
not find an exact reference.

This proposition is very useful for analysis of volume formula (18).
Using the fact that integrand in equation (18) is non-singular function
and Proposition 1 we obtain the following result:

V ol(G) = (2πt−1/2)dim exp

(
−
∫ ∞
0

dx

x

F (x/t)

(ex − 1)

)
(40)

=

(
4π2

t

) dim
2 Γ4(v1)Γ4(v2)Γ4(v3)Γ4(v7)

Γ4(v4)Γ4(v5)Γ4(v6)Γ4(v8)

(
t

π

) dim
2

(41)

= (4π)
dim
2

Γ4(v1)Γ4(v2)Γ4(v3)Γ4(v7)

Γ4(v4)Γ4(v5)Γ4(v6)Γ4(v8)
,(42)

where

v1 = 2t− 2α(43)

v2 = t+ γ(44)

v3 = t+ β(45)

v4 = 3t(46)

v5 = 2t+ 2β + γ,(47)

v6 = 2t+ β + 2γ,(48)

v7 = 5t− α(49)

v8 = −α .(50)

parameters of functions Γ4 are (−α, β, γ, 2t), and we use equation [28]:

Γ1(x|x) =

√
x

2π
.(51)
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The scaling properties of volume functions now can be deduced from
scaling properties of quadruple gamma functions. Direct calculation
confirms that it is in agreement with (18).

Finally, we introduce multiple sine functions [29]

(52) Sr(w|a1, a2, ...) =
Γr(|a| − w|a1, a2, ...)(−1)

r

Γr(w|a1, a2, ...)
, (|a| =

r∑
j=1

aj) .

Important feature of multiple sine functions is scaling invariance:

Sr(λw|λa1, λa2, ...) = Sr(w|a1, a2, ...) .(53)

Indeed, using linear map (38) one can define (36)-like integral repre-
sentation of multiple sine function (see equation (55) below). It follows
from definition (52) of multiple sine function and integral represen-
tation (36) for Barnes’ functions that coefficient A0 for multiple sine
function vanishes. Thus equation (37) implies equation (53).

A reasonable question is whether simple scaling properties of volume
function and its expression in terms of multiple gamma functions lead
to representation of volume in terms of multiple sine functions and
some simple functions with necessary (non-trivial) scaling dimension.

With that purpose and with the help of Proposition 1 we transform
volume function into

V ol(G) = (4π)
dim
2 ×(54)

S4(α + β + γ| − α, β, γ, 2t)S4(2β + γ)S4(β + 2γ)

S4(2α + 3β + 3γ)
×

S3(−α| − α, β, γ)×
Γ2(α + 3β + 3γ|β, γ)Γ2(2α + 3β + 3γ|β, γ)

Γ2(β + γ|β, γ)Γ2(α + β + γ|β, γ)
×

Γ2(−α| − α, γ)Γ2(−α| − α, β)Γ1(2β + 2γ| − α)Γ1(β + γ| − α)

Γ1(−α| − α)Γ2(2β + 2γ| − α, β)Γ2(2β + 2γ| − α, γ)
,

where all functions S4 have the same parameters (−α, β, γ, 2t).
One can see that already double gamma functions do not combine

into double sine functions.
Another important feature of multiple sines is that their (36)-like

integral representation, can be transformed into the integral over entire
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real axis [29]:

logSr(z|ω) =(55)

= (−1)r
πi

r!
Brr(z|ω) + (−1)r

∫
R+i0

dx

x

ezx∏r
k=1(e

ωix − 1)

= (−1)r−1
πi

r!
Brr(z|ω) + (−1)r

∫
R−i0

dx

x

ezx∏r
k=1(e

ωix − 1)

We shall see below that integral representation in terms of integral
over entire x axis leads to ”better” analytic properties of sine function
with respect to its parameters. More exactly, in this case zero is not
the branch point of sine function as an analytic function of any of its
parameters. We see above that volume function cannot be represented
as a product/ratio of multiple sine functions. However, full partition
function of Chern-Simons theory can be expressed via multiple sine
functions, as shown in [23, 15].

