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Differential operators on densities

Schwarzian in projective geometry and densities

Schwarzian derivative. First encounter

For function f = f (x) Schwarzian derivative

f (x) 7→ (S f ) (x) =

(
f

′ ′ ′
(x)

f ′(x)

)
− 3

2

(
f

′ ′
(x)

f ′(x)

)2

It is the famous construction in projective geometry

(S f )(x) ≡ 0 ⇔ f is projective transformation,
(

f = ax+b
cx+d

)
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(S f )(x) ≡ 0 ⇔ f is projective transformation,
(

f = ax+b
cx+d

)

S (f ◦g) = S (f )◦g +S (g) cocycle condition
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Schwarzian in projective geometry and densities

Recall densities
A density of the weight λ on (super)manifold M—s(x)|Dx |λ .
Under a change of coordinates it is multiplied by the λ -th power
of the Jacobian of the coordinate transformation:

s(x)|Dx |λ = s(x(x
′
))

∣∣∣∣
Dx
Dx ′

∣∣∣∣
λ
|Dx

′ |λ = s(x(x
′
))

(
det
(

∂x
∂x ′

))λ
|Dx

′ |λ .
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For supermanifolds x 7→ (x ,θ), x ′ 7→ (x ′,θ ′)

∣∣∣∣
D(x ,θ)

D(x ′
,θ ′)

∣∣∣∣= Ber
∂ (x ,θ)

∂ (x ′
,θ ′)

=

det
(

∂x
∂x ′ − ∂θ

∂x ′

(
∂θ
∂θ ′

)−1 ∂x
∂θ ′

)

det
(

∂θ
∂θ ′

)
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Schwarzian in projective geometry and densities

Examples of densities

Density of weight λ = 0 is a usual scalar function.
Density of weight λ = 1 is a volume form.
Wave function Ψ is a density of weight λ = 1

2 (semidensity):

Ψ(x)
√

Dx = Ψ(x(x ′))

√
det
(

∂x
∂x ′

)√
Dx ′
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Density of weight λ = 0 is a usual scalar function.
Density of weight λ = 1 is a volume form.
Wave function Ψ is a density of weight λ = 1

2 (semidensity):

Ψ(x)
√

Dx = Ψ(x(x ′))

√
det
(
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∂x ′
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or in supercase:

Ψ(x ,θ)
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Schwarzian in projective geometry and densities

Examples of densities

Density of weight λ = 0 is a usual scalar function.
Density of weight λ = 1 is a volume form.
Wave function Ψ is a density of weight λ = 1

2 (semidensity):

Ψ(x)
√

Dx = Ψ(x(x ′))

√
det
(

∂x
∂x ′

)√
Dx ′

or in supercase:

Ψ(x ,θ)
√

D(x ,θ) = Ψ(x(x ′,θ ′),θ(x ′,θ ′))

√
Ber

∂ (x ,θ)

∂ (x ′,θ ′)

√
D(x ′,θ ′)

Remark We suppose that (super)manifold is orientable and the orientation is

chosen; Jacobians of all coordinate transformations are positive.
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Fλ (M) = {space of densities of the weight λ on manifold M}



Differential operators on densities

Schwarzian in projective geometry and densities

Sturm-Liouville operator on densities of chosen
weights

Fλ (M) = {space of densities of the weight λ on manifold M}

Let M = R. Consider the second order operator
∆: F

− 1
2
(R) → F+ 3

2
(R) such that

∆
(
Ψ(x)|Dx |− 1

2

)
=

(
∂ 2Ψ(x)

∂x2 +U(x)Ψ(x)

)
|Dx |+ 3

2

∆ is Sturm-Lioville operator of the weight 2:

∆ = |Dx |2
(

∂ 2

∂x2 +U(x)

)
.
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Sturm-Liouville operator on densities of chosen
weights

Fλ (M) = {space of densities of the weight λ on manifold M}

Let M = R. Consider the second order operator
∆: F

− 1
2
(R) → F+ 3

2
(R) such that

∆
(
Ψ(x)|Dx |− 1

2

)
=

(
∂ 2Ψ(x)

∂x2 +U(x)Ψ(x)

)
|Dx |+ 3

2

∆ is Sturm-Lioville operator of the weight 2:

∆ = |Dx |2
(

∂ 2

∂x2 +U(x)

)
.

Why this operator? Why so strange choice of weights?
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Transformation of the operator ∆ under
diffeomorphism of R

Consider f : y = y(x) (with yx > 0). We come to
∆

(f )
= f ∗ ◦∆◦

(
f−1
)∗

such that

∆(f )
(
Ψ(x)|Dx |− 1

2

)
=

[(
∂ 2

∂y2 +U(y)

)(
Ψ(x(y))

∣∣∣∣
∂x
∂y

∣∣∣∣
− 1

2

)
|Dy | 3

2

]

y=f (x)
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= f ∗ ◦∆◦

(
f−1
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such that

∆(f )
(
Ψ(x)|Dx |− 1

2
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∂ 2

∂y2 +U(y)
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Ψ(x(y))

∣∣∣∣
∂x
∂y

∣∣∣∣
− 1

2

)
|Dy | 3

2

]

y=f (x)
((

Ψx
− 1

2
y

)

yy
+UΨx

− 1
2

y

)
y3/2

x |Dx | 3
2 =
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Transformation of the operator ∆ under
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such that
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2
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)
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2

y

)
y3/2

x |Dx | 3
2 =

=




Ψxx +




U − 1
2

(
xyyy

xy
−

3x2
yy

2x2
y

)

︸ ︷︷ ︸
Schwarzian derivative of y(x)




y2
x



|Dx | 3

2
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Comparison of operators ∆ and ∆f .
We see that for a diffeomorphism f : y = f (x)

∆
(f )

= |Dx |2 ∂ 2

∂x2 + |Dx |2U
(f )

(x) ,

where |Dx |2U
(f )

(x) =
[
|Dy |2

(
U(y)− 1

2S
(
f−1
))]

y=f (x)
.

