Differential operators on algebra of densities; from Schwarzian derivative to Batalin-Vilkovisky operator

Hovhannes Khudaverdian

University of Manchester, Manchester, UK

Leibniz Universitat Hannover \& Yerevan State University
Supersymmetry in Integrable Systems - SIS'11 International Workshop, 01-04 August 2011 Hannover, Germany

Contents

Schwarzian in projective geometry and densities

Algebra of densities with invariant scalar product

Two self-adjoint operators and corresponding pencils.

Schwarzian derivative. First encounter

For function $f=f(x)$ Schwarzian derivative

$$
f(x) \mapsto(\mathscr{S} f)(x)=\left(\frac{f^{\prime \prime \prime}(x)}{f^{\prime}(x)}\right)-\frac{3}{2}\left(\frac{f^{\prime \prime}(x)}{f^{\prime}(x)}\right)^{2}
$$

It is the famous construction in projective geometry

$$
(\mathscr{S} f)(x) \equiv 0 \Leftrightarrow f \text { is projective transformation, }\left(f=\frac{a x+b}{c x+d}\right)
$$

Schwarzian derivative. First encounter

For function $f=f(x)$ Schwarzian derivative

$$
f(x) \mapsto(\mathscr{S} f)(x)=\left(\frac{f^{\prime \prime \prime}(x)}{f^{\prime}(x)}\right)-\frac{3}{2}\left(\frac{f^{\prime \prime}(x)}{f^{\prime}(x)}\right)^{2}
$$

It is the famous construction in projective geometry

$$
(\mathscr{S} f)(x) \equiv 0 \Leftrightarrow f \text { is projective transformation, }\left(f=\frac{a x+b}{c x+d}\right)
$$

$$
\mathscr{S}(f \circ g)=\mathscr{S}(f) \circ g+\mathscr{S}(g)
$$

Schwarzian derivative. First encounter

For function $f=f(x)$ Schwarzian derivative

$$
f(x) \mapsto(\mathscr{S} f)(x)=\left(\frac{f^{\prime \prime \prime}(x)}{f^{\prime}(x)}\right)-\frac{3}{2}\left(\frac{f^{\prime \prime}(x)}{f^{\prime}(x)}\right)^{2}
$$

It is the famous construction in projective geometry

$$
(\mathscr{S} f)(x) \equiv 0 \Leftrightarrow f \text { is projective transformation, }\left(f=\frac{a x+b}{c x+d}\right)
$$

$$
\mathscr{S}(f \circ g)=\mathscr{S}(f) \circ g+\mathscr{S}(g) \text { cocycle condition }
$$

Recall densities

A density of the weight λ on (super)manifold $M — s(x)|D x|^{\lambda}$. Under a change of coordinates it is multiplied by the λ-th power of the Jacobian of the coordinate transformation:

$$
s(x)|D x|^{\lambda}=s\left(x\left(x^{\prime}\right)\right)\left|\frac{D x}{D x^{\prime}}\right|^{\lambda}\left|D x^{\prime}\right|^{\lambda}=s\left(x\left(x^{\prime}\right)\right)\left(\operatorname{det}\left(\frac{\partial x}{\partial x^{\prime}}\right)\right)^{\lambda}\left|D x^{\prime}\right|^{\lambda} .
$$

Recall densities

A density of the weight λ on (super)manifold $M-s(x)|D x|^{\lambda}$. Under a change of coordinates it is multiplied by the λ-th power of the Jacobian of the coordinate transformation:

$$
s(x)|D x|^{\lambda}=s\left(x\left(x^{\prime}\right)\right)\left|\frac{D x}{D x^{\prime}}\right|^{\lambda}\left|D x^{\prime}\right|^{\lambda}=s\left(x\left(x^{\prime}\right)\right)\left(\operatorname{det}\left(\frac{\partial x}{\partial x^{\prime}}\right)\right)^{\lambda}\left|D x^{\prime}\right|^{\lambda} .
$$

$$
\left|\frac{D x}{D x^{\prime}}\right|=\operatorname{det} \frac{\partial x}{\partial x^{\prime}}
$$

Recall densities

A density of the weight λ on (super)manifold $M-s(x)|D x|^{\lambda}$. Under a change of coordinates it is multiplied by the λ-th power of the Jacobian of the coordinate transformation:

$$
s(x)|D x|^{\lambda}=s\left(x\left(x^{\prime}\right)\right)\left|\frac{D x}{D x^{\prime}}\right|^{\lambda}\left|D x^{\prime}\right|^{\lambda}=s\left(x\left(x^{\prime}\right)\right)\left(\operatorname{det}\left(\frac{\partial x}{\partial x^{\prime}}\right)\right)^{\lambda}\left|D x^{\prime}\right|^{\lambda}
$$

$$
\left|\frac{D x}{D x^{\prime}}\right|=\operatorname{det} \frac{\partial x}{\partial x^{\prime}} \quad \text { it is for usual manifolds }
$$

Recall densities

A density of the weight λ on (super)manifold $M-s(x)|D x|^{\lambda}$. Under a change of coordinates it is multiplied by the λ-th power of the Jacobian of the coordinate transformation:

$$
s(x)|D x|^{\lambda}=s\left(x\left(x^{\prime}\right)\right)\left|\frac{D x}{D x^{\prime}}\right|^{\lambda}\left|D x^{\prime}\right|^{\lambda}=s\left(x\left(x^{\prime}\right)\right)\left(\operatorname{det}\left(\frac{\partial x}{\partial x^{\prime}}\right)\right)^{\lambda}\left|D x^{\prime}\right|^{\lambda} .
$$

$$
\left|\frac{D x}{D x^{\prime}}\right|=\operatorname{det} \frac{\partial x}{\partial x^{\prime}} \quad \text { it is for usual manifolds }
$$

For supermanifolds $x \mapsto(x, \theta), x^{\prime} \mapsto\left(x^{\prime}, \theta^{\prime}\right)$

$$
\left|\frac{D(x, \theta)}{D\left(x^{\prime}, \theta^{\prime}\right)}\right|=\operatorname{Ber} \frac{\partial(x, \theta)}{\partial\left(x^{\prime}, \theta^{\prime}\right)}=\frac{\operatorname{det}\left(\frac{\partial x}{\partial x^{\prime}}-\frac{\partial \theta}{\partial x^{\prime}}\left(\frac{\partial \theta}{\partial \theta^{\prime}}\right)^{-1} \frac{\partial x}{\partial \theta^{\prime}}\right)}{\operatorname{det}\left(\frac{\partial \theta}{\partial \theta^{\prime}}\right)}
$$

Examples of densities

Density of weight $\lambda=0$ is a usual scalar function.
Density of weight $\lambda=1$ is a volume form.
Wave function ψ is a density of weight $\lambda=\frac{1}{2}$ (semidensity):

$$
\Psi(x) \sqrt{D x}=\Psi\left(x\left(x^{\prime}\right)\right) \sqrt{\operatorname{det}\left(\frac{\partial x}{\partial x^{\prime}}\right)} \sqrt{D x^{\prime}}
$$

Examples of densities

Density of weight $\lambda=0$ is a usual scalar function.
Density of weight $\lambda=1$ is a volume form.
Wave function ψ is a density of weight $\lambda=\frac{1}{2}$ (semidensity):

$$
\Psi(x) \sqrt{D x}=\Psi\left(x\left(x^{\prime}\right)\right) \sqrt{\operatorname{det}\left(\frac{\partial x}{\partial x^{\prime}}\right)} \sqrt{D x^{\prime}}
$$

or in supercase:
$\Psi(x, \theta) \sqrt{D(x, \theta)}=\Psi\left(x\left(x^{\prime}, \theta^{\prime}\right), \theta\left(x^{\prime}, \theta^{\prime}\right)\right) \sqrt{\operatorname{Ber} \frac{\partial(x, \theta)}{\partial\left(x^{\prime}, \theta^{\prime}\right)}} \sqrt{D\left(x^{\prime}, \theta^{\prime}\right)}$

Examples of densities

Density of weight $\lambda=0$ is a usual scalar function.
Density of weight $\lambda=1$ is a volume form.
Wave function Ψ is a density of weight $\lambda=\frac{1}{2}$ (semidensity):

$$
\Psi(x) \sqrt{D x}=\Psi\left(x\left(x^{\prime}\right)\right) \sqrt{\operatorname{det}\left(\frac{\partial x}{\partial x^{\prime}}\right)} \sqrt{D x^{\prime}}
$$

or in supercase:
$\psi(x, \theta) \sqrt{D(x, \theta)}=\Psi\left(x\left(x^{\prime}, \theta^{\prime}\right), \theta\left(x^{\prime}, \theta^{\prime}\right)\right) \sqrt{\operatorname{Ber} \frac{\partial(x, \theta)}{\partial\left(x^{\prime}, \theta^{\prime}\right)}} \sqrt{D\left(x^{\prime}, \theta^{\prime}\right)}$
Remark We suppose that (super)manifold is orientable and the orientation is chosen; Jacobians of all coordinate transformations are positive.

Sturm-Liouville operator on densities of chosen weights

$\mathscr{F}_{\lambda}(M)=\{$ space of densities of the weight λ on manifold $M\}$

Sturm-Liouville operator on densities of chosen weights

$\mathscr{F}_{\lambda}(M)=\{$ space of densities of the weight λ on manifold $M\}$
Let $M=\mathbf{R}$. Consider the second order operator
$\Delta: \mathscr{F}_{-\frac{1}{2}}(\mathbf{R}) \rightarrow \mathscr{F}_{+\frac{3}{2}}(\mathbf{R})$ such that

$$
\Delta\left(\Psi(x)|D x|^{-\frac{1}{2}}\right)=\left(\frac{\partial^{2} \Psi(x)}{\partial x^{2}}+U(x) \Psi(x)\right)|D x|^{+\frac{3}{2}}
$$

Δ is Sturm-Lioville operator of the weight 2 :

$$
\Delta=|D x|^{2}\left(\frac{\partial^{2}}{\partial x^{2}}+U(x)\right) .
$$

Sturm-Liouville operator on densities of chosen weights

$\mathscr{F}_{\lambda}(M)=\{$ space of densities of the weight λ on manifold $M\}$
Let $M=\mathbf{R}$. Consider the second order operator
$\Delta: \mathscr{F}_{-\frac{1}{2}}(\mathbf{R}) \rightarrow \mathscr{F}_{+\frac{3}{2}}(\mathbf{R})$ such that

$$
\Delta\left(\Psi(x)|D x|^{-\frac{1}{2}}\right)=\left(\frac{\partial^{2} \Psi(x)}{\partial x^{2}}+U(x) \Psi(x)\right)|D x|^{+\frac{3}{2}}
$$

Δ is Sturm-Lioville operator of the weight 2 :

$$
\Delta=|D x|^{2}\left(\frac{\partial^{2}}{\partial x^{2}}+U(x)\right)
$$

Why this operator?