4. Analytic functions from Chern-Simons perturbative
partition function and anomaly of Vogel’s symmetry

Denote by K(α, β, γ) the integral which appears in exponents in
expressions above:

K(α, β, γ) =

∫ ∞
0

dx

x

F (x)

(ex − 1)
.(56)

This reproduces the integral in equation (17) for logZ2 , if all arguments
are divided on δ, or that for volume function (18), if all arguments are
divided on t.

Let’s consider most general case of parameters α, β, γ, δ, relevant for
Chern-Simons theory. We put δ = 1 by scaling transformation and
consider K(α, β, γ) for arbitrary complex values of variables α, β, γ. It
is evident, that one should have Reα 6= 0,Re β 6= 0,Re γ 6= 0 since
otherwise there are non-integrable singularities at the poles in one of
functions sinh in denominator in F (x). This restriction divides the
space of parameters into disjoint regions. Inside those regions integral
can converge or diverge at large x depending on values of parameters.
It converges in all regions if values of moduli of δ are sufficiently large.
In our normalization (δ = 1 after rescaling), this means sufficiently
small values of moduli of α, β, γ.

Function K is invariant w.r.t. the permutations of parameters, but
in general it is not an analytic function of parameters. To understand
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what happens it is instructive to consider the following toy model sug-
gested in [21]: Consider the function f such that

(57) f(z) =

∫ ∞
0

dx

cosh(zx)
=

{
π
2z

if Re z > 0

− π
2z

if Re z < 0
,

or one can consider even simpler integral representation for this func-
tion (see [22]):

(58) f(z) =

∫ ∞
0

dx

1 + (zx)2
=

{
π
2z

if Re z > 0

− π
2z

if Re z < 0
.

Both integrals define analytic function f+(z) = π/2z for positive real
part of argument, and analytic function f−(z) = −π/2z for nega-
tive real part of argument. On the other hand a function f(z) is not
anaylitic on the whole plane. The reason is that one cannot connect two
points on a complex plane of parameter z, one with positive real part
and another one with negative, by a continuous path without passing
through singularity of integrals (58),(57). Namely, one cannot avoid
crossing the line Re z = 0, any point on which is singular for integrals.
Values of integrals at Re z > 0 and Re z < 0 do not belong to the
same analytic function. They are given instead by two different ana-
lytic functions f+(z) and f−(z) (for z 6= 0). Each of these functions is
initially defined in the corresponding region of convergence of integral
(58) or (57), i.e. corresponding open half-plane.

One can take each of these functions, for example a function f+(z),
continue it analytically to the half-plane Re z < 0, then compare the
analytical continuation of function f+(z) with another function, f−(z).
We see that they are related by the transformation z → −z, and their
difference is f+(z) − f−(z) = π/z. This is the simplest example of
reflection relation.

Introduce notation K±±±(α, β, γ) for analytic functions which are
equal to function K(α, β, γ) (defined by equation (56)) in the regions,
where signs of real parts of parameters coincide respectively with its
indices.

Kε1ε2ε3(α, β, γ) =

∫ ∞
0

dx

x

F (x)

(ex − 1)
,(59)

ε1 = sign(Reα), ε2 = sign(Re β), ε3 = sign(Re γ) .

Functions K±±± are symmetric w.r.t. the transposition of arguments
corresponding to the same signs in index, since we can interchange
them smoothly by paths in the region of definition of integral. For
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example

K−−+(α, β, γ) = K−−+(β, α, γ)(60)

Reα < 0,Re β < 0,Re γ > 0

but in general it is not symmetric w.r.t. the transposition of β, γ. From
definitions we get relations:

K−−+(α, β, γ) = K−+−(α, γ, β) = K+−−(γ, α, β)(61)

Reα < 0,Re β < 0,Re γ > 0

and

K++−(α, β, γ) = K+−+(α, γ, β) = K−++(γ, α, β)(62)

Reα > 0,Re β > 0,Re γ < 0 .

We shall analytically continue these functions to other regions, where
they do not necessarily coincide with functions K originated from
that region, and would like to calculate their difference. So, for ex-
ample, we take K−−+(α, β, γ), where Reα < 0,Re β < 0,Re γ > 0,
analytically continue it to other region of arguments, e.g. Reα >
0,Re β < 0,Re γ > 0 and explicitly calculate difference K−−+(α, β, γ)−
K+−+(α, β, γ). Carrying on this analytic continuation twice, w.r.t. the
arguments with different signs of real part, and applying corresponding
relations, we obtain the behavior of initial function K under transpo-
sition of parameters with different signs of real part.

