
Geometry of Differential operators

H.M. Khudaverdian
The University of Manchester. School of Mathematics.

Bialoveza 02 July 2012—06 July 2012). XXX1 Workshop on Geometric methods in Physics
Manchester, 28 June—Bialoveza—Manchester 26 July

This is summary of lectures which I had on the School at Workshop. Lectures con-

tain textbook staff+ something that I did with Ted Voronov (mostly the first part) and

something that I did with Adam Biggs (end of the second part)). I also was inspired by

very good book [8].

Contents

1 Differential operators and algebra of densities 2
1.1 Differential operators on functions . . . . . . . . . . . . . . . . 2

1.1.1 Second order operators on functions and connections . 3
1.2 Algebra of densities. . . . . . . . . . . . . . . . . . . . . . . . 4

1.2.1 Lie derivative of densities . . . . . . . . . . . . . . . . 4
1.2.2 Algebra of densities. Scalar product. Extended mani-

fold M̂ . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2.3 Conjugate operators. Vector fields on M̂ . . . . . . . . 5

1.3 Second order operators on M̂ . . . . . . . . . . . . . . . . . . 6
1.4 Equivariant maps between modules of differential operators. . 7
1.5 Canonical pencil in general case . . . . . . . . . . . . . . . . . 9
1.6 Special cases. . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2 Schwarzian , Projective geometry 10
2.1 Schwartzian and second order connection . . . . . . . . . . . . 11
2.2 Schwarzian and ... normal gauge . . . . . . . . . . . . . . . . . 11

1



2.3 Projective structures on curves inRP n and Schwarzian. Curves
in RP n and n+ 1-th order operators. . . . . . . . . . . . . . . 13

2.4 (Anti)-self adjoint operator of order n on R . . . . . . . . . . 14
2.5 Transvectants and symplectic geometry . . . . . . . . . . . . . 14

1 Differential operators and algebra of den-

sities

1.1 Differential operators on functions

M is a manifold.
We say that ∆ is an operator on functions on M of the order ≤ n if for an

arbitrary function g ∆g = g ◦∆−∆ ◦ g is an operator of the order ≤ n− 1.
(Non-zero operator L has order 0 if it is linear with respect to algebra of
functions:L(fg) = fL(g).)

Every linear operator that obeys the identity

X(fg) = fX(g) + gX(f)

is a vector field. One can see that for first order operator L, L = X + R,
R = L(1) is a function (scalar) and X = L−R is a vector field. What about
higher order operators?

If ∆ is n-th order operator on functions then

∆ = Si1i2...in∂i1 . . . ∂in + T i1i2...in−1∂i1 . . . ∂in−1 + . . .

The first term Si1i2...in∂i1 . . . ∂in transforms in the following way under chang-
ing of coordinates:

Si1i2...in =
∂xi′1

∂xi1

∂xi′2

∂xi2
. . .

∂xi′n

∂xin
Si1i2...in

This is symmetric n-th order contravariant tensor i principal symbol of op-
erator ∆.

What about the next terms?
Consider this question in more detail for second order operators
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1.1.1 Second order operators on functions and connections

Let ∆ be second order operator. In local coordinates ∆ = Sij∂i∂j + T i∂i.
We already know that first order operator is vector field+scalar. Use it.

Consider a scalar product ⟨ , ⟩ρ =
∫
M
fgρ, where ρ = ρ(x)|Dx| is an

arbitrary volume form. Then consider adjoint operator with respect to this
scalar product :

∆+ =
1

ρ
∂i∂jS

ij − 1

ρ
∂iT

i +R .

We see that

∆+ −∆ = 2∂rS
ri + 2Sik∂k log ρ∂i − 2T i∂i + . . .

is first order operator. Hence

Ki = 2∂rS
ri + 2Sik∂k log ρ∂i − 2T i∂i

is the vector field. The term γk = −∂k log ρ defines connection...
What is it a connection? It defines derivative of an arbitrary volume

form:
∇X(fρ

′) = ∂Xfρ
′ + f∇Xρ

′

Denote by γk : γk = ∇k|Dx| in given coordinates. Then

∇X(fρ
′) = ∇X(fρ

′(x)|Dx|) = X i (∂i(fρ
′) + γifρ

′(x)) |Dx| .