Sturm-Liouville operator on densities of chosen weights

$\mathscr{F}_{\lambda}(M)=\{$ space of densities of the weight λ on manifold $M\}$
Let $M=\mathbf{R}$. Consider the second order operator
$\Delta: \mathscr{F}_{-\frac{1}{2}}(\mathbf{R}) \rightarrow \mathscr{F}_{+\frac{3}{2}}(\mathbf{R})$ such that

$$
\Delta\left(\Psi(x)|D x|^{-\frac{1}{2}}\right)=\left(\frac{\partial^{2} \Psi(x)}{\partial x^{2}}+U(x) \Psi(x)\right)|D x|^{+\frac{3}{2}}
$$

Δ is Sturm-Lioville operator of the weight 2 :

$$
\Delta=|D x|^{2}\left(\frac{\partial^{2}}{\partial x^{2}}+U(x)\right)
$$

Why this operator? Why so strange choice of weights?

Transformation of the operator Δ under diffeomorphism of \mathbf{R}

Consider $f: y=y(x)$ (with $y_{x}>0$). We come to $\Delta^{(f)}=f^{*} \circ \Delta \circ\left(f^{-1}\right)^{*}$ such that

$$
\Delta^{(f)}\left(\Psi(x)|D x|^{-\frac{1}{2}}\right)=\left[\left(\frac{\partial^{2}}{\partial y^{2}}+U(y)\right)\left(\Psi(x(y))\left|\frac{\partial x}{\partial y}\right|^{-\frac{1}{2}}\right)|D y|^{\frac{3}{2}}\right]_{y=f(x)}
$$

Transformation of the operator Δ under diffeomorphism of \mathbf{R}

Consider $f: y=y(x)$ (with $y_{x}>0$). We come to $\Delta^{(f)}=f^{*} \circ \Delta \circ\left(f^{-1}\right)^{*}$ such that
$\Delta^{(f)}\left(\Psi(x)|D x|^{-\frac{1}{2}}\right)=\left[\left(\frac{\partial^{2}}{\partial y^{2}}+U(y)\right)\left(\Psi(x(y))\left|\frac{\partial x}{\partial y}\right|^{-\frac{1}{2}}\right)|D y|^{\frac{3}{2}}\right]_{y=f(x)}$

$$
\left(\left(\Psi x_{y}^{-\frac{1}{2}}\right)_{y y}+U \Psi x_{y}^{-\frac{1}{2}}\right) y_{x}^{3 / 2}|D x|^{\frac{3}{2}}=
$$

Transformation of the operator Δ under diffeomorphism of \mathbf{R}

Consider $f: y=y(x)$ (with $y_{x}>0$). We come to $\Delta^{(f)}=f^{*} \circ \Delta \circ\left(f^{-1}\right)^{*}$ such that

$$
\begin{aligned}
& \Delta^{(f)}\left(\Psi(x)|D x|^{-\frac{1}{2}}\right)=\left[\left(\frac{\partial^{2}}{\partial y^{2}}+U(y)\right)\left(\Psi(x(y))\left|\frac{\partial x}{\partial y}\right|^{-\frac{1}{2}}\right)|D y|^{\frac{3}{2}}\right]_{y=f(x)} \\
&\left(\left(\Psi x_{y}^{-\frac{1}{2}}\right)_{y y}+U \Psi x_{y}^{-\frac{1}{2}}\right) y_{x}^{3 / 2}|D x|^{\frac{3}{2}}= \\
&=\left[\Psi_{x x}+(U\right. \\
& {\left[\begin{array}{l}
\text { U }
\end{array}\right.} \\
&
\end{aligned}
$$

Transformation of the operator Δ under diffeomorphism of \mathbf{R}

Consider $f: y=y(x)$ (with $y_{x}>0$). We come to
$\Delta^{(f)}=f^{*} \circ \Delta \circ\left(f^{-1}\right)^{*}$ such that
$\Delta^{(f)}\left(\Psi(x)|D x|^{-\frac{1}{2}}\right)=\left[\left(\frac{\partial^{2}}{\partial y^{2}}+U(y)\right)\left(\Psi(x(y))\left|\frac{\partial x}{\partial y}\right|^{-\frac{1}{2}}\right)|D y|^{\frac{3}{2}}\right]_{y=f(x)}$
$\left(\left(\Psi x_{y}^{-\frac{1}{2}}\right)_{y y}+U \Psi x_{y}^{-\frac{1}{2}}\right) y_{x}^{3 / 2}|D x|^{\frac{3}{2}}=$
$=[\Psi_{x x}+(U-\frac{1}{2} \underbrace{\left(\frac{x_{y y y}}{x_{y}}-\frac{3 x_{y y}^{2}}{2 x_{y}^{2}}\right)}_{\text {Schwarzian derivative of } y(x)}) y_{x}^{2}]|D x|^{\frac{3}{2}}$

Comparison of operators Δ and Δ^{f}.

We see that for a diffeomorphism $f: y=f(x)$

$$
\Delta^{(f)}=|D x|^{2} \frac{\partial^{2}}{\partial x^{2}}+|D x|^{2} U^{(f)}(x)
$$

where $|D x|^{2} U^{(f)}(x)=\left[|D y|^{2}\left(U(y)-\frac{1}{2} \mathscr{S}\left(f^{-1}\right)\right)\right]_{y=f(x)}$.
The difference of second order operators is a scalar operator:

$$
\Delta^{(f)}-\Delta=\left[|D y|^{2}\left(U(y)-\frac{1}{2} \mathscr{S}\left(f^{-1}\right)\right)\right]_{y=f(x)}-|D x|^{2} U(x)
$$

In particular if $U(x)=0$ then

$$
\Delta^{(f)}-\Delta=-\frac{1}{2} \mathscr{S}\left(f^{-1}\right)|D y|^{2}=-\frac{1}{2}\left(\frac{x_{y y y}}{x_{y}}-\frac{3}{2}\left(\frac{x_{y y}}{x_{y}}\right)^{2}\right)|D y|^{2}
$$

at $y=f(x)$.

Cobounbdary in a wider space=non-trivial cocycle in the space

Schwarzian derivative is a coboundary in the space of second order operators. This coboundary is an operator of zeroth order-it is an operator of multiplication on a density of weight 2.. It is a cocycle in the space of densities.

Cobounbdary in a wider space=non-trivial cocycle in the space

Schwarzian derivative is a coboundary in the space of second order operators. This coboundary is an operator of zeroth order-it is an operator of multiplication on a density of weight 2.. It is a cocycle in the space of densities.

This cocycle cannot be represented as a coboundary of density.
$\underbrace{-\frac{1}{2}\left(\frac{x_{y y y}}{x_{y}}-\frac{3}{2}\left(\frac{x_{y y}}{x_{y}}\right)^{2}\right)|D y|^{2}}_{\text {depends on 3-rd derivatives }}=\Delta^{(f)}-\Delta \neq \underbrace{S^{(f)}-S}_{\text {depends on derivatives } \leq 1}$

Schwarzian - cohomology

Schwarzian derivative $\mathscr{S}(f)$ is a non-trivial cocycle of the group of diffeomorphisms of RP ${ }^{1}$ acting on the space of densitites of the weight 2 , which vanishes on projective transformations. These conditions define the Schwarzian uniquely (up to a constant multiplier).

Schwarzian - cohomology

Schwarzian derivative $\mathscr{S}(f)$ is a non-trivial cocycle of the group of diffeomorphisms of $\mathbf{R P}^{1}$ acting on the space of densitites of the weight 2 , which vanishes on projective transformations. These conditions define the Schwarzian uniquely (up to a constant multiplier).

Theorem

$$
H^{1}\left(\operatorname{Diff}\left(\mathbf{R P}^{1}\right), \mathscr{F}_{\lambda}\right)=\left\{\begin{array}{l}
\mathbf{R} \text { if } \lambda=0,1,2 \\
0 \text { otherwise }
\end{array}\right.
$$

$\lambda=0, c_{0}=\log x_{y}$. It vanishes for Euclidean transformations $y=x+c$.
$\lambda=1, c_{1}=\frac{x_{y y}}{x_{y}}|D y|$. It vanishes for affine transformations $y=a x+b$.
$\lambda=2, c_{2}=\left(\frac{x_{y y y}}{x_{y}}-\frac{3}{2}\left(\frac{x_{y y}}{x_{y}}\right)^{2}\right)|D y|^{2}$. It vanishes for proj. transf. $y=\frac{a x+b}{c x+d}$.

Fine tuning of weights of densities

We come to beautiful results considering

$$
\mathscr{F}_{\lambda} \xrightarrow{\Delta=\frac{\partial^{2}}{\partial x^{2}}} \mathscr{F}_{\mu} \text { for } \lambda=-\frac{1}{2}, \mu=+\frac{3}{2}
$$

$$
\left\{\begin{array}{l}
\mu-\lambda=2 \\
\mu+\lambda=1
\end{array}\right.
$$

Fine tuning of weights of densities

We come to beautiful results considering

$$
\begin{gathered}
\mathscr{F} \lambda \stackrel{\Delta=\frac{\partial^{2}}{\partial x^{2}}}{\longrightarrow} \mu \text { for } \lambda=-\frac{1}{2}, \mu=+\frac{3}{2} \\
\left\{\begin{array}{l}
\mu-\lambda=2 \\
\mu+\lambda=1
\end{array}\right. \\
\text { under an arbitrary diffeomorph. }\left\{\begin{array}{l}
\frac{\partial^{2}}{\partial x^{2}} \rightarrow \frac{\partial^{2}}{\partial x^{2}}+\ldots \\
\text { term } \ldots \frac{\partial}{\partial x} \text { does not appear }
\end{array}\right.
\end{gathered}
$$

Fine tuning of weights of densities

We come to beautiful results considering

$$
\begin{gathered}
\mathscr{F}_{\lambda} \stackrel{\Delta=\frac{\partial^{2}}{\partial x^{2}}}{\mathscr{F}_{\mu}} \mu \text { for } \lambda=-\frac{1}{2}, \mu=+\frac{3}{2} \\
\left\{\begin{array}{l}
\mu-\lambda=2 \\
\mu+\lambda=1
\end{array}\right. \\
\text { under an arbitrary diffeomorph. }\left\{\begin{array}{l}
\frac{\partial^{2}}{\partial x^{2}} \rightarrow \frac{\partial^{2}}{\partial x^{2}}+\ldots \\
\text { term } \ldots \frac{\partial}{\partial x} \text { does not appear }
\end{array}\right.
\end{gathered}
$$

We come to $\lambda=-\frac{1}{2}, \mu=+\frac{3}{2}$.