The difference of second order operators is a scalar operator:

∆(f ) −∆ =

[
|Dy |2

(
U(y)− 1

2
S

(
f−1
))]

y=f (x)

−|Dx |2U(x)

In particular if U(x) = 0 then

∆(f ) −∆ = −1
2
S

(
f−1
)
|Dy |2 = −1

2

(
xyyy

xy
− 3

2

(
xyy

xy

)2
)
|Dy |2

at y = f (x).
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Cobounbdary in a wider space=non-trivial cocycle in
the space

Schwarzian derivative is a coboundary in the space of second
order operators. This coboundary is an operator of zeroth
order–it is an operator of multiplication on a density of weight
2.. It is a cocycle in the space of densities.
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Schwarzian in projective geometry and densities

Cobounbdary in a wider space=non-trivial cocycle in
the space

Schwarzian derivative is a coboundary in the space of second
order operators. This coboundary is an operator of zeroth
order–it is an operator of multiplication on a density of weight
2.. It is a cocycle in the space of densities.
This cocycle cannot be represented as a coboundary of
density.

−1
2

(
xyyy

xy
− 3

2

(
xyy

xy

)2
)
|Dy |2

︸ ︷︷ ︸
depends on 3-rd derivatives

= ∆
(f )−∆ 6= S

(f ) −S︸ ︷︷ ︸
depends on derivatives ≤ 1
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Schwarzian — cohomology

Schwarzian derivative S (f ) is a non-trivial cocycle of the group
of diffeomorphisms of RP1 acting on the space of densitites of
the weight 2, which vanishes on projective transformations.
These conditions define the Schwarzian uniquely (up to a
constant multiplier).
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Schwarzian — cohomology

Schwarzian derivative S (f ) is a non-trivial cocycle of the group
of diffeomorphisms of RP1 acting on the space of densitites of
the weight 2, which vanishes on projective transformations.
These conditions define the Schwarzian uniquely (up to a
constant multiplier).
Theorem

H1
(

Diff(RP1),Fλ

)
=

{
R if λ = 0,1,2

0 otherwise

λ = 0, c0 = logxy . It vanishes for Euclidean transformations y = x +c.

λ = 1, c1 =
xyy
xy

|Dy |. It vanishes for affine transformations y = ax +b.

λ = 2, c2 =

(
xyyy
xy

− 3
2

(
xyy
xy

)2
)
|Dy |2. It vanishes for proj. transf. y = ax+b

cx+d .



Differential operators on densities

Schwarzian in projective geometry and densities

Fine tuning of weights of densities

We come to beautiful results considering

Fλ
∆= ∂2

∂x2−→ Fµ for λ = −1
2
,µ = +

3
2

{
µ −λ = 2

µ + λ = 1
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We come to beautiful results considering

Fλ
∆= ∂2

∂x2−→ Fµ for λ = −1
2
,µ = +

3
2

{
µ −λ = 2

µ + λ = 1
under an arbitrary diffeomorph.

{
∂ 2

∂x2 → ∂ 2

∂x2 + . . .

term . . . ∂
∂x does not appear
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Fine tuning of weights of densities

We come to beautiful results considering

Fλ
∆= ∂2

∂x2−→ Fµ for λ = −1
2
,µ = +

3
2

{
µ −λ = 2

µ + λ = 1
under an arbitrary diffeomorph.

{
∂ 2

∂x2 → ∂ 2

∂x2 + . . .

term . . . ∂
∂x does not appear

We come to λ = −1
2 ,µ = +3

2 .

Try to shine some light on these constructions.
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Algebra of densities with invariant scalar product

Algebra of densities

Consider the space of all densities on a (super)manifold M:

F = ⊕λ Fλ (M) .

F ∋ Ψ = Ψλ1
|Dx |λ1 +Ψλ2

|Dx |λ2 + · · ·+Ψλk
|Dx |λk .
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Algebra of densities with invariant scalar product

Algebra of densities

Consider the space of all densities on a (super)manifold M:

F = ⊕λ Fλ (M) .

F ∋ Ψ = Ψλ1
|Dx |λ1 +Ψλ2

|Dx |λ2 + · · ·+Ψλk
|Dx |λk .