An arbitrary volume ρ form defines flat connection ∇:

∇X : ∇ρ (ρ
′) = ∂X

(
ρ′

ρ

)
with Γk = −∂k logρ.

Returning to our second order operator we see that

T i = ∂rS
ri + Sik∂k log ρ−

1

2
Ki = ∂rS

ri + Γi − 1

2
Ki = ∂rS

ri + γi

Fact In the second order operator ∆ = Sij∂i∂j + T i∂i +R, the combination
T i − ∂rS

ri is upper connection or in the other words: An arbitrary second
order operator ∆ has an appearance:

∆f = ∂i
(
Sik∂kf

)
− γi∂i +R
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where γi upper connection, R scalar. We see that in second order operators
connection appears....

Example In Riemannian manifold one can consider connection γi =
−Γk

ik. This connection with Riemannian metrics defines the well-known
Beltrami-Laplace operator:

∆B.Lf = ∂i
(
gik∂kf

)
− γi∂i . (1.1)

1.2 Algebra of densities.

We will go to densities. (This is very useful.) Density s = s(x)|Dx|λ of the
weight λ. Under changing of coordinates it is multiplied on λ-th power of
Jacobian. (M is orientable manifold with chosen class of orientation.)

Examples of densities

• Functions –densities of weight λ = 0.

• Volume forms–densities of the weight λ = 1

• Wave function–densities of the weight λ = 1
2

• Schwarzian of diffeomorphism—densities of the weight λ = 2...

1.2.1 Lie derivative of densities

In local coordinates

LX(s) =
(
X i∂is(x) + λ∂iX

is(x)
)
|Dx|

One can easy check its invariance. If λ = 1 we come to divergence

div ρX =
1

ρ
LX(ρ) =

(
X i∂iρ(x) + λ∂iX

iρ(x)
)
|Dx| = 1

ρ(x)
∂1

(
ρ(x)X i

)
Exercise In Riemannian case where ρ =

√
det g. Compare with covariant

divergence.
Exercise For Beltrami Laplace operator

∆B.Lf = div ρgradf =
1

ρ(x)
∂1

(
ρ(x)gik∂kf

)
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1.2.2 Algebra of densities. Scalar product. Extended manifold
M̂ .

Density on M is a polynomial function on M̂ .
Local coordinates on M̂ are (xi, t), t ≈ |Dx|. Globally defined Euler

operator:

λ̂ = t
∂

∂t

Fact This is first order operator, vector field on M̂ .
On the algebra F(M) of densities one can consider the canonical scalar

product ⟨ , ⟩ defined by the following formula: if s1 = s1(x)Dxλ1 and s2 =
s2(x)Dxλ2 then

⟨s1, s2⟩ =


∫
M
s1(x)s2(x)Dx , if λ1 + λ2 = 1 ,

0 if if λ1 + λ2 ̸= 1 .

(1.2)

One can see that

xi+ = xi,

(
∂

∂xi

)+

= −
(

∂

∂xi

)
, t+ = t,

(
∂

∂t

)+

=
2

t
−
(

∂

∂t

)
and λ̂+ = 1−λ̂ ,

where L+ is adjoint to L with respect to the canonical scalar product:
⟨Ls1, s2⟩ = ⟨s1, L+s2⟩. (We suppose that M is compact orientable mani-
fold and only orientation preserving coordinate transformations are allowed.
See for details [6]).

1.2.3 Conjugate operators. Vector fields on M̂

Vector fields of weight δ:

X̂ = tδ
(
X i∂i +X0λ̂

)
Definition-Proposition

divX = −
(
X̂+ + X̂

)
= tδ

(
∂iX

i∂i + (δ − 1))X0
)
.

Fact: Lie derivative—-divergence less vector field:

X̂ = X i∂i − λ̂∂iX
i
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Exercise A connection on M defines lifting

X 7→ X̂γ = X i∂i + γiX
iλ̂

Thus we come to
div γX = div X̂γ

Remark The divergence possesses curvature:

div γ [X,Y] = ∂Xdiv γY − ∂Ydiv γX+ F(X,Y)

where Fik = ∂iγk − ∂kγi is a curvature of connection. (Recall that Ricci
tensor for general affine connection is not symmetric.)