Fine tuning of weights of densities

We come to beautiful results considering

$$
\begin{gathered}
\mathscr{F}_{\lambda} \stackrel{\Delta=\frac{\partial^{2}}{\partial x^{2}}}{\mathscr{F}_{\mu}} \mu \text { for } \lambda=-\frac{1}{2}, \mu=+\frac{3}{2} \\
\left\{\begin{array}{l}
\mu-\lambda=2 \\
\mu+\lambda=1
\end{array}\right. \\
\text { under an arbitrary diffeomorph. }\left\{\begin{array}{l}
\frac{\partial^{2}}{\partial x^{2}} \rightarrow \frac{\partial^{2}}{\partial x^{2}}+\ldots \\
\text { term } \ldots \frac{\partial}{\partial x} \text { does not appear }
\end{array}\right.
\end{gathered}
$$

We come to $\lambda=-\frac{1}{2}, \mu=+\frac{3}{2}$.
Try to shine some light on these constructions.

Algebra of densities

Consider the space of all densities on a (super)manifold M :

$$
\begin{gathered}
\mathscr{F}=\oplus_{\lambda} \mathscr{F} \lambda(M) \\
\mathscr{F} \ni \Psi=\Psi_{\lambda_{1}}|D x|^{\lambda_{1}}+\Psi_{\lambda_{2}}|D x|^{\lambda_{2}}+\cdots+\Psi_{\lambda_{k}}|D x|^{\lambda_{k}} .
\end{gathered}
$$

Algebra of densities

Consider the space of all densities on a (super)manifold M :

$$
\begin{gathered}
\mathscr{F}=\oplus_{\lambda} \mathscr{F} \lambda(M) \\
\mathscr{F} \ni \psi=\Psi_{\lambda_{1}}|D x|^{\lambda_{1}}+\Psi_{\lambda_{2}}|D x|^{\lambda_{2}}+\cdots+\Psi_{\lambda_{k}}|D x|^{\lambda_{k}}
\end{gathered}
$$

The vector space $\mathscr{F}(M)$ is a commutative algebra with respect to natural multiplication

$$
\Psi_{\lambda_{1}}|D x|^{\lambda_{1}} \cdot \Psi_{\lambda_{2}}|D x|^{\lambda_{2}}=\Psi_{\lambda_{1}} \Psi_{\lambda_{2}}|D x|^{\lambda_{1}+\lambda_{2}} .
$$

Canonical scalar product in the algebra of densities. Density $\Psi(x)|D x|$ of the weight $\sigma=1$ is an invariant object of integration over manifold: If under changing of coordinates $\Psi(x)|D x|=\widetilde{\Psi}\left(x^{\prime}\right)\left|D x^{\prime}\right|$ then
$\int \Psi(x)|D x|=$
We come to

Definition

Let $\mathbf{s}_{1}=s_{1}(x)|D x|^{\lambda_{1}}$ and $\mathbf{s}_{2}=s_{2}(x)|D x|^{\lambda_{2}}$ be two densities of weights λ_{1}, λ_{2}. Then

$$
\left\langle\mathbf{s}_{1}, \mathbf{s}_{1}\right\rangle=\left\{\begin{array}{ll}
\int s_{1}(x) s_{2}(x)|D x| & \text { if } \lambda_{1}+\lambda_{2}=1 \\
0 & \text { if } \lambda_{1}+\lambda_{2} \neq 1
\end{array} .\right.
$$

Useful symbolic notation

$s(x)|D x|^{\lambda} \leftrightarrow s(x) t^{\lambda}$.
Density $\Psi(x, t)=\sum \Psi_{k}(x) t^{\lambda_{k}} \leftrightarrow \sum \Psi_{k}(x)|D x|^{\lambda_{k}}$

$$
\langle a(x, t), b(x, t)\rangle=\int_{M} \operatorname{Res}\left(\frac{a(x, t) b(x, t)}{t^{2}}\right) D x
$$

Differential operators on densities

Differential operators $D=D\left(x, t, \frac{\partial}{\partial x}, \frac{\partial}{\partial t}\right)$ act on algebra \mathscr{F} of densities.
Examples.
Weight operator: $\hat{w}=t \frac{\partial}{\partial t} \cdot t \frac{\partial}{\partial t}\left(a(x) t^{\lambda}\right)=\lambda a(x) t^{\lambda}$.
Differentiation of algebra \mathscr{F}.

$$
\hat{A}=t^{\delta}\left(A^{a}(x) \partial_{a}+A_{0} \hat{w}\right) .(\text { Vector field of the weight } \delta)
$$

$\hat{A}\left(\Psi(x)|D x|^{\lambda}\right)=t^{\delta}\left(\left(A^{a}(x) \partial_{a}+A_{0} \hat{w}\right)\left(\Psi t^{\lambda}\right)=t^{\lambda+\delta}\left(A^{a} \partial_{a} \Psi+\lambda A_{0} \psi\right)\right.$.
Let \mathbf{X} be a vector field on M :

$$
L_{x}\left(\Psi|D x|^{\lambda}\right)=\left(X^{a} \partial_{a} \Psi+\lambda \partial_{a} X^{a} \Psi\right)
$$

It defines the vector field

$$
\mathscr{L} \mathbf{x}=X^{a} \partial_{a}+\partial_{a} X^{a} t \frac{\partial}{\partial t}=X^{a} \partial_{a}+\partial_{a} X^{a} \hat{W} \quad \text { on algebra } \mathscr{F} .
$$

Self-adjoint operators

Examples of adjoints
$\partial_{a}^{+}=-\partial_{a}, t^{+}=t,\left(\frac{\partial}{\partial t}\right)^{+}=-\frac{\partial}{\partial t}+\frac{2}{t}, \hat{w}^{+}=1-\hat{w}$.
n-th order operator A is self-adjoint (anti-self-adjoint) if

$$
A^{+}=(-1)^{n} A
$$

Self-adjoint operators

Examples of adjoints
$\partial_{a}^{+}=-\partial_{a}, t^{+}=t,\left(\frac{\partial}{\partial t}\right)^{+}=-\frac{\partial}{\partial t}+\frac{2}{t}, \hat{w}^{+}=1-\hat{w}$.
n-th order operator A is self-adjoint (anti-self-adjoint) if

$$
A^{+}=(-1)^{n} A
$$

Example: Lie derivative anti-self-adjoint operator:

$$
\left(\mathscr{L}_{\mathbf{X}}\right)^{+}=\left(X^{a} \partial_{a}+\partial_{a} X^{a} \hat{w}\right)=-\partial_{a} X^{a}-X^{a} \partial_{a}+(1-\hat{w}) \partial_{a} X^{a}=-\mathscr{L}_{\mathbf{X}}
$$

Self-adjoint operators

Examples of adjoints
$\partial_{a}^{+}=-\partial_{a}, t^{+}=t,\left(\frac{\partial}{\partial t}\right)^{+}=-\frac{\partial}{\partial t}+\frac{2}{t}, \hat{w}^{+}=1-\hat{w}$.
n-th order operator A is self-adjoint (anti-self-adjoint) if

$$
A^{+}=(-1)^{n} A
$$

Example: Lie derivative anti-self-adjoint operator:

$$
\left(\mathscr{L}_{\mathbf{X}}\right)^{+}=\left(X^{a} \partial_{a}+\partial_{a} X^{a} \hat{w}\right)=-\partial_{a} X^{a}-X^{a} \partial_{a}+(1-\hat{w}) \partial_{a} X^{a}=-\mathscr{L}_{\mathbf{X}}
$$

This means that $\mathscr{L}_{\mathbf{X}}$ is divergence-less field.
$\operatorname{div} \hat{A}=-\left(\hat{A}+\hat{A^{+}}\right)=t^{\delta}\left(\partial_{a} A^{a}+(\delta-1) A_{0}\right)$ for vector field
$\hat{A}=t^{\delta}\left(A^{a} \partial_{a}+A_{0} \hat{W}\right) . \operatorname{div} \mathscr{L}_{\mathbf{X}}=0$.
$n=1$. First order operators on $\mathscr{F}(M)$.
Simple but important observation:
Let M be an arbitrary (orientable) (super)manifold.
Anti-self-adjoint first order operator of the weight δ on algebra of densities $\mathscr{F}(M)$ has the following appearance

$$
\hat{A}=t^{\delta}\left(A^{a} \partial_{a}+\frac{\partial_{a} A^{a} \hat{w}}{1-\delta}\right)
$$

$n=1$. First order operators on $\mathscr{F}(M)$.
Simple but important observation:
Let M be an arbitrary (orientable) (super)manifold.
Anti-self-adjoint first order operator of the weight δ on algebra of densities $\mathscr{F}(M)$ has the following appearance

$$
\hat{A}=t^{\delta}\left(A^{a} \partial_{a}+\frac{\partial_{a} A^{a} \hat{W}}{1-\delta}\right)
$$

It defines the pencil $\left\{\hat{A}_{\lambda}\right\}$ of operators on spaces \mathscr{F}_{λ} :

$$
\hat{A}_{\lambda}=\left.\hat{A}\right|_{\mathscr{F}_{\lambda}}=\hat{A}=t^{\delta}\left(A^{a} \partial_{a}+\frac{\lambda \partial_{a} A^{a}}{1-\delta}\right), \lambda \in \mathbf{R} .
$$

If $\delta=0$ then the operators \hat{A}_{λ} of this pencil are just usual Lie derivatives of densities of weight λ :

$$
\hat{A}_{\lambda}=\left.L_{\mathbf{A}}\right|_{\mathscr{F}_{\lambda}}=A^{a} \partial_{a}+\lambda \partial_{a} A^{a} .
$$

Two important cases

We consider two examples.