The vector space F (M) is a commutative algebra with respect
to natural multiplication

Ψλ1
|Dx |λ1 ·Ψλ2

|Dx |λ2 = Ψλ1
Ψλ2

|Dx |λ1+λ2 .
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Algebra of densities with invariant scalar product

Canonical scalar product in the algebra of densities.
Density Ψ(x)|Dx | of the weight σ = 1 is an invariant object of
integration over manifold: If under changing of coordinates
Ψ(x)|Dx | = Ψ̃(x ′)|Dx ′| then

∫
Ψ(x)|Dx |=

∫
Ψ̃(x ′)|Dx ′| , since Ψ̃(x ′)= Ψ(x(x ′))

∣∣∣∣det
(

∂x(x ′)
∂x ′

)∣∣∣∣

We come to

Definition
Let s1 = s1(x)|Dx |λ1 and s2 = s2(x)|Dx |λ2 be two densities of
weights λ1,λ2. Then

〈s1,s1〉 =

{∫
s1(x)s2(x)|Dx | if λ1 + λ2 = 1

0 if λ1 + λ2 6= 1
.
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Algebra of densities with invariant scalar product

Useful symbolic notation

s(x)|Dx |λ ↔ s(x)tλ .
Density Ψ(x , t) = ∑Ψk(x)tλk ↔ ∑Ψk(x)|Dx |λk

〈a(x , t),b(x , t)〉 =

∫

M
Res

(
a(x , t)b(x , t)

t2

)
Dx .
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Algebra of densities with invariant scalar product

Differential operators on densities
Differential operators D = D(x , t , ∂

∂x , ∂
∂ t ) act on algebra F of

densities.
Examples.
Weight operator: ŵ = t ∂

∂ t . t ∂
∂ t

(
a(x)tλ )= λa(x)tλ .

Differentiation of algebra F .

Â = tδ (Aa(x)∂a +A0ŵ
)

. (Vector field of the weight δ ).

Â
(
Ψ(x)|Dx |λ

)
= tδ ((Aa(x)∂a +A0ŵ

)(
Ψtλ

)
= tλ+δ (Aa∂aΨ+ λA0Ψ

)
.

Let X be a vector field on M:

LX

(
Ψ|Dx |λ

)
=
(
X a∂aΨ+ λ∂aX aΨ

)
.

It defines the vector field

LX = X a∂a + ∂aX at
∂
∂ t

= X a∂a + ∂aX aŵ on algebra F .
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Algebra of densities with invariant scalar product

Self-adjoint operators

Examples of adjoints

∂+
a = −∂a, t+ = t ,

(
∂
∂ t

)+
= − ∂

∂ t + 2
t , ŵ+ = 1− ŵ.

n-th order operator A is self-adjoint (anti-self-adjoint ) if

A+ = (−1)nA .
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Algebra of densities with invariant scalar product

Self-adjoint operators

Examples of adjoints

∂+
a = −∂a, t+ = t ,

(
∂
∂ t

)+
= − ∂

∂ t + 2
t , ŵ+ = 1− ŵ.

n-th order operator A is self-adjoint (anti-self-adjoint ) if

A+ = (−1)nA .

Example: Lie derivative anti-self-adjoint operator:

(LX)+ =
(
X a∂a + ∂aX aŵ

)
=−∂aX a−X a∂a+(1−ŵ)∂aX a =−LX .
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Self-adjoint operators

Examples of adjoints

∂+
a = −∂a, t+ = t ,

(
∂
∂ t

)+
= − ∂

∂ t + 2
t , ŵ+ = 1− ŵ.

n-th order operator A is self-adjoint (anti-self-adjoint ) if

A+ = (−1)nA .

Example: Lie derivative anti-self-adjoint operator:

(LX)+ =
(
X a∂a + ∂aX aŵ

)
=−∂aX a−X a∂a+(1−ŵ)∂aX a =−LX .

This means that LX is divergence-less field.

div Â = −(Â+ Â+) = tδ (∂aAa +(δ −1)A0) for vector field

Â = tδ (Aa∂a +A0ŵ). divLX = 0.
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Algebra of densities with invariant scalar product

n = 1. First order operators on F (M).
Simple but important observation:
Let M be an arbitrary (orientable) (super)manifold.
Anti-self-adjoint first order operator of the weight δ on algebra
of densities F (M) has the following appearance

Â = tδ
(

Aa∂a +
∂aAaŵ
1−δ

)
.
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Algebra of densities with invariant scalar product

n = 1. First order operators on F (M).
Simple but important observation:
Let M be an arbitrary (orientable) (super)manifold.
Anti-self-adjoint first order operator of the weight δ on algebra
of densities F (M) has the following appearance

Â = tδ
(

Aa∂a +
∂aAaŵ
1−δ

)
.

It defines the pencil {Âλ} of operators on spaces Fλ :

Âλ = Â
∣∣
Fλ

= Â = tδ
(

Aa∂a +
λ∂aAa

1−δ

)
, λ ∈ R. .

If δ = 0 then the operators Âλ of this pencil are just usual Lie
derivatives of densities of weight λ :

Âλ = LA
∣∣
Fλ

= Aa∂a + λ∂aAa .



Differential operators on densities

Two self-adjoint operators and corresponding pencils.

Two important cases

We consider two examples.

1. Self-adjoint second order operator on algebra of densities
F (M) on an arbitrary (super)manifold M and corresponding
pencil of second order operators on spaces Fλ (M).
(T.T.Voronov, H.M.Kh., 2003.).

2. (Anti)-self-adjoint n-th order operator on algebra of densities
F (R) on the real line R and corresponding pencil of second
order operators on spaces Fλ (R).
(A.M.Biggs, H.M.Kh., 2011.).



Differential operators on densities

Two self-adjoint operators and corresponding pencils.

Two important cases

We consider two examples.

1. Self-adjoint second order operator on algebra of densities
F (M) on an arbitrary (super)manifold M and corresponding
pencil of second order operators on spaces Fλ (M).
(T.T.Voronov, H.M.Kh., 2003.).