Exercise: An arbitrary vector field X̂ is a sum of Lie derivative and
vertical vector fields.

One can consider another lifting X 7→ LX...... Difference of these two
liftings is λ̂div γX...

(See more in details about connection and vector fields on extended man-
ifolds in [6] and [7]).

1.3 Second order operators on M̂

Operator pencil {∆λ}—operator on M̂ which is polynomial on λ).

Consider useful example. Let ρ be an arbitrary volume form and Sik

second order principal symbol. One can define the pencil of operators:

∆λ : ∆λσ = ρλ−1∂i

[
ρSik∂k

(
s

ρλ

)]
=

Sik∂i∂k +
(
∂rS

ri + (2λ− 1)Γi
)
∂i +

(
λ∂iΓ

i + λ(λ− 1)ΓiΓi

)
(1.3)

where Γi = −∂i log ρ(x) is flat connection defined by the volume form.
One can see that this is self-adjoint operator:

∆+
λ = ∆1−λ .

In terms of operator on extended manifold M̂ (λ 7→ λ̂):

∆̂ = ∆̂+ = Sik∂i∂k +
(
∂rS

ri + (2λ̂− 1)Γi
)
∂i +

(
λ̂∂iΓ

i + λ̂(λ̂− 1)ΓiΓi

)
.
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Remark Note that the operator (2λ̂− 1)LX is second order self-adjoint
operator on M . It corresponds to the pencil Lλ = (2λ− 1)LX of first order
operators.

Consider the operator: ∆̂ + (2λ̂− 1)LX =

Sik∂i∂k+
(
∂rS

ri + (2λ− 1)Γi
)
∂i+

(
λ∂iΓ

i + λ(λ− 1)ΓiΓi

)
+(2λ̂−1)X i∂i+λ̂(2λ̂−1)∂iX

i =

Sik∂i∂k +
(
∂rS

ri + (2λ− 1)γi
)
∂i +

(
λ∂iγ

i + λ(λ− 1)θ
)
. (1.4)

where
γi = Γi +X i, θ = (ΓiΓ

i + 2ΓiX
i) + 2div ΓX

In the case if symbol is invertible

θ = (ΓiΓ
i + 2ΓiX

i) + 2div ΓX = γiγ
i + 2div ΓX−X2 .

This is a basic example. Namely
Theorem (Vor. Kh.2003) Let ∆ ∈ D(2)

λ0
(M) be second order operator

defined on densities of weight λ0. In the case if λ0 ̸= 0, 1, 1
2
there exists

unique operator pencil ∆λ of the order 2, i.e. the second order operator ∆̂
on M̂ such that

• ∆̂
∣∣
λ=λ0

= ∆λ0 .

• ∆̂ = ∆̂+, i.e. ∆+
λ = ∆1−λ

• ∆̂1 = 0.

This operator has an appearance (1.4).

1.4 Equivariant maps between modules of differential
operators.

The pencil of second order operators considered above defines the maps Tλ,µ

between module of second order operators on densitites of weight λ to module
of second order operators of weight µ.

The Lie derivative of self-adjoint operator is self-adjoint. Hence unique-
ness implies that:

adK ◦ Tλ,µ = Tλ,µadK
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This implies very important
Corollary. Tλ,µ is equivariant map

∆λ

Tλµ−→∆λ (1.5)

for λ, µ ̸= 0, 1/2, 1. The ”bare hand” proof is difficult....
This map has the following appearance:
If an operator ∆λ ∈ Dλ(M) is given in local coordinates by the expression

∆λ = Aij(x)∂i∂j + Ai(x)∂i + A(x) then its image Tλ,µ(∆λ) = ∆µ ∈ Dµ(M)
is given in the same local coordinates by the expression ∆µ = Bij(x)∂i∂j +
Bi(x)∂i +B(x) where

Bij = Aij ,

Bi = 2µ−1
2λ−1

Ai + 2(λ−µ)
2λ−1

∂jA
ji ,

B = µ(µ−1)
λ(λ−1)

A+ µ(λ−µ)
(2λ−1)(λ−1)

(∂jA
j − ∂i∂jA

ij) .

(1.6)

At the exceptional cases λ, µ = 0, 1
2
, 1, non-isomorphic modules occur.