1. Self-adjoint second order operator on algebra of densities $\mathscr{F}(M)$ on an arbitrary (super)manifold M and corresponding pencil of second order operators on spaces $\mathscr{F}_{\lambda}(M)$. (T.T.Voronov, H.M.Kh., 2003.).
2. (Anti)-self-adjoint n-th order operator on algebra of densities $\mathscr{F}(\mathbf{R})$ on the real line \mathbf{R} and corresponding pencil of second order operators on spaces $\mathscr{F}_{\lambda}(\mathbf{R})$.
(A.M.Biggs, H.M.Kh., 2011.).

Two important cases

We consider two examples.

1. Self-adjoint second order operator on algebra of densities $\mathscr{F}(M)$ on an arbitrary (super)manifold M and corresponding pencil of second order operators on spaces $\mathscr{F}_{\lambda}(M)$. (T.T.Voronov, H.M.Kh., 2003.).
2. (Anti)-self-adjoint n-th order operator on algebra of densities $\mathscr{F}(\mathbf{R})$ on the real line \mathbf{R} and corresponding pencil of second order operators on spaces $\mathscr{F}_{\lambda}(\mathbf{R})$. (A.M.Biggs, H.M.Kh., 2011.).

This is a principal result

Recalling: connection on densities

$$
\nabla: \nabla_{\mathbf{x}}\left(\Psi|D x|^{\lambda}\right)=\partial_{\mathbf{x}} \Psi|D x|^{\lambda}+\lambda \Psi|D x|^{\lambda-1} \partial_{\mathbf{x}}|D x|=X^{a}\left(\partial_{a} \Psi+\lambda \Gamma_{a} \Psi|D x|^{\lambda}\right.
$$

Γ_{a} are "Cristoffel" symbols of connection: $\Gamma_{a}|D x|=\nabla_{\partial_{a}}|D x|$.
Under changing of coordinates $x^{a}=x^{a}\left(x^{a^{\prime}}\right)$

$$
\Gamma_{a^{\prime}}=\frac{\partial x^{a}}{\partial x^{a^{\prime}}}\left(\Gamma_{a}+\partial_{a}\left(\left|\frac{D x^{\prime}}{D x}\right|\right)\right), \quad\left|\frac{D x^{\prime}}{D x}\right|=\operatorname{det}\left(\frac{\partial x^{a^{\prime}}}{\partial x^{a}}\right) .
$$

Recalling: connection on densities

$$
\nabla: \nabla_{\mathbf{x}}\left(\Psi|D x|^{\lambda}\right)=\partial_{\mathbf{x}} \Psi|D x|^{\lambda}+\lambda \Psi|D x|^{\lambda-1} \partial_{\mathbf{x}}|D x|=X^{a}\left(\partial_{a} \Psi+\lambda \Gamma_{a} \Psi|D x|^{\lambda}\right.
$$

Γ_{a} are "Cristoffel" symbols of connection: $\Gamma_{a}|D x|=\nabla_{\partial_{a}}|D x|$.
Under changing of coordinates $x^{a}=x^{a}\left(x^{a^{\prime}}\right)$

$$
\Gamma_{a^{\prime}}=\frac{\partial x^{a}}{\partial x^{a^{\prime}}}\left(\Gamma_{a}+\partial_{a}\left(\left|\frac{D x^{\prime}}{D x}\right|\right)\right), \quad\left|\frac{D x^{\prime}}{D x}\right|=\operatorname{det}\left(\frac{\partial x^{a^{\prime}}}{\partial x^{a}}\right) .
$$

Basic examples of connection

1. An arbitrary volume form $\mathbf{s}=\rho(x)|D x|$ defines a connection

$$
\nabla_{\mathbf{X}}^{(\rho)}\left(\Psi(x)|D x|^{\lambda}\right)=\mathbf{s}^{\lambda} \partial_{\mathbf{X}}\left(\frac{\Psi(x)|D x|^{\lambda}}{\mathbf{s}^{\lambda}}\right)=X^{a}\left(\partial_{a} \Psi+\Gamma_{a} \psi\right),
$$

with $\Gamma_{a}=-\partial_{a} \log \rho$.
2. An arbitrary affine connection with Christoffel symbols $\left\{\Gamma_{b c}^{a}\right\}$ define connection on densitites ∇ such that $\nabla_{\partial_{a}}|D x|=\Gamma_{a}|D x|$ with $\Gamma=-\Gamma_{a b}^{b}$:
-Two self-adjoint operators and corresponding pencils.

Second order self-adjoint operator on $\mathscr{F}(M)$

Theorem

Let Δ be a second order operator on $\mathscr{F}(M)$ of the weight δ such that $\Delta^{+}=\Delta$ and $\Delta 1=0$. Then

$$
\begin{aligned}
& \Delta=\frac{t^{\delta}}{2}\left(S^{a b} \partial_{b} \partial_{a}+\left(\partial_{b} S^{b a}(-1)^{p(b)(p(\varepsilon)+1)}(2 \hat{w}+\delta-1) \Gamma^{a}\right) \partial_{a}\right) \\
& +\frac{t^{\delta}}{2}\left(\hat{w} \partial_{a} \Gamma^{a}(-1)^{p(a)(p(\varepsilon)+1)}+\hat{w}(\hat{w}+\delta-1) \theta\right),(\text { T.Voronov, H.Kh., 2003) }
\end{aligned}
$$

Second order self-adjoint operator on $\mathscr{F}(M)$

Theorem

Let Δ be a second order operator on $\mathscr{F}(M)$ of the weight δ such that $\Delta^{+}=\Delta$ and $\Delta 1=0$. Then

$$
\begin{aligned}
& \Delta=\frac{t^{\delta}}{2}\left(S^{a b} \partial_{b} \partial_{a}+\left(\partial_{b} S^{b a}(-1)^{p(b)(p(\varepsilon)+1)}(2 \hat{w}+\delta-1) \Gamma^{a}\right) \partial_{a}\right) \\
& +\frac{t^{\delta}}{2}\left(\hat{w} \partial_{a} \Gamma^{a}(-1)^{p(a)(p(\varepsilon)+1)}+\hat{w}(\hat{w}+\delta-1) \theta\right),(\text { T.Voronov, H.Kh., 2003) }
\end{aligned}
$$

where $p(a)$ is a parity of coordinate $x^{a}, p(\varepsilon)$ a parity of Δ,

Second order self-adjoint operator on $\mathscr{F}(M)$

Theorem

Let Δ be a second order operator on $\mathscr{F}(M)$ of the weight δ such that $\Delta^{+}=\Delta$ and $\Delta 1=0$. Then

$$
\begin{aligned}
& \Delta=\frac{t^{\delta}}{2}\left(S^{a b} \partial_{b} \partial_{a}+\left(\partial_{b} S^{b a}(-1)^{p(b)(p(\varepsilon)+1)}(2 \hat{w}+\delta-1) \Gamma^{a}\right) \partial_{a}\right) \\
& +\frac{t^{\delta}}{2}\left(\hat{w} \partial_{a} \Gamma^{a}(-1)^{p(a)(p(\varepsilon)+1)}+\hat{w}(\hat{w}+\delta-1) \theta\right),(\text { T.Voronov, H.Kh., 2003) }
\end{aligned}
$$

where $p(a)$ is a parity of coordinate $x^{a}, p(\varepsilon)$ a parity of Δ, $S^{a b}(x) t^{\delta}=S^{a b}(x)|D x|^{\delta}$ is symmetric tensor field \otimes density of weight δ,

Second order self-adjoint operator on $\mathscr{F}(M)$

Theorem

Let Δ be a second order operator on $\mathscr{F}(M)$ of the weight δ such that $\Delta^{+}=\Delta$ and $\Delta 1=0$. Then

$$
\begin{aligned}
& \Delta=\frac{t^{\delta}}{2}\left(S^{a b} \partial_{b} \partial_{a}+\left(\partial_{b} S^{b a}(-1)^{p(b)(p(\varepsilon)+1)}(2 \hat{w}+\delta-1) \Gamma^{a}\right) \partial_{a}\right) \\
& +\frac{t^{\delta}}{2}\left(\hat{w} \partial_{a} \Gamma^{a}(-1)^{p(a)(p(\varepsilon)+1)}+\hat{w}(\hat{w}+\delta-1) \theta\right),(\text { T.Voronov, H.Kh., 2003) }
\end{aligned}
$$

where $p(a)$ is a parity of coordinate $x^{a}, p(\varepsilon)$ a parity of Δ, $S^{a b}(x) t^{\delta}=S^{a b}(x)|D x|^{\delta}$ is symmetric tensor field \otimes density of weight δ, $\Gamma^{a}|D x|^{\delta}$ is an upper connection \otimes density of weight δ It transform as $S^{a b}(x)|D x|^{\delta} \Gamma_{b}$

Second order self-adjoint operator on $\mathscr{F}(M)$

Theorem

Let Δ be a second order operator on $\mathscr{F}(M)$ of the weight δ such that $\Delta^{+}=\Delta$ and $\Delta 1=0$. Then

$$
\begin{aligned}
& \Delta=\frac{t^{\delta}}{2}\left(S^{a b} \partial_{b} \partial_{a}+\left(\partial_{b} S^{b a}(-1)^{p(b)(p(\varepsilon)+1)}(2 \hat{w}+\delta-1) \Gamma^{a}\right) \partial_{a}\right) \\
& +\frac{t^{\delta}}{2}\left(\hat{w} \partial_{a} \Gamma^{a}(-1)^{p(a)(p(\varepsilon)+1)}+\hat{w}(\hat{w}+\delta-1) \theta\right),(\text { T.Voronov, H.Kh., 2003) }
\end{aligned}
$$

where $p(a)$ is a parity of coordinate $x^{a}, p(\varepsilon)$ a parity of Δ, $S^{a b}(x) t^{\delta}=S^{a b}(x)|D x|^{\delta}$ is symmetric tensor field \otimes density of weight δ, $\Gamma^{a}|D x|^{\delta}$ is an upper connection \otimes density of weight δ It transform as $S^{a b}(x)|D x|^{\delta} \Gamma_{b}$
θ is a Brans-Dicke type "scalar" density. It transforms as $\Gamma_{a} S^{a b}(x)|D x|_{\underline{\underline{\delta}}}^{\delta} \Gamma_{b}$.