2. (Anti)-self-adjoint n-th order operator on algebra of densities
F (R) on the real line R and corresponding pencil of second
order operators on spaces Fλ (R).
(A.M.Biggs, H.M.Kh., 2011.).

This is a principal result
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Two self-adjoint operators and corresponding pencils.

Recalling: connection on densities

∇ : ∇X(Ψ|Dx |λ )= ∂XΨ|Dx |λ +λΨ|Dx |λ−1∂X|Dx |= X a(∂aΨ+λΓaΨ|Dx |λ

Γa are ”Cristoffel” symbols of connection: Γa|Dx | = ∇∂a |Dx |.
Under changing of coordinates xa = xa(xa′

)

Γa′ =
∂xa

∂xa′

(
Γa + ∂a

(∣∣∣∣
Dx ′

Dx

∣∣∣∣
))

,

∣∣∣∣
Dx ′

Dx

∣∣∣∣= det

(
∂xa′

∂xa

)
.
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Two self-adjoint operators and corresponding pencils.

Recalling: connection on densities

∇ : ∇X(Ψ|Dx |λ )= ∂XΨ|Dx |λ +λΨ|Dx |λ−1∂X|Dx |= X a(∂aΨ+λΓaΨ|Dx |λ

Γa are ”Cristoffel” symbols of connection: Γa|Dx | = ∇∂a |Dx |.
Under changing of coordinates xa = xa(xa′

)

Γa′ =
∂xa

∂xa′

(
Γa + ∂a

(∣∣∣∣
Dx ′

Dx

∣∣∣∣
))

,

∣∣∣∣
Dx ′

Dx

∣∣∣∣= det

(
∂xa′

∂xa

)
.

Basic examples of connection
1. An arbitrary volume form s = ρ(x)|Dx | defines a connection

∇(ρ)
X

(
Ψ(x)|Dx |λ

)
= sλ ∂X

(
Ψ(x)|Dx |λ

sλ

)
= Xa (∂aΨ+Γaψ) ,

with Γa = −∂a logρ.

2. An arbitrary affine connection with Christoffel symbols {Γa
bc} define

connection on densitites ∇ such that ∇∂a
|Dx | = Γa|Dx | with Γ = −Γb

ab.
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Two self-adjoint operators and corresponding pencils.

Second order self-adjoint operator on F (M)
.

Theorem
Let ∆ be a second order operator on F (M) of the weight δ
such that ∆+ = ∆ and ∆1 = 0. Then

∆ =
tδ

2

(
Sab∂b∂a +

(
∂bSba(−1)p(b)(p(ε)+1)(2ŵ + δ −1)Γa

)
∂a

)

+
tδ

2

(
ŵ∂aΓ

a(−1)p(a)(p(ε)+1) + ŵ(ŵ + δ −1)θ
)

, (T.Voronov, H.Kh., 2003)
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Sab∂b∂a +

(
∂bSba(−1)p(b)(p(ε)+1)(2ŵ + δ −1)Γa

)
∂a
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+
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2
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where p(a) is a parity of coordinate xa, p(ε) a parity of ∆,
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such that ∆+ = ∆ and ∆1 = 0. Then

∆ =
tδ
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(
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(
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where p(a) is a parity of coordinate xa, p(ε) a parity of ∆,
Sab(x)tδ = Sab(x)|Dx |δ is symmetric tensor field ⊗ density of weight δ ,
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Let ∆ be a second order operator on F (M) of the weight δ
such that ∆+ = ∆ and ∆1 = 0. Then

∆ =
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(
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(
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)

, (T.Voronov, H.Kh., 2003)

where p(a) is a parity of coordinate xa, p(ε) a parity of ∆,
Sab(x)tδ = Sab(x)|Dx |δ is symmetric tensor field ⊗ density of weight δ ,
Γa|Dx |δ is an upper connection ⊗ density of weight δ It transform as
Sab(x)|Dx |δ Γb
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Second order self-adjoint operator on F (M)
.

Theorem
Let ∆ be a second order operator on F (M) of the weight δ
such that ∆+ = ∆ and ∆1 = 0. Then

∆ =
tδ

2

(
Sab∂b∂a +

(
∂bSba(−1)p(b)(p(ε)+1)(2ŵ + δ −1)Γa

)
∂a

)

+
tδ

2

(
ŵ∂aΓ

a(−1)p(a)(p(ε)+1) + ŵ(ŵ + δ −1)θ
)

, (T.Voronov, H.Kh., 2003)

where p(a) is a parity of coordinate xa, p(ε) a parity of ∆,
Sab(x)tδ = Sab(x)|Dx |δ is symmetric tensor field ⊗ density of weight δ ,
Γa|Dx |δ is an upper connection ⊗ density of weight δ It transform as
Sab(x)|Dx |δ Γb
θ is a Brans-Dicke type ”scalar” density. It transforms as ΓaSab(x)|Dx |δ Γb.
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Two self-adjoint operators and corresponding pencils.

The special case

Consider the above operator in the case if the weight δ = 0 and
the principal symbol Sab is invertible. Then

∆ =
1
2

(
Sab∂b∂a +

(
∂bSba +(2ŵ −1)Γa

)
∂a + ŵ∂aΓ

a + ŵ(ŵ −1)θ
)

where Γa is a connection on densities,(SabΓb = Γa) and
θ = ΓaΓa (we omit here terms (−1)...)
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Pencil of Laplacians on Fλ (M)

The above operator defines the pencil: λ ∈ R, ∆λ = ∆
∣∣
Fλ

=

1
2

(
Sab∂b∂a +

(
∂bSba +(2λ −1)Γa

)
∂a + λ∂aΓ

a + λ (λ −1)ΓaΓa

)

Remark The pencil possesses the singular points, the weights
λ = 0, 1

2 ,1. The weight λ = 1
2 is of the most interest.