Remak It was calculated by Duval and Ovsienko (see [3] and [8] in a
straightforward way. Equations (1.4) and (1.5) illuminate this result.)

Very beautiful example (Mathonet, Lecomte:)

Tλ,µ

(
L(λ)

X ◦ L(λ)
Y

)
= L(µ)

X ◦ L(µ)
Y +

µ− λ

2λ− 1
L[X,Y]

Our beautiful proof:

L(λ)
X ◦ L(λ)

Y =
1

2

[
L(λ)

X ◦ L(λ)
Y + L(λ)

X ◦ L(λ)
Y

] 1
2

[
L(λ)

X ◦ L(λ)
Y − L(λ)

X ◦ L(λ)
Y

]
+

The first operator is self-adjoint, the second antiself-adjoint hence we draw
the following self-adjoint pencil through this operator

∆̂ =
1

2
[LX ◦ LY + LX ◦ LY] +

1

2

2λ̂− 1

2λ− 1
[LX ◦ LY − LX ◦ LY] =

1

2
[LX ◦ LY + LX ◦ LY] +

2λ̂− 1

4λ− 2
L[X,Y]

We see that ∆̂
∣∣
λ̂=λ

= L(λ)
X ◦ L(λ)

Y and

∆̂
∣∣
λ̂=µ

=
1

2

[
L(µ)

X ◦ L(µ)
Y + L(µ)

X ◦ L(µ)
Y

]
+
1

2

[
L(µ)

X ◦ L(µ)
Y − L(µ)

X ◦ L(µ)
Y

]
−1

2
L(µ)

[X,Y]+
2µ− 1

4λ− 2
L(µ)

[X,Y]
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= L(µ)
X ◦ L(µ)

Y +
µ− λ

2λ− 1
L(µ)

[X,Y]

Proof of the theorem. First we construct Beltrami-Laplas pencil (1.3) such

that second order terms coincide, then add the operator (2λ̂−1)LX choosing
X such that first terms coicide, then add scalar. Thus we come to self-adjoint
pencil ∆̂ passing through the operator.

Most important to prove the uniqueness (Without uniqueness we will not
have the equivariant map (1.5)).

If ∆̂′ is an arbitrary operator which obeys the condition of theorem then

∆̂′ = ∆̂ + (λ̂− λ0)(L1 + λ̂F )

Step by step we prove that it vanishes.

1.5 Canonical pencil in general case

:

∆ = tδ
[
Sik∂i∂k +

(
∂rS

ri + (2λ+ δ − 1)γi
)
∂i +

(
λ∂iγ

i + λ(λ = δ − 1)θ
)]

• S = tδSab(x) = Sab(x)Dxδ is symmetric contravariant tensor field-
density of the weight δ. Under changing of local coordinates xa′ =
xa′(xa) it transforms in the following way:

Sa′b′ = J−δxa′

a x
b′

b S
ab ,

• γa is a symbol of upper connection-density of weight δ. Under changing
of local coordinates xa′ = xa′(xa) it transforms in the following way:

γa′ = J−δxa′

a

(
γa + Sab∂b log J

)
,

• and θ transforms in the following way:

θ′ = J−δ
(
θ + 2γa∂a log J + ∂a log J Sab∂b log J

)
(θ = γaγa + scalar in the case if symbol is invertible)
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1.6 Special cases.

Consider λ = 1−δ
2
. Then

∆ = tδ
[
Sik∂i∂k + ∂rS

ri∂i +
1− δ

2

(
∂iγ

i +
δ − 1

2
θ

)]
Example. δ = 0. Sik defines Poisson structure. —Batalin-Vilkovisky

formalism.
Next example δ = 2, n = 1. S = 1 (invariant) We come to

∆ = t2
[
∂2
x −

1

2
U(x)

]
= |Dx|2

[
∂2
x −

1

2
U(x)

]
,

∆
(
Ψ(x)|Dx|−

1
2

)
=

(
Ψxx(x)−

1

2
U(x)Ψ(x)

)
|Dx|

3
2 . (1.7)

This operator leads us to .... Schwarzian.