The special case

Consider the above operator in the case if the weight $\delta=0$ and the principal symbol $S^{a b}$ is invertible. Then
$\Delta=\frac{1}{2}\left(S^{a b} \partial_{b} \partial_{a}+\left(\partial_{b} S^{b a}+(2 \hat{w}-1) \Gamma^{a}\right) \partial_{a}+\hat{w} \partial_{a} \Gamma^{a}+\hat{w}(\hat{w}-1) \theta\right)$
where Γ_{a} is a connection on densities, $\left(S^{a b} \Gamma_{b}=\Gamma^{a}\right)$ and
$\theta=\Gamma^{a} \Gamma_{a}$ (we omit here terms (-1) ${ }^{\prime}$)
-Two self-adjoint operators and corresponding pencils.

Pencil of Laplacians on $\mathscr{F}_{\lambda}(M)$

The above operator defines the pencil: $\lambda \in \mathbf{R}, \Delta_{\lambda}=\left.\Delta\right|_{\mathscr{F}_{\lambda}}=$

$$
\frac{1}{2}\left(S^{a b} \partial_{b} \partial_{a}+\left(\partial_{b} S^{b a}+(2 \lambda-1) \Gamma^{a}\right) \partial_{a}+\lambda \partial_{a} \Gamma^{a}+\lambda(\lambda-1) \Gamma^{a} \Gamma_{a}\right)
$$

Remark The pencil possesses the singular points, the weights $\lambda=0, \frac{1}{2}, 1$. The weight $\lambda=\frac{1}{2}$ is of the most interest.

n-th order operator on densities on \mathbf{R}

Proposition. Let L be n-th order operator of the weight δ on the algebra $\mathscr{F}(\mathbf{R})$ such that $L^{+}=(-1)^{n} L$. Then $L=t^{\delta} s \frac{\partial}{\partial x^{n}}+$
$t^{\delta}\left(\frac{n}{2}\left(s_{x}+2 s \Gamma \hat{w}_{n+\delta}\right) \frac{\partial}{\partial x^{n-1}}+\frac{n(n-1)}{2}\left((s \Gamma)_{x}+s\left(\Gamma^{2}+\tau\right) \hat{w}_{n+\delta}\right) \hat{w}_{n+\delta} \frac{\partial}{\partial x^{n-2}}+\right)$
$t^{\delta} \frac{n(n-1)}{2}\left(\frac{n-2}{6} s_{x} \Gamma-\frac{n+1+3 \delta}{6} s \Gamma_{x}-\frac{n+1+3 \delta(\delta+1)}{12} s \Gamma^{2}+s \sigma\right) \frac{\partial}{\partial x^{n-2}}+\ldots$,
where $\hat{w}_{s}=\hat{w}+\frac{s-1}{2}$. Here $s=s(x)|D x|^{\delta-n}$ is a density of weight
$\delta-n$,
$\tau(x)|D x|^{2}, \sigma(x)|D x|^{2}$ are densities of weight 2,
Γ is a connection
(In a dimension 1, $\Gamma=-\partial_{x}(\log \rho)$ for a volume form $\left.\rho(x) d x\right)$
(A.Biggs, H,Kh. (2011).)
-Two self-adjoint operators and corresponding pencils.

Special case $\delta=n$

We put $s=1, \tau=\sigma=0$ and come to

$$
\begin{gathered}
K_{n}=t^{n}\left(\frac{\partial}{\partial x^{n}}+n \Gamma \hat{w}_{n} \frac{\partial}{\partial x^{n-1}}+\frac{n(n-1)}{2}\left(\Gamma_{x}+\Gamma^{2} \hat{w}_{n}\right) \hat{w}_{n} \frac{\partial}{\partial x^{n-2}}+\right) \\
-t^{n} \frac{n(n-1)(n+1)}{12}\left(\Gamma_{x}+\frac{1}{2} \Gamma^{2}\right) \frac{\partial}{\partial x^{n-2}}+\ldots
\end{gathered}
$$

where $\hat{w}_{n}=\hat{w}+\frac{n-1}{2},\left.\hat{w}_{n}\right|_{\mathscr{F}_{\lambda}}=\lambda+\frac{n-1}{2}$:
$\hat{w}_{n}\left(\Psi(x)|D x|^{\lambda}\right)=\left(t \frac{\partial}{\partial t}+\frac{n-1}{2}\right)\left(\Psi(x) t^{\lambda}\right)=\left(\lambda+\frac{n-1}{2}\right) \Psi(x)|D x|^{\lambda}$

Example of n-th order operator

Consider $D=|D x|\left(\frac{\partial}{\partial x}+\hat{w} \Gamma\right)$. It is anti-self-adjoint operator ${ }^{1}$:

$$
D^{+}=\left(t\left(\frac{\partial}{\partial x}+\hat{w} \Gamma\right)\right)^{+}=-\left(t\left(\frac{\partial}{\partial x}+\hat{w} \Gamma\right)\right), \quad(t=|D x|)
$$

${ }^{1}$ It is similar to de Rham differential: $\left.D\right|_{\mathscr{F}_{\lambda}}=\frac{1}{\mathbf{s}^{\lambda}}|D x| \frac{\partial}{\partial x} \mathbf{s}^{\lambda}$, where $\mathbf{s}=\rho(x)|D x|$ is such that $\Gamma=-\partial_{x}(\log \rho)$.

Example of n-th order operator

Consider $D=|D x|\left(\frac{\partial}{\partial x}+\hat{w} \Gamma\right)$. It is anti-self-adjoint operator ${ }^{1}$:

$$
\begin{aligned}
D^{+}= & \left(t\left(\frac{\partial}{\partial x}+\hat{w} \Gamma\right)\right)^{+}=-\left(t\left(\frac{\partial}{\partial x}+\hat{w} \Gamma\right)\right), \quad(t=|D x|) \\
D^{n}==t^{n} & \left(\frac{\partial}{\partial x^{n}}+n \Gamma \hat{w}_{n} \frac{\partial}{\partial x^{n-1}}+\frac{n(n-1)}{2}\left(\Gamma_{x}+\Gamma^{2} \hat{w}_{n}\right) \hat{w}_{n} \frac{\partial}{\partial x^{n-2}}+\right) \\
& -t^{n} \frac{n(n-1)(n+1)}{12}\left(\Gamma_{x}+\frac{1}{2} \Gamma^{2}\right) \frac{\partial}{\partial x^{n-2}}+\ldots
\end{aligned}
$$

${ }^{1}$ It is similar to de Rham differential: $\left.D\right|_{\mathscr{F}_{\lambda}}=\frac{1}{\mathbf{s}^{\lambda}}|D x| \frac{\partial}{\partial x} \mathbf{s}^{\lambda}$, where $\mathbf{s}=\rho(x)|D x|$ is such that $\Gamma=-\partial_{x}(\log \rho)$.
-Two self-adjoint operators and corresponding pencils.

Pencil of operators on $\mathscr{F}(\mathbf{R})$

The operator K_{n} defines the pencil:

$$
\begin{gathered}
\lambda \in \mathbf{R}, \Delta_{\lambda}=\left.\Delta\right|_{\mathscr{F}_{\lambda}}=\Delta\left(\hat{w}_{n}=\hat{W}+\frac{n-1}{2} \rightarrow \lambda_{n}=\lambda+\frac{n-1}{2}\right)= \\
t^{n}\left(\frac{\partial}{\partial x^{n}}+n \Gamma \lambda_{n} \frac{\partial}{\partial x^{n-1}}+\frac{n(n-1)}{2}\left(\Gamma_{x}+\Gamma^{2} \lambda_{n}\right) \lambda_{n} \frac{\partial}{\partial x^{n-2}}+\right) \\
-t^{n} \frac{n(n-1)(n+1)}{12}\left(\Gamma_{x}+\frac{1}{2} \Gamma^{2}\right) \frac{\partial}{\partial x^{n-2}}+\ldots
\end{gathered}
$$

Pencil of operators on $\mathscr{F}(\mathbf{R})$

The operator K_{n} defines the pencil:

$$
\begin{gathered}
\lambda \in \mathbf{R}, \Delta_{\lambda}=\left.\Delta\right|_{\mathscr{F}_{\lambda}}=\Delta\left(\hat{w}_{n}=\hat{w}+\frac{n-1}{2} \rightarrow \lambda_{n}=\lambda+\frac{n-1}{2}\right)= \\
t^{n}\left(\frac{\partial}{\partial x^{n}}+n \Gamma \lambda_{n} \frac{\partial}{\partial x^{n-1}}+\frac{n(n-1)}{2}\left(\Gamma_{x}+\Gamma^{2} \lambda_{n}\right) \lambda_{n} \frac{\partial}{\partial x^{n-2}}+\right) \\
-t^{n} \frac{n(n-1)(n+1)}{12}\left(\Gamma_{x}+\frac{1}{2} \Gamma^{2}\right) \frac{\partial}{\partial x^{n-2}}+\ldots
\end{gathered}
$$

This pencil possesses a singular point $\lambda_{n}=0$, i.e. $\lambda=\frac{1-n}{2}$.

Pencil of operators on $\mathscr{F}(\mathbf{R})$: its singular point

The operator K_{n} defines the pencil:

$$
\begin{gathered}
\lambda \in \mathbf{R}, \Delta_{\lambda}=\left.\Delta\right|_{\mathscr{F} \lambda}=\Delta\left(\hat{w}_{n}=\hat{W}+\frac{n-1}{2} \rightarrow \lambda_{n}=\lambda+\frac{n-1}{2}\right)= \\
t^{n}\left(\frac{\partial}{\partial x^{n}}+n \Gamma \lambda_{n} \frac{\partial}{\partial x^{n-1}}+\frac{n(n-1)}{2}\left(\Gamma_{x}+\Gamma^{2} \lambda_{n}\right) \lambda_{n} \frac{\partial}{\partial x^{n-2}}+\right) \\
-t^{n} \frac{n(n-1)(n+1)}{12}\left(\Gamma_{x}+\frac{1}{2} \Gamma^{2}\right) \frac{\partial}{\partial x^{n-2}}+\ldots
\end{gathered}
$$

This pencil possesses a singular point $\lambda_{n}=0$, i.e. $\lambda=\frac{1-n}{2}$.
-Two self-adjoint operators and corresponding pencils.