Differential operators on densities

Two self-adjoint operators and corresponding pencils.

n-th order operator on densities on R

.
Proposition. Let L be n-th order operator of the weight δ on
the algebra F (R) such that L+ = (−1)nL. Then L = tδ s ∂

∂xn +

tδ
(

n
2

(
sx +2sΓŵn+δ

) ∂
∂xn−1 +

n(n−1)

2

(
(sΓ)x +s(Γ2 + τ)ŵn+δ

)
ŵn+δ

∂
∂xn−2 +

)

tδ n(n−1)

2

(
n−2

6
sxΓ− n +1+3δ

6
sΓx −

n +1+3δ (δ +1)

12
sΓ2 +sσ

)
∂

∂xn−2 + . . . ,

where ŵs = ŵ + s−1
2 . Here s = s(x)|Dx |δ−n is a density of weight

δ −n,
τ(x)|Dx |2,σ(x)|Dx |2 are densities of weight 2,
Γ is a connection
(In a dimension 1, Γ = −∂x (logρ) for a volume form ρ(x)dx)
(A.Biggs, H,Kh. (2011).)
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Special case δ = n

We put s = 1, τ = σ = 0 and come to

Kn = tn
(

∂
∂xn +nΓŵn

∂
∂xn−1 +

n(n−1)

2

(
Γx +Γ2ŵn

)
ŵn

∂
∂xn−2 +

)

−tn n(n−1)(n +1)

12

(
Γx +

1
2
Γ2
)

∂
∂xn−2 + . . .

where ŵn = ŵ + n−1
2 , ŵn|Fλ = λ + n−1

2 :

ŵn

(
Ψ(x)|Dx |λ

)
=

(
t

∂
∂ t

+
n−1

2

)(
Ψ(x)tλ

)
=

(
λ +

n−1
2

)
Ψ(x)|Dx |λ .
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Two self-adjoint operators and corresponding pencils.

Example of n-th order operator

Consider D = |Dx |
(

∂
∂x + ŵΓ

)
. It is anti-self-adjoint operator1 :

D+ =

(
t
(

∂
∂x

+ ŵΓ

))+

= −
(

t
(

∂
∂x

+ ŵΓ

))
, (t = |Dx |) .

1It is similar to de Rham differential: D|Fλ = 1
sλ |Dx | ∂

∂x sλ , where
s = ρ(x)|Dx | is such that Γ = −∂x (logρ).
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Example of n-th order operator

Consider D = |Dx |
(

∂
∂x + ŵΓ

)
. It is anti-self-adjoint operator1 :

D+ =

(
t
(

∂
∂x

+ ŵΓ

))+

= −
(

t
(

∂
∂x

+ ŵΓ

))
, (t = |Dx |) .

Dn == tn
(

∂
∂xn +nΓŵn

∂
∂xn−1 +

n(n−1)

2

(
Γx +Γ2ŵn

)
ŵn

∂
∂xn−2 +

)

−tn n(n−1)(n +1)

12

(
Γx +

1
2
Γ2
)

∂
∂xn−2 + . . .

1It is similar to de Rham differential: D|Fλ = 1
sλ |Dx | ∂

∂x sλ , where
s = ρ(x)|Dx | is such that Γ = −∂x (logρ).
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Pencil of operators on F (R)

The operator Kn defines the pencil:

λ ∈ R, ∆λ = ∆
∣∣
Fλ

= ∆

(
ŵn = ŵ +

n−1
2

→ λn = λ +
n−1

2

)
=

tn
(

∂
∂xn +nΓλn

∂
∂xn−1 +

n(n−1)

2

(
Γx +Γ2λn

)
λn

∂
∂xn−2 +

)

−tn n(n−1)(n +1)

12

(
Γx +

1
2
Γ2
)

∂
∂xn−2 + . . .
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Pencil of operators on F (R)

The operator Kn defines the pencil:

λ ∈ R, ∆λ = ∆
∣∣
Fλ

= ∆

(
ŵn = ŵ +

n−1
2

→ λn = λ +
n−1

2

)
=

tn
(

∂
∂xn +nΓλn

∂
∂xn−1 +

n(n−1)

2

(
Γx +Γ2λn

)
λn

∂
∂xn−2 +

)

−tn n(n−1)(n +1)

12

(
Γx +

1
2
Γ2
)

∂
∂xn−2 + . . .

This pencil possesses a singular point λn = 0, i.e. λ = 1−n
2 .
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Pencil of operators on F (R): its singular point

The operator Kn defines the pencil:

λ ∈ R, ∆λ = ∆
∣∣
Fλ

= ∆

(
ŵn = ŵ +

n−1
2

→ λn = λ +
n−1

2

)
=

tn
(

∂
∂xn +nΓλn

∂
∂xn−1 +

n(n−1)

2

(
Γx +Γ2λn

)
λn

∂
∂xn−2 +

)

−tn n(n−1)(n +1)

12

(
Γx +

1
2
Γ2
)

∂
∂xn−2 + . . .