2 Schwarzian , Projective geometry

See how operator (1.7)transforms the operator above under diffeomorphisms.
If f = y(x) is diffeomorphism then

∆f
(
Ψ(x)|Dx|2

)
=

{
|Dy|2

[
∂2
y −

1

2
U(y)

] [
Ψ(x(y)) |Dx|−

1
2

]} ∣∣
y=y(x)

=

{
|Dy|2

[
∂2
y −

1

2
U(y)

] [
Ψ(x(y))x

− 1
2

y |Dy|−
1
2

]} ∣∣
y=y(x)

=[
Ψxx(x)x

3
2
y +

3

4
Ψ(x)x

− 5
2

y x2
yy −

1

2
Ψ(x)x

− 3
2

y xyyy −
1

2
[U(y(x))+]Ψ(x)

]
y

3
2
x |Dx|

3
2 =[

Ψxx(x) +
3

4
Ψ(x)x−4

y x2
yy −

1

2
Ψ(x)x−3

y xyyy −
1

2
U(y(x))Ψ(x)

]
|Dx|

3
2 =[

Ψxx(x) +
3

4
Ψ(x)x−4

y x2
yy −

1

2
Ψ(x)x−3

y xyyy −
1

2
U(y(x))Ψ(x)

]
|Dx|

3
2 =[

Ψxx(x) +
3

4
Ψ(x)x−4

y x2
yy −

1

2
Ψ(x)x−3

y xyyy −
1

2

[
U(y(x)) +

(
xyyy

xy

− 3

2

x2
yy

x2
y

)
y2x

]
Ψ(x)

]
|Dx|

3
2 =
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Sorry for these calculations but Paris vaut bien une messe:

∆f = ∆− 1

2

(
xyyy

xy

− 3

2

x2
yy

x2
y

)
|Dy|2 (2.1)

The cocycle

S(f−1) =

(
xyyy

xy

− 3

2

x2
yy

x2
y

)
|Dy|2 (2.2)

is Schwarzian.

2.1 Schwartzian and second order connection

The ”potential” U in the second order Sturm-Lioville operator of weight δ = 2
(1.7) on R plays the role of second order connection. Its transformation is
defined by Schwarzian. (Compare with first order operator defined by usual
connection.)

2.2 Schwarzian and ... normal gauge

Valya Ovsienko likes to say that Schwarzian has more than 600 different
manifestations. Another day I discussed with Adam Biggs one of them. Here
is the result of our discussions.

Schwarzian and ... normal gauging conditions
Normal gauging is tremendously powerfull tool in geometry. E.g. the

quickest way to define invariants of gauge field (connection) is to consider
connection Aµ(x) in so called ”normal gauge”:

A′
µ(x) : Aµ(x)(x

µ − xµ
0
) = 0 , (A′

µ = gAµg
−1 + g−1∂µg) . (1)

(Here Aµ takes values in the Lie algebra Lie group G, g(x) is the function in
G.) Coefficients of Taylor series expansion are curvature of connection and
its covariant derivatives at the point p. (Here xµ are local coordiantes in the
vicinity of the point p with coordinates xµ

0
.) E.g. if Aµ(x) is electromagnetic

field given in a vicinity of the point xµ
0
= 0 in normal gauge then Aµ(x) =

Fµνx
ν + . . . where Fµν is the value of electromagnetic field tensor. Another

example: if Riemannian metric is given in normal coordinates: gµνx
ν = δµνx

ν

then
gµν(x) = δµν + . . . Rµανβ(x

α − xα
0
)(xβ − xβ

0
) + . . .
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where Rµανβ is curvature tensor at the point p. The normal gauging condition
gµνx

ν = δµνx
ν is strictly related with condition Γα

µνx
µxν = 0 for geodesic

coordinates. You can read about normal gauge in different textbooks 1.
Now revenons a nos moutons. Let x be a local coordinate on projective

line PR1 which fixes projective structure in a vicinity of the point p: one
admits the changing of coordinates x 7→ ax+b

cx+d
. Let F (x) be a local expression

for diffeomorphism of PR1.
Recall that Shwarzian equals to the following density of the weight 2:

SF =

(
Fxxx

Fx

− 3

2

F 2
xx

F 2
x

)
|Dx|2 . (2)

This is non-trivial 1-cocycle of diffeomorphisms which vanishes on projective
transformations. Projective transformations have three degrees of freedom.
Consider ”normal” gauging of the diffeomorphism: the new diffeomorphism
F ′ such that it difffers form F on projective transformation and F ′ is identity
in a vicinity of p up to the third order terms: F ′ : F = G◦F ′ where G = ax+b

cx+d

is projective transformation such that

F ′(x) = (x−x0)+O((x−x0)
3), : F ′∣∣

x=p
=

dF ′(x)

dx

∣∣
x=p

=
d2F ′(x)

dx2

∣∣
x=p

= 0 .