Relations of type (60),(61) and (62) will be maintained by these
analytic continuations.

So, let us consider some K in the region of convergence of its param-
eters, and analytically continue one parameter (say α) with Reα > 0
into region with negative Reα, assuming integral is still convergent.
Integrand is regular function of α except the poles at the points where
sinh(xα/4) becomes zero, x = 0 excluded, i.e. x = 4πik/α, k =
±1,±2, .... Since Reα > 0, poles with k > 0 are located in upper
half-plane. When we change α, keeping modulus of α non-zero and
changing argument in counterclockwise direction, poles move in clock-
wise direction. The integral remains convergent until half of poles (with
k > 0) reach integration contour 0 ≤ x < ∞, i.e. when some poles
become real and positive. When poles reach integration contour from
upper half-plane and continue to move to lower half-plane, we deform
contour to prevent appearance of singularity. One can imagine that
deformation as a creation of a narrow sprout of the contour, which
goes from the real positive line to a pole (which is in the lower half-
plane), turns around it in counterclockwise direction, and return to real
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positive line. Moving parameter to its new value, and simultaneously
deforming the contour, we get a value of initial function, analytically
continued to new value of parameter. Then we substitute new contour
by equivalent one, which consists of an infinite number of pieces: one
piece is again real positive line from zero to positive infinity, others are
small counterclockwise circles around poles in the lower half-plane. The
integral over the line is by definition the K originated from the region
to which that new values of parameters belong to (i.e. the K with new
subscripts, corresponding to the signs of real parts of new parameters),
so the sum over (2πi times residues of) poles gives difference between
analytically continued initial K and that new K.

Let us write down this for specificK, sayK+−+(α, β, γ). Initially it is
defined for Reα > 0,Re β < 0,Re γ > 0. We would like to analytically
continue it on the region Reα < 0,Re β < 0,Re γ > 0. According to
above, we get:

K+−+(α, β, γ) = K−−+(α, β, γ) + ϕ+(α|β, γ),(63)

Reα < 0,Re β < 0,Re γ > 0 ,

where

ϕ+(α|β, γ) = 2πi
∞∑
k=1

ie−
2kiπ
α sin

[
kπ(β−2t)

α

]
sin
[
kπ(γ−2t)

α

]
2kπ sin

[
kβπ
α

]
sin
[
kγπ
α

](64)

= −
∞∑
k=1

e−
2kiπ
α sin

[
kπ(β+2γ)

α

]
sin
[
kπ(γ+2β)

α

]
k sin

[
kβπ
α

]
sin
[
kγπ
α

] .



20 H.M.KHUDAVERDIAN AND R.L.MKRTCHYAN

This can be further transformed into

ϕ+(α|β, γ) =(65)

−
∞∑
k=1

(
2e−

2kiπ
α sin

[
2kπβ
α

]
cos
[
kπγ
α

]
k sin

[
kγπ
α

] +
2e−

2kiπ
α sin

[
2kπγ
α

]
cos
[
kπβ
α

]
k sin

[
kβπ
α

] +

e−
2kiπ
α

k

(
1 + cos

[
2kπβ

α

]
+ cos

[
2kπγ

α

]
+ 2 cos

[
2kπβ

α
+

2kπγ

α

]))
=

log
((

1− e2ia
)√

1− e2i(a−x)
√

1− e2i(a+x)√
1− e2i(a−y)

√
1− e2i(a+y)

(
1− e2i(a−x−y)

) (
−1 + e2i(a+x+y)

))
−

−
∞∑
k=1

(
2e2kia sin[2kx] cos [ky]

k sin [ky]
+

2e2kia sin [2ky] cos [kx]

k sin [kx]

)
,

a = −π
α
, x =

πβ

α
, y =

πγ

α
.(66)

Would we consider movement of parameter β with initially nega-
tive value of Re β, difference will appear in that contour of integration
(positive line) will be reached by poles x = 4πik/β with negative k,
k = −1,−2, .... So in that case we get:

K−−+(α, β, γ) = K−++(α, β, γ) + ϕ−(β|α, γ),(67)

ϕ−(β|α, γ) = −2πi
∞∑
k=1

ie
2kiπ
β sin

[
kπ(α−2t)

β

]
sin
[
kπ(γ−2t)

β

]
2kπ sin

[
kαπ
β

]
sin
[
kγπ
β

](68)

,Reα < 0,Re β > 0,Re γ > 0 .