This pencil possesses a singular point λn = 0, i.e. λ = 1−n
2 .
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Singular point of the pencil: λ = 1−n
2

λn = 0 ⇒ λ =
1−n

2
, ∆ 1−n

2
: F 1−n

2
→ F 1−n

2 +n = F 1+n
2

∆ 1−n
2

= tn
(

∂
∂xn − n(n−1)(n +1)

12

(
Γx +

1
2
Γ2
)

∂
∂xn−2 + . . .

)
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Singular point of the pencil: λ = 1−n
2

λn = 0 ⇒ λ =
1−n

2
, ∆ 1−n

2
: F 1−n

2
→ F 1−n

2 +n = F 1+n
2

∆ 1−n
2

= tn
(

∂
∂xn − n(n−1)(n +1)

12

(
Γx +

1
2
Γ2
)

∂
∂xn−2 + . . .

)

For n = 2
∆− 1

2
: F− 1

2
→ F 3

2
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Singular point of the pencil: λ = 1−n
2

λn = 0 ⇒ λ =
1−n

2
, ∆ 1−n

2
: F 1−n

2
→ F 1−n

2 +n = F 1+n
2

∆ 1−n
2

= tn
(

∂
∂xn − n(n−1)(n +1)

12

(
Γx +

1
2
Γ2
)

∂
∂xn−2 + . . .

)

For n = 2
∆− 1

2
: F− 1

2
→ F 3

2

∆− 1
2
= t2

(
∂

∂x2 − 1
2

(
Γx +

1
2

Γ2
))

= |Dx |2
(

∂
∂x2 − 1

2

(
Γx +

1
2

Γ2
))
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Sturm-Liouville operator

Compare it with the latter Sturm-Liouville operator

∆ = |Dx |2
(

∂ 2

∂x2 +U(x)

)
= |Dx |2

(
∂

∂x2 − 1
2

(
Γx +

1
2

Γ2
))

.

∆: F− 1
2
→ F 3

2
.
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Sturm-Liouville operator

Compare it with the latter Sturm-Liouville operator

∆ = |Dx |2
(

∂ 2

∂x2 +U(x)

)
= |Dx |2

(
∂

∂x2 − 1
2

(
Γx +

1
2

Γ2
))

.

∆: F− 1
2
→ F 3

2
. Potential U(x)|Dx |2 is a function of

connection

−U(x)|Dx |2 = UΓ =
1
2

(
Γx +

1
2

Γ2
)
|Dx |2 .
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Sturm-Liouville operator

Compare it with the latter Sturm-Liouville operator

∆ = |Dx |2
(

∂ 2

∂x2 +U(x)

)
= |Dx |2

(
∂

∂x2 − 1
2

(
Γx +

1
2

Γ2
))

.

∆: F− 1
2
→ F 3

2
. Potential U(x)|Dx |2 is a function of

connection

−U(x)|Dx |2 = UΓ =
1
2

(
Γx +

1
2

Γ2
)
|Dx |2 .

Remark Since n = 1 one can always choose a volume form ρ such that

Γ = −∂x logρ. Respectively one can always choose a coordinate x such that

ρ = 1, Γ = 0 and UΓ = 0 in this coordinate.
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Variation of connection, ”potential” U, and ∆ under
diffeomorphism

For diffeomorphism f = y(x)

Γ(f )(x)|Dx | = Γ(y) |Dy |
∣∣
y=y(x)

+yx∂y logxy |Dx | ,

respectively

∆(f ) −∆ = −1
2

(UΓ(f ) −UΓ) =

UΓ(y(x))|Dy |2 −UΓ(x)|Dx |2 +

(
xyyy

xy
− 3

2

x2
yy

x2
y

)
|Dy |2

︸ ︷︷ ︸
Schwarzian S (f−1)

at y = y(x).
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Variation of connection, ”potential” U, and ∆ under
diffeomorphism

For diffeomorphism f = y(x)

Γ(f )(x)|Dx | = Γ(y) |Dy |
∣∣
y=y(x)

+yx∂y logxy |Dx | ,

respectively

∆(f ) −∆ = −1
2

(UΓ(f ) −UΓ) =

UΓ(y(x))|Dy |2 −UΓ(x)|Dx |2 +

(
xyyy

xy
− 3

2

x2
yy

x2
y

)
|Dy |2

︸ ︷︷ ︸
Schwarzian S (f−1)

at y = y(x).

If in coordinate x , Γ = 0, then U = 0 and ∆(f ) −∆ = S (f−1)|Dy |2.
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Variation of potential under changing of connection
Difference of connections is a (co)vector Γ′−Γ = X.
For n = 1 Γ′(x)|Dx |−Γ(x)|Dx | = X |Dx |.
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Variation of potential under changing of connection
Difference of connections is a (co)vector Γ′−Γ = X.
For n = 1 Γ′(x)|Dx |−Γ(x)|Dx | = X |Dx |. UΓf −UΓ =

1
2

(
Γ′x +

1
2

(
Γ′
)2
)
− 1

2

(
Γx +

1
2

Γ2
)
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Variation of potential under changing of connection
Difference of connections is a (co)vector Γ′−Γ = X.
For n = 1 Γ′(x)|Dx |−Γ(x)|Dx | = X |Dx |. UΓf −UΓ =

1
2

(
Γ′x +

1
2

(
Γ′
)2
)
− 1

2

(
Γx +

1
2

Γ2
)

=
1
2

(Γ+X )x +
1
4

(Γ+X )2−

1
2

(
Γx +

1
2
Γ2
)

=
1
2

(Xx +ΓX )+
1
4

X 2 =
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Variation of potential under changing of connection
Difference of connections is a (co)vector Γ′−Γ = X.
For n = 1 Γ′(x)|Dx |−Γ(x)|Dx | = X |Dx |. UΓf −UΓ =

1
2

(
Γ′x +

1
2

(
Γ′
)2
)
− 1

2

(
Γx +

1
2

Γ2
)

=
1
2

(Γ+X )x +
1
4

(Γ+X )2−

1
2

(
Γx +

1
2
Γ2
)

=
1
2

(Xx +ΓX )+
1
4

X 2 =
1
2

(
divX+

1
2

X2
)

.