The value of gauged diffeomorphsim F ′ at the point p is the Schwarzian of
F at the point p. Calculate it.

If F (x) = a+ b(x− x0) + c(x− x0)
2 + d(x− x0)

3 + o((x− x0)
3) then con-

sider composition of projective tansformations such that they ”kill” deriva-
tives: G1 : x 7→ x − a (translation), G2 : x 7→ x 7→ x

b
and special projective

transformation G3 : x 7→ x
1+px

with p = c
b
. Then we come to

F ′(x) = G3◦G2◦G1◦F =
(x− x0) +

c
b
(x− x0)

2 + d
b
(x− x0)

3 + o((x− x0)
3)

1 + p((x− x0) +
c
b
(x− x0)

2 + o((x− x0)
2))

=

(x− x0)
2 + d′(x− x0)

3 + o((x− x0)
3,

where

d′ =
d

b
− c2

b2
=

(
6Fxxx

Fx

− (2Fxx)
2

F 2
x

) ∣∣
x=x0

= 6

(
Fxxx

Fx

− 3

2

F 2
xx

F 2
x

) ∣∣
x=x0

.

We come (up to a multiplier) to the Schwarzian (2). Schwarzian appears in
the way as curvature of gauge field....

1One can find the excellent exposition of the geometry of normal gauging in one of
Appendices of the famous article: ”On the heat equation and the index theorem” of M.
Atiyah, R. Bott and V.K. Patodi)
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2.3 Projective structures on curves in RP n and Schwarzian.
Curves in RP n and n+ 1-th order operators.

We consider the following construction.
let C : ui(x) be an arbitrary curve in Rn+1. Let ρ be an arbitrary

density and ∇ an arbitrary connection.
Let D = |Dx|(∂x + γ)
We consider the following pencil of operators For an arbitrary density

s = s(x)|Dx|λ of weight λ we consider operator

∆λ(s) =

det


u1ρλ u2ρλ . . . un+1ρλ sλ
Du1ρλ Du2ρλ . . .Dun+1ρλ Dsλ
D2u1ρλ D2u2ρλ . . .D2un+1ρλ D2sλ
. . . . . . . . . . . . . . .

Dn+1u1ρλ Dn+1u2ρλ . . .D2un+1ρλ Dn+1sλ



det


u1ρλ u2ρλ . . . un+1ρλ

Du1ρλ Du2ρλ . . .Dun+1ρλ

D2u1ρλ D2u2ρλ . . .D2un+1ρλ

. . . . . . . . . . . .
Dnu1ρλ Dnu2ρλ . . .D2unρλq


(2.3)

This operator sends density of weight λ to the density of the weight λ+n+1
E.g. for curve C : u(x), v(x) in R2

∆λ(s) =

det

 uρλ vρλ sλ
Duρλ Dvρλ Dsλ
D2uρλ D2vρλ D2sλ


det

(
uρλ vρλ

Duρλ Dvρλ

) (2.4)

This operator sends density of weight λ to the density of the weight λ+ 2
Densities proportional to linear combination of functions ui(t) belong to

kernel.
Remark Note that in components all terms proportional to γ and ρ

disappear....
Consider the projection of curve C in RP n.
Denominator is the density of the weight nλ+1+· · ·+n = (n+1)λ+ n(n+1

2)
.

We may choose multiplier such that for λ = − 1
n+1

denominator equals to 1.
We come to Schwarzian in third terms for operator...
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2.4 (Anti)-self adjoint operator of order n on R

.
Example

∆ = tnDn, where D = tn(∂x + λ̂γ...) (2.5)

Calculations show that...

Example

∆ = tn+δ′
[
s(x)∂n

x +
n

2
(sx + 2sγ...λ̂n+δ′)∂

n−1 +Bn∂
n−1
x + . . .