Note properties of ϕ±(α|β, γ), which follow from their definitions:

ϕ±(α|β, γ) = ϕ±(α|γ, β),(69)

ϕ±(α| − β,−γ) = ϕ±(α|β, γ),(70)

ϕ−(α|β, γ) = −ϕ+(−α|β, γ) .(71)

It is easy to check that due to these properties relations (61), (62)
are maintained after analytic continuations.

Remark 6. Remaining sums over k in functions ϕ± (64),(68) can be
further transformed due to following identity given in Appendix A1
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of [15], based on Jonquière’s inversion formula for polylogarithm func-
tions:

∞∑
k=1

ekA

k sin kB
≈ −

∞∑
k=1

e−kA

k sin kB
(72)

up to the simple terms, bilinear over Bernoulli polynomials B0, B1, B2.
We shall not do that, since it does not simplify expressions strongly
enough. See, however, remark 7 below.

To obtain the change of functions K under permutation of parame-
ters, one have to extend in (63) β from the region Re β < 0 to Re β > 0,
i.e. apply (67), using explicit form of functions ϕ at all values of pa-
rameters:

K+−+(α, β, γ) = K−−+(α, β, γ) + ϕ+(α|β, γ) =(73)

K−++(α, β, γ) + ϕ+(α|β, γ) + ϕ−(β|α, γ) =(74)

K+−+(β, α, γ) + ϕ+(α|β, γ) + ϕ−(β|α, γ)(75)

Reα < 0,Re β > 0,Re γ > 0 ,(76)

where for the last equality we use (62): K−++(α, β, γ) = K+−+(β, α, γ)
at Reα < 0,Re β > 0,Re γ > 0. So, the change of function K under
transposition of two arguments with different signs is given by equation

K+−+(α, β, γ)−K+−+(β, α, γ) = ϕ+(α|β, γ) + ϕ−(β|α, γ)(77)

Reα < 0,Re β > 0,Re γ > 0 .

This is our main result. From this formula one can easily obtain
the anomaly for Chern-Simons partition function (19): first, one has
to recover explicit dependence from δ by substitution in (77) α →
α/δ, β → β/δ, γ → γ/δ, and, second, subtract from r.h.s. of (77) the
same expression with substitution δ → t. Finally we obtain (denoting
by Z(α, β, γ, δ) the partition function Z):

ln
Z(α, β, γ, δ)

Z(β, α, γ, δ)
= ϕ+(

α

t
|β
t
,
γ

t
) + ϕ−(

β

t
|α
t
,
γ

t
)−(78)

−ϕ+(
α

δ
|β
δ
,
γ

δ
)− ϕ−(

β

δ
|α
δ
,
γ

δ
)

Reα < 0,Re β > 0,Re γ > 0 .

This is the anomaly of Vogel’s symmetry in partition function of
Chern-Simons theory (19).

In the next section we show that on the sl(N) line formula (77)
recovers Kinkelin’s relation on Barnes’ G-function.
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Remark 7. In this section we consider some properties of volume func-
tion(s) as an analytic functions of parameters. This is necessary for
calculation of result of permutation of volume function arguments at
an arbitrary point of Vogel’s plane. However, a lot of questions remain
untouched. E.g. one can ask about an analytic continuation along the
circular path around the origin. It is easy to show that for multiple sine
functions, due to integral representation (55) with integration on en-
tire x axis, the similar (to above) deformation of contour of integration
leads to the same value of function, i.e. zero is not a branch point of
parameter(s). This remark is relevant for full Chern-Simons partition
function on three dimensional sphere, since it is expressed purely in
terms of multiple sine functions [23, 15]. For a general multiple gamma
function one will obtain finite bilinear combination of Bernoulli poly-
nomials, due to the abovementioned identities in [15]. All that require
separate study.