Differential operators on densities

Two self-adjoint operators and corresponding pencils.

Variation of potential under changing of connection
Difference of connections is a (co)vector Γ′−Γ = X.
For n = 1 Γ′(x)|Dx |−Γ(x)|Dx | = X |Dx |. UΓf −UΓ =

1
2

(
Γ′x +

1
2

(
Γ′
)2
)
− 1

2

(
Γx +

1
2

Γ2
)

=
1
2

(Γ+X )x +
1
4

(Γ+X )2−

1
2

(
Γx +

1
2
Γ2
)

=
1
2

(Xx +ΓX )+
1
4

X 2 =
1
2

(
divX+

1
2

X2
)

.

Changing of connection ≈ diffeomorphism:

Γ′ = Γ+X ↔∃f : Γ′−Γ(f )

divX+
1
2

X2 =
(

UΓ(y)|Dy |+S (f−1)|Dy |
)∣∣

y=f (x)
−UΓ(x)|Dx | .
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Calculations.

Let x be a coordinate such that Γ = 0 in this coordinate. If
Γ′ = Γ(f ), where f = y(x) then

Γ′|Dx | = X |Dx | = yx ∂y logxy = −∂x logyx |Dx |, X = −∂x logyx .

divX+
1
2

X2 = 0 ↔ ∂X (x)

∂x
+

1
2

X 2 = 0 ↔ X (x) =
2

C +x
.

X (x) = −∂x logyx =
2

C +x
↔ yx =

K
(c +x)2

y(x) = ax+b
cx+d projective transformation.
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Laplacian on semidensity

Return to the pencil of second order operators on arbitrary
supermanifold

∆λ =
1
2

(
Sab∂b∂a +

(
∂bSba +(2λ −1)Γa

)
∂a + λ∂aΓ

a + λ (λ −1)ΓaΓa

)
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Laplacian on semidensity

Return to the pencil of second order operators on arbitrary
supermanifold

∆λ =
1
2

(
Sab∂b∂a +

(
∂bSba +(2λ −1)Γa

)
∂a + λ∂aΓ

a + λ (λ −1)ΓaΓa

)

For the singular point λ = 1
2 we have a laplacian

∆1/2 =
1
2

(
Sab∂b∂a + ∂bSba∂a +

1
2

∂aΓ
a − 1

4
ΓaΓa

)

acting on semidensities ∆1/2 : F1/2(M) → F1/2(M).
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Laplacian on semidensities
Let M be an odd symplectic supermanifold equipped with
non-degenerate Poisson bracket (anti-bracket)
Ωab : {za,zb} = Ωab.
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Laplacian on semidensities
Let M be an odd symplectic supermanifold equipped with
non-degenerate Poisson bracket (anti-bracket)
Ωab : {za,zb} = Ωab.
Consider laplacian ∆1/2 on semidensities with principal symbol
Sab = (−1)aΩab.
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Laplacian on semidensities
Let M be an odd symplectic supermanifold equipped with
non-degenerate Poisson bracket (anti-bracket)
Ωab : {za,zb} = Ωab.
Consider laplacian ∆1/2 on semidensities with principal symbol
Sab = (−1)aΩab.
In Darboux coordinates zA = {x i ,θj} (x i are even, θj are odd
and {x i ,θj} = δ i

j , {x i ,x j} = {θi ,θj} = 0. Laplacian on
semidensities has the following appearance:

∆1/2 =
1
2

(
Sab∂b∂a + ∂bSba∂a +

1
2

∂aΓ
a − 1

4
ΓaΓa

)
=

∂ 2

∂x i∂θi
+

1
4

∂aΓ
a − 1

8
ΓaΓa =

∂ 2

∂x i∂θi
+UΓ(x ,θ) .
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Changing of Laplacian under changing of connection

Difference of two connections is a vector field: Γ′−Γ = X.
Consider cocycle CΓ(X) = ∆Γ′ −∆Γ for Γ′ = Γ+X.
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Changing of Laplacian under changing of connection

Difference of two connections is a vector field: Γ′−Γ = X.
Consider cocycle CΓ(X) = ∆Γ′ −∆Γ for Γ′ = Γ+X.

CΓ(X) = ∆Γ′ −∆Γ = (UΓ′ −UΓ) =
1
4

(
∂aΓ

′a −∂aΓ
a
)
−

1
8

(
Γ′aΓ

′a −ΓaΓ
a
)

=
1
4

∂aXa − 1
4

ΓaX a − 1
8

X2 =

1
4

(
divΓX− 1

2
X2
)

(T.Voronov, H.Kh. 2003)
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Useful anzats

Let X be a Hamiltonian vector field: Xa = ∂F
∂xa , (Xa = ΩabXb).