]
where

Bn =
n(n− 1)

2

[
γ...
x + s(γ2

... + τ)
]
+
n(n− 1)

2

[
n− 2

6
sxγ... −

n+ 1 + 3δ′

6
sUγ −

δ′2

4
sγ2 + sρ

]
(2.6)

Here ρ, τ are densities of weight 2, Uγ = γx − 1
2
γ2 is related with Schwarzian

“antiderivative” λ̂k = λ̂+ k−1
2

We see here how Schwarzian appears in critical dimensions....

2.5 Transvectants and symplectic geometry

We will expose here the construction of ovsienko and collaborators (see e.g.[8]
using little bit different point of view.

Let (x, t) be coordinates on R̂ and let (x, ξ) be coordinates on the cotan-
gent bundle T ∗R (ξ ≈ ∂x). We see that ξ ≈ 1

t
.

Under suitable identification of R̂ and cotangent bundle T ∗R linear canon-
ical transformations = projective transformations. Namely:

Projective transformations algebra acting on R is spanned by{
∂
∂x
, x ∂

∂x
+ t ∂

∂t
= x ∂

∂x
+ λ̂, x2 ∂

∂x
+ 2xt ∂

∂t
= x2 ∂

∂x
+ 2xλ̂

}
↓

Projective transformations algebra acting on R̂ is spanned by the vectors{
∂
∂x
, x ∂

∂x
+ t ∂

∂t
= x ∂

∂x
+ λ̂, x2 ∂

∂x
+ 2xt ∂

∂t
= x2 ∂

∂x
+ 2xλ̂

}
↕

Corresponding symplectic transformations algebra acting on R̂ is spanned by the vectors{
∂
∂x
, x ∂

∂x
− ξ ∂

∂ξ
= x ∂

∂x
+ λ̂, x2 ∂

∂x
− 2xξ ∂

∂ξ
= x2 ∂

∂x
+ 2xλ̂

}
Hamiltonians of these vetor fiels are

{ξ, ξx, ξx2}

14



dxdξ = dpdξ{
ξ = p2

2

x = q
p

{
t = 2

p2

x = q
p

volume form associated with scalar product on F(R) is
dxdt

t2
= dxdξ symplectic 2-form

Finally for transvectants are expressed in terms of iterated Poisson bracket

Bm(F,G) = TrPm(F ⊗G)

where P (F ⊗G) = Fξ ⊗Gx − Fx ⊗Gξ:

B1(F,G) = FξGx−FxGξ{F,G} , B2(F,G)) = FξξGxx− 2FxξGxξ +FxxGξξ, ...

References

[1] F.A.Berezin. Introduction in superanalysis. Expanded translation from
the Russian: Introduction to analysis with anticommuting variables.
A.A. Kirillov (ed.) Moscow State Univerisity. Moscow (1983). Transla-
tion edited by D.A.Leites. D.Reidel. Dordrecht. (1987).

[2] P.Cohen, Y.Manin, D.Zagier. Automorphic pseudodifferential op-
erators. Algebraic aspects of Integrable systems. A.S.Fokas and
I.M.Gelfand (eds). Boston. Burkhauser. (1997)—pp.17-47

[3] C.Duval, V. Yu. Ovisenko Space of second order linear differential op-
erators as a module over the Lie algebra of vector fields. Advances in
Mathematics 132,(1997), pp. 316-333.

[4] N.J.Hitchin, G.B.Segal and R.S.Ward Integrable systems.The Claren-
don Press. Oxford Univ, Univ.Press, New-York, (1999).

[5] H.M.Khudaverdian, T.Voronov On Odd Laplace operators. Lett. Math.
Phys. 62 (2002), pp.127-142

[6] H.M.Khudaverdian, T.Voronov On Odd Laplace operators. II. In
Amer.Math.Soc.Transl.(2), Vol.212, (2004), pp.179—205.

[7] H.M.Khudaverdian, T.Voronov Second order operators on the algebra
of densities and a groupoid of connections. (Preprint of Max-Planck-
Institut für Mathematik, MPI-.. (2011), Bonn.)

15



[8] V. Ovsienko, S.Tabachnikov Projective Differential Geometry Old and
New From Schwarzian Derivative to the Cohomology of Diffeomor-
phism Groups. Cambridge University Press (2005)

16