5. Volume analytic functions for SU(N) and Kinkelin’s
reflection relation for Barnes’ G-function

For the case δ = t(= 1), it is easy to establish that integral converges
when parameters Reα,Re β,Re γ, (α+β+γ = 1) are of different signs,
and diverges otherwise (i.e. when they all are positive). On the plane
(Reα,Re β) line Re γ = 0 corresponds to line Reα + Re β = 1. So,
lines of zero real parts of parameters divide (Reα,Re β) plane on 7
regions. Similarly hyperplanes Reα = 0,Re β = 0 and Re γ = 0 divide
projective space of α, β, γ (i.e. CP 2) into seven disconnected pieces. It
is easy to deduce that integral does not converge in one region only,
namely in the region where all real parts of parameters are positive.

Next we would like to make contact with Kinkelin’s functional equa-
tion [14] for Barnes’ G-function (which is essentially Barnes’ double
gamma-function). For that purpose we shall apply our equation (77)
to the case when volume function is expressed via G-function, which
happens for groups SU(N). Group SU(N) corresponds to parameters
(α, β, γ) = (−2, 2, N), δ = t = N . We remove constraint t = 1, and
explicitly leave t = N in equations, for easier comparison with known
results. Besides that, since some contributions are singular at these
values, we take α = −2, β = 2 + x, γ = N − x, t = N , and take a limit
x→ 0. Then we have:
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ϕ+(α|β, γ) = 2πi
∞∑
k=1

ie−
2kitπ
α sin

[
kπ(β−2t)

α

]
sin
[
kπ(γ−2t)

α

]
2kπ sin

[
kβπ
α

]
sin
[
kγπ
α

] =(79)

2πi
∞∑
k=1

(
−1 + e2kiπt

2k2π2x
+
i
(
1 + 4ekiπt + e2kiπt

)
4kπ

)
+O(x) ,

ϕ−(β|α, γ) = −2πi
∞∑
k=1

ie
2kiπ
β sin

[
kπ(α−2t)

β

]
sin
[
kπ(γ−2t)

β

]
2kπ sin

[
kαπ
β

]
sin
[
kγπ
β

] =(80)

2πi
∞∑
k=1

(
−−1 + e2kiπt

2k2π2x
+(81)

+
1− kiπ − 4kiekiπtπ + ie2kiπt(i+ kπ(−1 + 2t))

4k2π2

)
+O[x] .(82)

The sum is regular at x→ 0. It is equal to

2πi
∞∑
k=1

1 + e2kiπN(−1 + 2kiπN)

4k2π2
.(83)

So, from equation (77) we have that

K−++

(
− 2

N
,

2

N
, 1

)
−K−++

(
2

N
,− 2

N
, 1

)
=(84)

−2πi
∞∑
k=1

1 + e2kiπN(−1 + 2kiπN)

4k2π2
.

The same expression appears when we calculate in reverse order:
first put SU(N) parameters into integral (59), and then calculate its
asymmetry under transposition of parameters. Integral for SU(N)
([21, 22]) is equal to
(85)

K−++

(
− 2

N
,

2

N
, 1

)
=

∫ ∞
0

(
1− e−x

4 sinh2( x
2N

)
− N2

ex − 1

)
dx

x
, (ReN > 0) .

For SU(N), switching of parameters α, β is equivalent to transforma-
tion N → −N . So we need a change of (85) under the change of
sign of N . It can be done in the same way as above. Consider N
with ReN > 0. The N -dependent poles of integrand of (85) are in
the points x = ±iπk/N, k = 1, 2, .... Now move N to −N , e.g. by
multiplying on phase factor, changing from 1 to -1 in counterclockwise
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direction. Then poles will move in clockwise direction and those with
k > 0 will touch the integration line [0,∞). To avoid singularity, we
change contour as above. Finally, when N becomes −N , we get new
contour of integration and replace that by half-line from 0 to infinity
and small circles, enclosing poles at points x = −iπk/N, k = 1, 2, ... in
counterclockwise direction. Integral over half-line is an initial integral
with −N instead of N , which is the same. So, the value of analytically
continued function at the point −N is equal to its value at the point N
plus 2πi times residues at poles. Residue in the pole at x = −iπk/N
is:

Resx=− iπk
N

(
1

x

(
1− e−x

4 sinh2( x
2N

)
− N2

ex − 1

))
=(86)

1 + e2kiπN(−1 + 2kiπN)

4k2π2
.(87)

So the sum coincides with expression (83).
Now use this answer with integral representation [21] of Barnes’ G-

function [3] in terms of integral (85),

log(G(1 +N)) =
1

2
N2 logN − 1

2
(N2 −N) log(2π) +(88)

+K−++(− 2

N
,

2

N
, 1) .