Suppose for simplicity that Γ = 0 in given Darboux coordinates.
Then

CΓ(X) = ∆Γ′ −∆Γ =
1
4

(
divΓX− 1

2
X2
)

=

1
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∂ 2

∂x i∂θi
F − 1

4
{F ,F} = −eF/2 ∂ 2

∂x i∂θi
e−F/2
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Useful anzats

Let X be a Hamiltonian vector field: Xa = ∂F
∂xa , (Xa = ΩabXb).

Suppose for simplicity that Γ = 0 in given Darboux coordinates.
Then

CΓ(X) = ∆Γ′ −∆Γ =
1
4

(
divΓX− 1

2
X2
)

=

1
2

∂ 2

∂x i∂θi
F − 1

4
{F ,F} = −eF/2 ∂ 2

∂x i∂θi
e−F/2

Consider two examples
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Action of canonical transformation on Laplacian
Let f : z ′ = z ′(z) be an arbitrary symplectomorphism of M (i.e.
diffeomorphism which preserves Darboux coordinates):
z = (x ,θ) → z ′ = (x ′,θ ′). Principal symbol does not change.
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Action of canonical transformation on Laplacian
Let f : z ′ = z ′(z) be an arbitrary symplectomorphism of M (i.e.
diffeomorphism which preserves Darboux coordinates):
z = (x ,θ) → z ′ = (x ′,θ ′). Principal symbol does not change.

Changing of connection:Γ′a = Γ
(f )
a =

∂za′

∂za

(
Γa + ∂a′ log

∂z
∂z ′

)
.

Hence Xa = −∂a logJ where J = Ber ∂(x ′,θ ′)
∂(x ,θ ) .

If Γ = 0 in Darboux coordinates (x ,θ) then

cΓ(X) = ∆Γf −∆Γ =
1
4

(
divΓX− 1

2
X2
)

= − 1√
J

∂ 2

∂x i∂θi

√
J

Cocycle cΓ(X) vanishes due to the Batalin-Vilkovisky identity (1981):
∂ 2

∂x i ∂ θi

√
J = ∂ 2

∂x i ∂ θi

√
Ber ∂ (x ′,θ ′)

∂ (x ,θ)
= 0 .
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Canonical operator on semidensities

We see that cocycle cΓ(X) = ∆
(f )
Γ −∆Γ (X = Γ(f ) −Γ) vanishes

for an rbitrary symplectomorphism if Γ = 0 in some Darboux
coordinates.
Thus we come to canonical operator on semidensities

∆ =
∂ 2

∂x i∂θi

(H.Kh. 1999)
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Two self-adjoint operators and corresponding pencils.

Changing of connection induced by changing of
volume form

Let Γ = 0 in given Darboux coordinates and let Γ′ be a flat
connection induced by arbitrary volume form ρ(z)|Dz|:

Γ′a = −∂a logρ(z) .
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Changing of connection induced by changing of
volume form

Let Γ = 0 in given Darboux coordinates and let Γ′ be a flat
connection induced by arbitrary volume form ρ(z)|Dz|:

Γ′a = −∂a logρ(z) .

Then using the anzats we have

CΓ(X) = ∆Γ′ −∆Γ =
1
4

(
divΓX− 1

2
X2
)

= − 1√ρ
∂ 2

∂x i∂θ i

√
ρ

The cocycle CΓ(X) vanishes ⇔ ∂ 2

∂x i ∂θ i

√ρ = 0, i.e.
Batalin-Vilkovisky equation for ρ = eS is obeyed. ⇔ There
exists symplectomorphism f such that Γ′ = Γ(f ).
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R Odd symplectic supermanifold.
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Comparison

R Odd symplectic supermanifold.
∆Γ = ∂ 2

∂x2 − 1
2

(
Γ′ + 1

2Γ2
)

∆Γ = ∂ 2

∂x i ∂θi
+ 1

4

(
∂Γ− 1

2Γ2
)
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∂x2 − 1
2
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∆Γ = ∂ 2

∂x i ∂θi
+ 1

4

(
∂Γ− 1
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)

F−1/2 → F+3/2 F1/2 → F1/2
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Comparison

R Odd symplectic supermanifold.
∆Γ = ∂ 2

∂x2 − 1
2

(
Γ′ + 1

2Γ2
)

∆Γ = ∂ 2

∂x i ∂θi
+ 1

4

(
∂Γ− 1

2Γ2
)

F−1/2 → F+3/2 F1/2 → F1/2

cΓ(X) = ∆Γ′ −∆Γ where Γ′−Γ = X

cΓ(X) = −1
2divΓX− 1

4X2 cΓ(X) = 1
4divΓX− 1

8X2
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Comparison

R Odd symplectic supermanifold.
∆Γ = ∂ 2

∂x2 − 1
2

(
Γ′ + 1

2Γ2
)

∆Γ = ∂ 2

∂x i ∂θi
+ 1

4

(
∂Γ− 1

2Γ2
)

F−1/2 → F+3/2 F1/2 → F1/2

cΓ(X) = ∆Γ′ −∆Γ where Γ′−Γ = X

cΓ(X) = −1
2divΓX− 1

4X2 cΓ(X) = 1
4divΓX− 1

8X2

cΓ(X) is a Schwarzian. It vanishes cΓ(X) is Batalin-Vilkovisky

iff the new connection Γ′ is such that operator. It vanishes if
Γ′ = Γ(f ) where f is a projective the new connection Γ′ is
transformation such that Γ′ = Γ(f ) where

f is a symplectomorphism.
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