Singular point of the pencil: $\lambda=\frac{1-n}{2}$

$$
\begin{aligned}
\lambda_{n} & =0 \Rightarrow \lambda=\frac{1-n}{2}, \quad \Delta_{\frac{1-n}{2}}: \mathscr{F}_{\frac{1-n}{2}} \rightarrow \mathscr{F}_{\frac{1-n}{2}+n}=\mathscr{F}_{\frac{1+n}{2}} \\
\Delta_{\frac{1-n}{2}} & =t^{n}\left(\frac{\partial}{\partial x^{n}}-\frac{n(n-1)(n+1)}{12}\left(\Gamma_{x}+\frac{1}{2} \Gamma^{2}\right) \frac{\partial}{\partial x^{n-2}}+\ldots\right)
\end{aligned}
$$

-Two self-adjoint operators and corresponding pencils.

Singular point of the pencil: $\lambda=\frac{1-n}{2}$

$$
\begin{aligned}
\lambda_{n} & =0 \Rightarrow \lambda=\frac{1-n}{2}, \quad \Delta_{\frac{1-n}{2}}: \mathscr{F}_{\frac{1-n}{2}} \rightarrow \mathscr{F}_{\frac{1-n}{2}+n}=\mathscr{F}_{\frac{1+n}{2}} \\
\Delta_{\frac{1-n}{2}} & =t^{n}\left(\frac{\partial}{\partial x^{n}}-\frac{n(n-1)(n+1)}{12}\left(\Gamma_{x}+\frac{1}{2} \Gamma^{2}\right) \frac{\partial}{\partial x^{n-2}}+\ldots\right)
\end{aligned}
$$

For $n=2$

$$
\Delta_{-\frac{1}{2}}: \mathscr{F}_{-\frac{1}{2}} \rightarrow \mathscr{F}_{\frac{3}{2}}
$$

Singular point of the pencil: $\lambda=\frac{1-n}{2}$

$$
\begin{aligned}
\lambda_{n} & =0 \Rightarrow \lambda=\frac{1-n}{2}, \quad \Delta_{\frac{1-n}{2}}: \mathscr{F}_{\frac{1-n}{2}} \rightarrow \mathscr{F}_{\frac{1-n}{2}+n}=\mathscr{F}_{\frac{1+n}{2}} \\
\Delta_{\frac{1-n}{2}} & =t^{n}\left(\frac{\partial}{\partial x^{n}}-\frac{n(n-1)(n+1)}{12}\left(\Gamma_{x}+\frac{1}{2} \Gamma^{2}\right) \frac{\partial}{\partial x^{n-2}}+\ldots\right)
\end{aligned}
$$

For $n=2$

$$
\Delta_{-\frac{1}{2}}: \mathscr{F}_{-\frac{1}{2}} \rightarrow \mathscr{F}_{\frac{3}{2}}
$$

$$
\Delta_{-\frac{1}{2}}=t^{2}\left(\frac{\partial}{\partial x^{2}}-\frac{1}{2}\left(\Gamma_{x}+\frac{1}{2} \Gamma^{2}\right)\right)=|D x|^{2}\left(\frac{\partial}{\partial x^{2}}-\frac{1}{2}\left(\Gamma_{x}+\frac{1}{2} \Gamma^{2}\right)\right)
$$

LTwo self-adjoint operators and corresponding pencils.

Sturm-Liouville operator

Compare it with the latter Sturm-Liouville operator

$$
\Delta=|D x|^{2}\left(\frac{\partial^{2}}{\partial x^{2}}+U(x)\right)=|D x|^{2}\left(\frac{\partial}{\partial x^{2}}-\frac{1}{2}\left(\Gamma_{x}+\frac{1}{2} \Gamma^{2}\right)\right) .
$$

$\Delta: \quad \mathscr{F}_{-\frac{1}{2}} \rightarrow \mathscr{F}_{\frac{3}{2}}$.
-Two self-adjoint operators and corresponding pencils.

Sturm-Liouville operator

Compare it with the latter Sturm-Liouville operator

$$
\Delta=|D x|^{2}\left(\frac{\partial^{2}}{\partial x^{2}}+U(x)\right)=|D x|^{2}\left(\frac{\partial}{\partial x^{2}}-\frac{1}{2}\left(\Gamma_{x}+\frac{1}{2} \Gamma^{2}\right)\right) .
$$

$\Delta: \quad \mathscr{F}_{-\frac{1}{2}} \rightarrow \mathscr{F}_{\frac{3}{2}}$. Potential $U(x)|D x|^{2}$ is a function of connection

$$
-U(x)|D x|^{2}=\mathbf{U}_{\Gamma}=\frac{1}{2}\left(\Gamma_{x}+\frac{1}{2} \Gamma^{2}\right)|D x|^{2}
$$

Sturm-Liouville operator

Compare it with the latter Sturm-Liouville operator

$$
\Delta=|D x|^{2}\left(\frac{\partial^{2}}{\partial x^{2}}+U(x)\right)=|D x|^{2}\left(\frac{\partial}{\partial x^{2}}-\frac{1}{2}\left(\Gamma_{x}+\frac{1}{2} \Gamma^{2}\right)\right) .
$$

$\Delta: \quad \mathscr{F}_{-\frac{1}{2}} \rightarrow \mathscr{F}_{\frac{3}{2}}$. Potential $U(x)|D x|^{2}$ is a function of connection

$$
-U(x)|D x|^{2}=U_{\Gamma}=\frac{1}{2}\left(\Gamma_{x}+\frac{1}{2} \Gamma^{2}\right)|D x|^{2} .
$$

Remark Since $n=1$ one can always choose a volume form ρ such that
$\Gamma=-\partial_{x} \log \rho$. Respectively one can always choose a coordinate x such that $\rho=1, \Gamma=0$ and $\mathbf{U}_{\Gamma}=0$ in this coordinate.

Variation of connection, "potential" U, and Δ under diffeomorphism

For diffeomorphism $f=y(x)$

$$
\Gamma^{(f)}(x)|D x|=\Gamma(y)\left|D y \|_{y=y(x)}+y_{x} \partial_{y} \log x_{y}\right| D x \mid,
$$

respectively

$$
\begin{gathered}
\Delta^{(f)}-\Delta=-\frac{1}{2}\left(U_{\Gamma(f)}-\mathbf{U}_{\Gamma}\right)= \\
U_{\Gamma}(y(x))|D y|^{2}-U_{\Gamma}(x)|D x|^{2}+\underbrace{\left(\frac{x_{y y y}}{x_{y}}-\frac{3}{2} \frac{x_{y y}^{2}}{x_{y}^{2}}\right)|D y|^{2}}_{\text {Schwarzian } \mathscr{S}\left(f^{-1}\right)}
\end{gathered}
$$

at $y=y(x)$.

Variation of connection, "potential" U, and Δ under diffeomorphism

For diffeomorphism $f=y(x)$

$$
\Gamma^{(f)}(x)|D x|=\Gamma(y)|D y| \|_{y=y(x)}+y_{x} \partial_{y} \log x_{y}|D x|,
$$

respectively

$$
\begin{gathered}
\Delta^{(f)}-\Delta=-\frac{1}{2}\left(\mathbf{U}_{\Gamma^{(f)}}-\mathbf{U}_{\Gamma}\right)= \\
U_{\Gamma}(y(x))|D y|^{2}-U_{\Gamma}(x)|D x|^{2}+\underbrace{\left(\frac{x_{y y y}}{x_{y}}-\frac{3}{2} \frac{x_{y y}^{2}}{x_{y}^{2}}\right)|D y|^{2}}_{\text {Schwarzian } \mathscr{S}\left(f^{-1}\right)}
\end{gathered}
$$

at $y=y(x)$.
If in coordinate $x, \Gamma=0$, then $U=0$ and $\Delta^{(f)}-\Delta=\mathscr{S}\left(f^{-1}\right)|D y|^{2}$.
-Two self-adjoint operators and corresponding pencils.

Variation of potential under changing of connection

Difference of connections is a (co)vector $\Gamma^{\prime}-\Gamma=\mathbf{X}$.
For $n=1 \Gamma^{\prime}(x)|D x|-\Gamma(x)|D x|=X|D x|$.

LTwo self-adjoint operators and corresponding pencils.

Variation of potential under changing of connection

Difference of connections is a (co)vector $\Gamma^{\prime}-\Gamma=\mathbf{X}$.
For $n=1 \Gamma^{\prime}(x)|D x|-\Gamma(x)|D x|=X|D x| . \quad \mathbf{U}_{\Gamma^{f}}-\mathbf{U}_{\Gamma}=$

$$
\frac{1}{2}\left(\Gamma_{x}^{\prime}+\frac{1}{2}\left(\Gamma^{\prime}\right)^{2}\right)-\frac{1}{2}\left(\Gamma_{x}+\frac{1}{2} \Gamma^{2}\right)
$$

-Two self-adjoint operators and corresponding pencils.

Variation of potential under changing of connection

Difference of connections is a (co)vector $\Gamma^{\prime}-\Gamma=\mathbf{X}$.
For $n=1 \Gamma^{\prime}(x)|D x|-\Gamma(x)|D x|=X|D x| . \mathbf{U}_{\Gamma^{f}}-\mathbf{U}_{\Gamma}=$

$$
\begin{aligned}
& \frac{1}{2}\left(\Gamma_{x}^{\prime}+\frac{1}{2}\left(\Gamma^{\prime}\right)^{2}\right)-\frac{1}{2}\left(\Gamma_{x}+\frac{1}{2} \Gamma^{2}\right)=\frac{1}{2}(\Gamma+X)_{x}+\frac{1}{4}(\Gamma+X)^{2}- \\
& \frac{1}{2}\left(\Gamma_{x}+\frac{1}{2} \Gamma^{2}\right)=\frac{1}{2}\left(X_{x}+\Gamma X\right)+\frac{1}{4} X^{2}=
\end{aligned}
$$

-Two self-adjoint operators and corresponding pencils.