From this equation, applying the procedure of sign changing of N by
counterclockwise rotation, and using (84), we get reflection relation for
Barnes’ G-function:

log
G(1 +N)

G(1−N)
=
iπ

2
N2 +(89)

N log(2π)− i
∞∑
k=1

1 + e2kiπN(−1 + 2kiπN)

2k2π

provided we choose appropriate branch of logN . We would like to
compare this with Kinkelin’s functional equation [14],

(90) log
G(1 +N)

G(1−N)
= N log(2π)−

∫ N

0

dx πx cot(πx)

in a form given in [1]:

(91) log
G(1 +N)

G(1−N)
=

i

2π
Li2(e

2πiN) +N log
( π

sin πN

)
− πi

2
B2(N) ,
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where Li2 is the dilogarithm function, B2(z) = z2 − z + 1/6 is sec-
ond Bernoulli polynomial. These two forms of Kinkelin’s relation are
equivalent, due to the following formula for indefinite integral (anti-
derivative):

(92)

∫
dx πx cot(πx) = x log(1− e2πix)− i

2π

(
π2x2 + Li2(e

2πix)
)
.

Writing functions in the r.h.s. of (91) or (92), (90) as sums over
powers of e2πiN :

Li2(e
2πiN) =

∞∑
k=1

e2πikN

k2
,(93)

N log
π

sin πN
= N log 2π − iπ

2
N + iπN2 +N

∞∑
k=1

e2πikN

k
,(94)

we get:

log
G(1 +N)

G(1−N)
=

i

2π

∞∑
k=1

e2πikN

k2
+N

∞∑
k=1

e2πikN

k
+(95)

iπ

2
N2 +N log 2π − iπ

12

which coincides with (89) due to
∑∞

k=1
1
k2

= π2

6
.

6. Conclusion

We conclude that volume of SU(−N) is not given by analytically
continued volume of SU(N). This is in correspondence with the fact,
that volume of SU(N |M) does not analytically depend on N − M
[32]. However, N ↔ −N remains a symmetry of the theory, realized
in more complicated way—volume function gives rise to two analytical
functions, which combine into the doublet of this symmetry. Simi-
lar considerations are applicable to Vogel’s symmetry with respect to
permutations of parameters. Let us stress that according to this pic-
ture (and this is our general understanding), N and −N are on the
completely equal footing, as well as Vogel’s parameters and their any
permuted set. Each statement, feature, etc. for a given N (or for given
set of Vogel’s parameters), has its counterpart for −N (or for permuted
set of parameters).

For full consideration of dependence of analytical volume functions
(and Chern-Simons partition functions) on its parameters one need
an understanding of analytical properties of Barnes’ multiple gamma
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functions as analytical functions of parameters. Some initial consid-
erations are given in Sections 4, 5, where we calculated the change of
volume functions under permutation of Vogel’s parameters and make
contact with Kinkelin’s reflection relation on Barnes’ G-function. One
can continue this line by considerations of branching around zero in
the complex plane of each parameter. Also one can consider analytic
properties (with respect to the parameters) of the special combinations
of multiple gamma functions, such as multiple sine functions, etc. This
last case is relevant for full Chern-Simons partition function on three
dimensional sphere. We hope to consider these problems elsewhere.

A reasonable analogy for the anomaly of Vogel’s permutation sym-
metry seems to be the behavior of partition functions of some gauge
theories under modular transformations of their couplings [35]. As dis-
cussed in [36] in the most simple example of Maxwell theory, there are
two parameters—theta angle θ and electromagnetic coupling g. Theory
is unchanged under shift of θ and electromagnetic duality g2 ∼ 1/g2,
which together combine into modular parameter τ = θ

2π
+ 4πi

g2
with usual

modular transformation rules. Partition function, however, behaves as
modular form, i.e get an additional multiplier, besides the change of
arguments. It is interesting to study how far this analogy goes, partic-
ularly, whether Vogel’s anomaly restricts couplings of the theory with
some other fields.
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