Variation of potential under changing of connection

Difference of connections is a (co)vector $\Gamma^{\prime}-\Gamma=\mathbf{X}$.
For $n=1 \Gamma^{\prime}(x)|D x|-\Gamma(x)|D x|=X|D x| . \mathbf{U}_{\Gamma^{f}}-\mathbf{U}_{\Gamma}=$

$$
\begin{gathered}
\frac{1}{2}\left(\Gamma_{x}^{\prime}+\frac{1}{2}\left(\Gamma^{\prime}\right)^{2}\right)-\frac{1}{2}\left(\Gamma_{x}+\frac{1}{2} \Gamma^{2}\right)=\frac{1}{2}(\Gamma+X)_{x}+\frac{1}{4}(\Gamma+X)^{2}- \\
\frac{1}{2}\left(\Gamma_{x}+\frac{1}{2} \Gamma^{2}\right)=\frac{1}{2}\left(X_{x}+\Gamma X\right)+\frac{1}{4} X^{2}=\frac{1}{2}\left(\operatorname{div} X+\frac{1}{2} X^{2}\right) .
\end{gathered}
$$

Variation of potential under changing of connection

Difference of connections is a (co)vector $\Gamma^{\prime}-\Gamma=\mathbf{X}$.
For $n=1 \Gamma^{\prime}(x)|D x|-\Gamma(x)|D x|=X|D x| . \mathbf{U}_{\Gamma^{f}}-\mathbf{U}_{\Gamma}=$

$$
\begin{gathered}
\frac{1}{2}\left(\Gamma_{x}^{\prime}+\frac{1}{2}\left(\Gamma^{\prime}\right)^{2}\right)-\frac{1}{2}\left(\Gamma_{x}+\frac{1}{2} \Gamma^{2}\right)=\frac{1}{2}(\Gamma+X)_{x}+\frac{1}{4}(\Gamma+X)^{2}- \\
\frac{1}{2}\left(\Gamma_{x}+\frac{1}{2} \Gamma^{2}\right)=\frac{1}{2}\left(X_{x}+\Gamma X\right)+\frac{1}{4} X^{2}=\frac{1}{2}\left(\operatorname{div} X+\frac{1}{2} X^{2}\right) .
\end{gathered}
$$

Changing of connection \approx diffeomorphism:

$$
\Gamma^{\prime}=\Gamma+\mathbf{X} \leftrightarrow \exists f: \Gamma^{\prime}-\Gamma^{(f)}
$$

$$
\operatorname{div} \mathbf{X}+\frac{1}{2} \mathbf{X}^{2}=\left.\left(U_{\Gamma}(y)|D y|+\mathscr{S}\left(f^{-1}\right)|D y|\right)\right|_{y=f(x)}-U_{\Gamma}(x)|D x|
$$

Calculations.

Let x be a coordinate such that $\Gamma=0$ in this coordinate. If $\Gamma^{\prime}=\Gamma^{(f)}$, where $f=y(x)$ then

$$
\Gamma^{\prime}|D x|=X|D x|=y_{x} \partial_{y} \log x_{y}=-\partial_{x} \log y_{x}|D x|, X=-\partial_{x} \log y_{x}
$$

$$
\begin{aligned}
\operatorname{div} \mathbf{X}+\frac{1}{2} \mathbf{X}^{2} & =0 \leftrightarrow \frac{\partial X(x)}{\partial x}+\frac{1}{2} X^{2}=0 \leftrightarrow X(x)=\frac{2}{C+x} \\
X(x) & =-\partial_{x} \log y_{x}=\frac{2}{C+x} \leftrightarrow y_{x}=\frac{K}{(c+x)^{2}}
\end{aligned}
$$

$$
y(x)=\frac{a x+b}{c x+d} \text { projective transformation. }
$$

Laplacian on semidensity

Return to the pencil of second order operators on arbitrary supermanifold

$$
\Delta_{\lambda}=\frac{1}{2}\left(S^{a b} \partial_{b} \partial_{a}+\left(\partial_{b} S^{b a}+(2 \lambda-1) \Gamma^{a}\right) \partial_{a}+\lambda \partial_{a} \Gamma^{a}+\lambda(\lambda-1) \Gamma^{a} \Gamma_{a}\right)
$$

Laplacian on semidensity

Return to the pencil of second order operators on arbitrary supermanifold
$\Delta_{\lambda}=\frac{1}{2}\left(S^{a b} \partial_{b} \partial_{a}+\left(\partial_{b} S^{b a}+(2 \lambda-1) \Gamma^{a}\right) \partial_{a}+\lambda \partial_{a} \Gamma^{a}+\lambda(\lambda-1) \Gamma^{a} \Gamma_{a}\right)$
For the singular point $\lambda=\frac{1}{2}$ we have a laplacian

$$
\Delta_{1 / 2}=\frac{1}{2}\left(S^{a b} \partial_{b} \partial_{a}+\partial_{b} S^{b a} \partial_{a}+\frac{1}{2} \partial_{a} \Gamma^{a}-\frac{1}{4} \Gamma^{a} \Gamma_{a}\right)
$$

acting on semidensities $\Delta_{1 / 2}: \mathscr{F}_{1 / 2}(M) \rightarrow \mathscr{F}_{1 / 2}(M)$.

LTwo self-adjoint operators and corresponding pencils.

Laplacian on semidensities

Let M be an odd symplectic supermanifold equipped with non-degenerate Poisson bracket (anti-bracket)
$\Omega^{a b}:\left\{z^{a}, z^{b}\right\}=\Omega^{a b}$.

Laplacian on semidensities

Let M be an odd symplectic supermanifold equipped with non-degenerate Poisson bracket (anti-bracket)
$\Omega^{a b}:\left\{z^{a}, z^{b}\right\}=\Omega^{a b}$.
Consider laplacian $\Delta_{1 / 2}$ on semidensities with principal symbol $S^{a b}=(-1)^{a} \Omega^{a b}$.

Laplacian on semidensities

Let M be an odd symplectic supermanifold equipped with non-degenerate Poisson bracket (anti-bracket)
$\Omega^{a b}:\left\{z^{a}, z^{b}\right\}=\Omega^{a b}$.
Consider laplacian $\Delta_{1 / 2}$ on semidensities with principal symbol $S^{a b}=(-1)^{a} \Omega^{a b}$.
In Darboux coordinates $z^{A}=\left\{x^{i}, \theta_{j}\right\}\left(x^{i}\right.$ are even, θ_{j} are odd and $\left\{x^{i}, \theta_{j}\right\}=\delta_{j}^{i},\left\{x^{i}, x^{j}\right\}=\left\{\theta_{i}, \theta_{j}\right\}=0$. Laplacian on semidensities has the following appearance:

$$
\begin{gathered}
\Delta_{1 / 2}=\frac{1}{2}\left(S^{a b} \partial_{b} \partial_{a}+\partial_{b} S^{b a} \partial_{a}+\frac{1}{2} \partial_{a} \Gamma^{a}-\frac{1}{4} \Gamma^{a} \Gamma_{a}\right)= \\
\frac{\partial^{2}}{\partial x^{i} \partial \theta_{i}}+\frac{1}{4} \partial_{a} \Gamma^{a}-\frac{1}{8} \Gamma^{a} \Gamma_{a}=\frac{\partial^{2}}{\partial x^{i} \partial \theta_{i}}+U_{\Gamma}(x, \theta) .
\end{gathered}
$$

LTwo self-adjoint operators and corresponding pencils.

Changing of Laplacian under changing of connection

Difference of two connections is a vector field: $\Gamma^{\prime}-\Gamma=\mathbf{X}$.
Consider cocycle $C_{\Gamma}(\mathbf{X})=\Delta_{\Gamma^{\prime}}-\Delta_{\Gamma}$ for $\Gamma^{\prime}=\Gamma+\mathbf{X}$.

Changing of Laplacian under changing of connection

Difference of two connections is a vector field: $\Gamma^{\prime}-\Gamma=\mathbf{X}$.
Consider cocycle $C_{\Gamma}(\mathbf{X})=\Delta_{\Gamma^{\prime}}-\Delta_{\Gamma}$ for $\Gamma^{\prime}=\Gamma+\mathbf{X}$.

$$
\begin{gathered}
C_{\Gamma}(\mathbf{X})=\Delta_{\Gamma^{\prime}}-\Delta_{\Gamma}=\left(U_{\Gamma^{\prime}}-U_{\Gamma}\right)=\frac{1}{4}\left(\partial_{a} \Gamma^{\prime a}-\partial_{a} \Gamma^{a}\right)- \\
\frac{1}{8}\left(\Gamma_{a}^{\prime} \Gamma^{\prime} a-\Gamma_{a} \Gamma^{a}\right)=\frac{1}{4} \partial_{a} \mathbf{X}^{a}-\frac{1}{4} \Gamma_{a} X^{a}-\frac{1}{8} \mathbf{X}^{2}= \\
\frac{1}{4}\left(\operatorname{div}_{\Gamma} \mathbf{X}-\frac{1}{2} \mathbf{X}^{2}\right)
\end{gathered}
$$

(T.Voronov, H.Kh. 2003)

Useful anzats

Let \mathbf{X} be a Hamiltonian vector field: $X_{a}=\frac{\partial F}{\partial x^{a}},\left(\mathbf{X}^{a}=\Omega^{a b} X_{b}\right)$. Suppose for simplicity that $\Gamma=0$ in given Darboux coordinates. Then

$$
\begin{gathered}
C_{\Gamma}(\mathbf{X})=\Delta_{\Gamma^{\prime}}-\Delta_{\Gamma}=\frac{1}{4}\left(\operatorname{div}_{\Gamma} \mathbf{X}-\frac{1}{2} \mathbf{X}^{2}\right)= \\
\frac{1}{2} \frac{\partial^{2}}{\partial x^{i} \partial \theta_{i}} F-\frac{1}{4}\{F, F\}=-e^{F / 2} \frac{\partial^{2}}{\partial x^{i} \partial \theta_{i}} e^{-F / 2}
\end{gathered}
$$

Useful anzats

Let \mathbf{X} be a Hamiltonian vector field: $X_{a}=\frac{\partial F}{\partial x^{a}},\left(\mathbf{X}^{a}=\Omega^{a b} X_{b}\right)$. Suppose for simplicity that $\Gamma=0$ in given Darboux coordinates. Then

$$
\begin{gathered}
C_{\Gamma}(\mathbf{X})=\Delta_{\Gamma^{\prime}}-\Delta_{\Gamma}=\frac{1}{4}\left(\operatorname{div}_{\Gamma} \mathbf{X}-\frac{1}{2} \mathbf{X}^{2}\right)= \\
\frac{1}{2} \frac{\partial^{2}}{\partial x^{i} \partial \theta_{i}} F-\frac{1}{4}\{F, F\}=-e^{F / 2} \frac{\partial^{2}}{\partial x^{i} \partial \theta_{i}} e^{-F / 2}
\end{gathered}
$$

Consider two examples

Action of canonical transformation on Laplacian

Let $f: z^{\prime}=z^{\prime}(z)$ be an arbitrary symplectomorphism of M (i.e. diffeomorphism which preserves Darboux coordinates): $z=(x, \theta) \rightarrow z^{\prime}=\left(x^{\prime}, \theta^{\prime}\right)$. Principal symbol does not change.

Action of canonical transformation on Laplacian

Let $f: z^{\prime}=z^{\prime}(z)$ be an arbitrary symplectomorphism of M (i.e. diffeomorphism which preserves Darboux coordinates): $z=(x, \theta) \rightarrow z^{\prime}=\left(x^{\prime}, \theta^{\prime}\right)$. Principal symbol does not change.

Changing of connection: $\Gamma_{a}^{\prime}=\Gamma_{a}^{(f)}=\frac{\partial z^{a^{\prime}}}{\partial z^{a}}\left(\Gamma_{a}+\partial_{a^{\prime}} \log \frac{\partial z}{\partial z^{\prime}}\right)$.
Hence $X_{a}=-\partial_{a} \log J$ where $J=\operatorname{Ber} \frac{\partial\left(x^{\prime}, \theta^{\prime}\right)}{\partial(x, \theta)}$.
If $\Gamma=0$ in Darboux coordinates (x, θ) then

$$
c_{\Gamma}(\mathbf{X})=\Delta_{\Gamma^{f}}-\Delta_{\Gamma}=\frac{1}{4}\left(\operatorname{div}_{\Gamma} \mathbf{X}-\frac{1}{2} \mathbf{X}^{2}\right)=-\frac{1}{\sqrt{J}} \frac{\partial^{2}}{\partial x^{i} \partial \theta_{i}} \sqrt{J}
$$

Cocycle $c_{\Gamma}(\mathbf{X})$ vanishes due to the Batalin-Vilkovisky identity (1981):
$\frac{\partial^{2}}{\partial x^{\prime} \partial \theta_{i}} \sqrt{J}=\frac{\partial^{2}}{\partial x^{\prime} \partial \theta_{i}} \sqrt{\operatorname{Ber} \frac{\partial\left(x^{\prime}, \theta^{\prime}\right)}{\partial(x, \theta)}}=0$.

Canonical operator on semidensities

We see that cocycle $c_{\Gamma}(\mathbf{X})=\Delta_{\Gamma}^{(f)}-\Delta_{\Gamma}\left(\mathbf{X}=\Gamma^{(f)}-\Gamma\right)$ vanishes for an rbitrary symplectomorphism if $\Gamma=0$ in some Darboux coordinates.
Thus we come to canonical operator on semidensities

$$
\Delta=\frac{\partial^{2}}{\partial x^{i} \partial \theta_{i}}
$$

(H.Kh. 1999)

Changing of connection induced by changing of volume form

Let $\Gamma=0$ in given Darboux coordinates and let Γ^{\prime} be a flat connection induced by arbitrary volume form $\rho(z)|D z|$:

$$
\Gamma_{a}^{\prime}=-\partial_{a} \log \rho(z) .
$$

Changing of connection induced by changing of volume form

Let $\Gamma=0$ in given Darboux coordinates and let Γ^{\prime} be a flat connection induced by arbitrary volume form $\rho(z)|D z|$:

$$
\Gamma_{a}^{\prime}=-\partial_{a} \log \rho(z) .
$$

Then using the anzats we have

$$
C_{\Gamma}(\mathbf{X})=\Delta_{\Gamma^{\prime}}-\Delta_{\Gamma}=\frac{1}{4}\left(\operatorname{div}_{\Gamma} \mathbf{X}-\frac{1}{2} \mathbf{X}^{2}\right)=-\frac{1}{\sqrt{\rho}} \frac{\partial^{2}}{\partial x^{i} \partial \theta^{i}} \sqrt{\rho}
$$

The cocycle $C_{\Gamma}(\mathbf{X})$ vanishes $\Leftrightarrow \frac{\partial^{2}}{\partial x^{\prime} \partial \theta^{\prime}} \sqrt{\rho}=0$, i.e. Batalin-Vilkovisky equation for $\rho=e^{S}$ is obeyed. \Leftrightarrow There exists symplectomorphism f such that $\Gamma^{\prime}=\Gamma^{(f)}$.

LTwo self-adjoint operators and corresponding pencils.

Comparison

R
Odd symplectic supermanifold.
-Two self-adjoint operators and corresponding pencils.

Comparison

R
$\Delta_{\Gamma}=\frac{\partial^{2}}{\partial x^{2}}-\frac{1}{2}\left(\Gamma^{\prime}+\frac{1}{2} \Gamma^{2}\right)$

Odd symplectic supermanifold.
$\Delta_{\Gamma}=\frac{\partial^{2}}{\partial x^{i} \partial \theta_{i}}+\frac{1}{4}\left(\partial \Gamma-\frac{1}{2} \Gamma^{2}\right)$

LTwo self-adjoint operators and corresponding pencils.

Comparison

R

$$
\begin{aligned}
\Delta_{\Gamma}= & \frac{\partial^{2}}{\partial x^{2}}-\frac{1}{2}\left(\Gamma^{\prime}+\frac{1}{2} \Gamma^{2}\right) \\
& \mathscr{F}_{-1 / 2} \rightarrow \mathscr{F}_{+3 / 2}
\end{aligned}
$$

Odd symplectic supermanifold.

$$
\begin{gathered}
\Delta_{\Gamma}=\frac{\partial^{2}}{\partial x^{i} \partial \theta_{i}}+\frac{1}{4}\left(\partial \Gamma-\frac{1}{2} \Gamma^{2}\right) \\
\mathscr{F}_{1 / 2} \rightarrow \mathscr{F}_{1 / 2}
\end{gathered}
$$

-Two self-adjoint operators and corresponding pencils.

Comparison

R

$$
\begin{array}{cr}
\text { R } & \text { Odd symplectic supermanifold. } \\
\Delta_{\Gamma}=\frac{\partial^{2}}{\partial x^{2}}-\frac{1}{2}\left(\Gamma^{\prime}+\frac{1}{2} \Gamma^{2}\right) & \Delta_{\Gamma}=\frac{\partial^{2}}{\partial x^{i} \partial \theta_{i}}+\frac{1}{4}\left(\partial \Gamma-\frac{1}{2} \Gamma^{2}\right) \\
\mathscr{F}_{-1 / 2} \rightarrow \mathscr{F}_{+3 / 2} & \mathscr{F}_{1 / 2} \rightarrow \mathscr{F}_{1 / 2} \\
c_{\Gamma}(\mathbf{X})=\Delta_{\Gamma^{\prime}}-\Delta_{\Gamma} \text { where } \Gamma^{\prime}-\Gamma=\mathbf{X} \\
c_{\Gamma}(\mathbf{X})=-\frac{1}{2} \operatorname{div}_{\Gamma} \mathbf{X}-\frac{1}{4} \mathbf{X}^{2} & c_{\Gamma}(\mathbf{X})=\frac{1}{4} \operatorname{div}_{\Gamma} \mathbf{X}-\frac{1}{8} \mathbf{X}^{2}
\end{array}
$$

Comparison

R
$\Delta_{\Gamma}=\frac{\partial^{2}}{\partial x^{2}}-\frac{1}{2}\left(\Gamma^{\prime}+\frac{1}{2} \Gamma^{2}\right)$
$\mathscr{F}_{-1 / 2} \rightarrow \mathscr{F}_{+3 / 2}$
$c_{\Gamma}(\mathbf{X})=\Delta_{\Gamma^{\prime}}-\Delta_{\Gamma}$ where $\Gamma^{\prime}-\Gamma=\mathbf{X}$
$c_{\Gamma}(\mathbf{X})=-\frac{1}{2} \operatorname{div}_{\Gamma} \mathbf{X}-\frac{1}{4} \mathbf{X}^{2}$
$c_{\Gamma}(\mathbf{X})$ is a Schwarzian. It vanishes
iff the new connection Γ^{\prime} is such that $\Gamma^{\prime}=\Gamma^{(f)}$ where f is a projective transformation

Odd symplectic supermanifold.

$$
\begin{gathered}
\Delta_{\Gamma}=\frac{\partial^{2}}{\partial x^{i} \partial \theta_{i}}+\frac{1}{4}\left(\partial \Gamma-\frac{1}{2} \Gamma^{2}\right) \\
\mathscr{F}_{1 / 2} \rightarrow \mathscr{F}_{1 / 2}
\end{gathered}
$$

$$
c_{\Gamma}(\mathbf{X})=\frac{1}{4} \operatorname{div}_{\Gamma} \mathbf{X}-\frac{1}{8} \mathbf{X}^{2}
$$

$c_{\Gamma}(\mathbf{X})$ is Batalin-Vilkovisky operator. It vanishes if the new connection Γ^{\prime} is such that $\Gamma^{\prime}=\Gamma^{(f)}$ where f is a symplectomorphism.

References

I.A.Batalin, G.A Vilkovisky. Gauge algebra and quantization. Phys.Lett., 102B (1981), 27-31.
O.M. Khudaverdian, A.P. Nersessian.

On Geometry of Batalin-Vilkovisky Formalism. Mod. Phys. Lett. A, v. 8 (1993), No. 25, p. 2377-2385.
A.S. Schwarz. Geometry of Batalin Vilkovsiky formalism.

Comm.Math.Phys., 155, (1993), no.2, 249-260.
H.M. Khudaverdian Semidensities on odd symplectic supermanifold., Comm. Math. Phys., v. 247 (2004), pp. 353-390 (Preprint of Max-Planck-Institut für Mathematik, MPI-135 (1999), Bonn.)
H.M. Khudaverdian, T.Voronov On odd Laplace operators. II. In Amer. Math. Soc. Transl. (2), Vol. 212, 2004, pp.179-205

