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... of Batalin-Vilkovisky formalism

Abstracts

Abstract...
The aim of this talk is to explain how the Batalin-Vilkvosiky (BV)
formalism follows from the basic principles of field theory and
geometry.
To obtain the partition function of the theory one needs to
integrate the exponent of action functional over all fields. If a
Lagrangian is degenerate (like for gauge theories), then by
integrating exponent of the action first over symmetries one
arrives to the integral of a non-local measure functional over the
’surface’ defined in the space of fields by gauge conditions. In
order to make this functional local one needs to expand the
space of fields by ghosts. One comes finally to a gauge
independent local action in the space of fields and ghosts. This
is the famous ’Fadeev-Popov trick’ which in particular works for
Yang-Mills gauge theory.
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Abstracts

...Abstract...

One can consider the surface of gauge conditions as a
Lagrangian surface in the symplectic space of fields and
anti-fields provided with the canoncial odd symplectic structure.
In this case the measure functional over the surface of gauge
conditions becomes half-density, the master-half-density, in this
symplectic space. The gauge-independence can be formulated
as a condition of vanishing of this master-half-density under the
action of the canonical odd Laplacian. This is the complete
describtion of the BV quantum master equation. The initial
action and symmetries of the theory are boundary conditions
which define this master half-density.
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Abstracts

...Abstract

Such a formulation is equivalent to the Fadeev-Popov trick in
the case of so called ’closed algebra of symmetries’ (e.g. for
Yang-Mills theory). On the other hand the formulation in terms
of half-densities is invariant with respect to wider algebra of
transformations, it works for an arbitrary degenerate
Lagrangian, and it becomes necessary if we have so called
’open algebra of symmetries’. In the classical limit the quantum
BV equation on master half-density becomes the well-known
BV equation on the master action.
Finally we explain the Severa interpretation of the BV quantum
master equation in terms of specially constructed spectral
sequence.
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Functional integral for non-degenerate case

Partition function in field theory

Z =
∫

e
iS(ϕ)

h̄ Dϕ(x)

S(ϕ) =
∫

L(ϕ,∂ϕ)d4x .

Z = Z (j) =
∫

e
i
h̄ (S(ϕ)+

∫
j(x)ϕ(x)d4x)Dϕ(x)

G(x1,x2) =< ϕ(x1)ϕ(x2) >=
δ

δ j(x1)

δ

δ j(x2)

∣∣
j=0Z (j) .
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Functional integral for non-degenerate case

Finite-dimensional analog

∫
e

iS(ϕ)
h̄ Dϕ(x)→

∫
e−F (x)dNx ,

F (x) = 〈x,Ax〉+ terms of order ≥ 3 on x =

Amnxmxn + ∑
k≥3

ci1...ik x i1 . . .x ik .

∫
e−F (x)dNx = ∑

k

∫
e−〈x,Ax〉c̃i1...ik x i1 . . .x ik dNx

∫
e−〈x,Ax〉x i1 . . .x ik dNx =

∂

∂ j i1
. . .

∂

∂ j ik

∣∣
j=0

∫
e−〈x,Ax〉+jxdNx .
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Functional integral for non-degenerate case

Calculation of integral
∫

e−〈x,Ax〉+jkxk
dNx

∫
e−〈x,Ax〉+jxdNx = e−〈l,Al〉

∫
e−〈x,Ax〉+(j−2lA)xdNx =

x→ x + l

Take l = 1
2A−1j . Then (j−2lA)x≡ 0 and∫

e−〈x,Ax〉+jxdNx = e−
1
4 〈j ,A

−1j〉
∫

e−〈x,Ax〉dNx = Ce−
1
4 〈j ,A

−1j〉 ,

(
C =

∫
e−〈x,Ax〉dNx =

√
πN

detA

)
.

This works in the case if operator A is non-degenerate.
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Functional integral for non-degenerate case

We have performed calculations considering expansion of F (x)

F (x) = 〈x,Ax〉+ terms of order ≥ 3 on x =

in a vicinity of stationary point in the case if HessianF = A is
non-degenerate

↓

For functional integral
∫

e
i
h̄ S(ϕ)Dϕ one has to consider

quadratic expansion in a vicinity of stationary points δS
δϕ

= 0
(classical equations of motion) and this expansion has to be
non-degenerate.
What happens if this is not the case?



... of Batalin-Vilkovisky formalism

Symmetries for degenerate Lagrangians

Language of condensed notations

S(ϕ(x))→ S(ϕ
i) ,

equations of motionF (x) =
δS(ϕ)

δϕ(x)
→ ∂S(ϕ)

∂ϕ i .

We use the language of condensed notations. Index ’i ’ runs
over all discrete and continuous indices. E.g. in this language a
function ϕ(x) is the collection of {ϕ i}, variational derivative

δ

δϕ(x) becomes ’partial derivative’ ∂

∂ϕ i
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Symmetries for degenerate Lagrangians

Degenerate Lagrangian—Gauge Theory

S = S(ϕ
i) Fi =

∂S(ϕ)

∂ϕ i = 0 class.equations of motion .

Mstation. = {ϕ i : Fi(ϕ) = 0}

The action S(ϕ) is degenerate if ∂Fi (ϕ)
∂ϕ j = ∂ 2S(ϕ)

∂ϕ i ∂ϕ j

∣∣
Mstation.

is
degenerate.

rank
∂Fi(ϕ)

∂ϕ j + dimMstat. = ‘number of fields’ .
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Symmetries for degenerate Lagrangians

Local (gauge) symmetries

‘dimension of Mstation.=‘number of gauge symmetries’

Symmetries: Set of vector fields {Rα = R i
α

∂

∂ϕ i }:

RαS(ϕ) = R i
α

∂S(ϕ)

∂ϕ i = R i
αFi = 0 , S(ϕ

i + ε
αR i

α ) = S(ϕ
i) ,

R i
α

∣∣
Mstation.

6= 0 ,

These are local (gauge) symmetries (Noether identities).
The index α (’number’ of symmetries runs over continuous set.)
The global symmetries are excluded out of considerations
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Symmetries for degenerate Lagrangians

...Local symmetries

0−→ F −→ E −→ B −→ 0

E—symmetries, vector fields R preserving action:

R(ϕ)S(ϕ) = R i(ϕ)
∂S(ϕ)

∂ϕ i = R iFi = 0 .

F—space of symmetries which vanish on-shell:

R ∈ F if R
∣∣
Mstation.

= 0↔ R = R i(ϕ)
∂

∂ϕ i = E ij(ϕ)Fj(ϕ)
∂

∂ϕ i ,

E ij(ϕ) =−E ji(ϕ) .
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Symmetries for degenerate Lagrangians

Open and closed algebras of symmetries

{Rα}—symmetries. Commutator is also a symmetry:

[Rα ,Rβ ] = tγ

αβ
(ϕ)Rγ + E ij

αβ
(ϕ)Fj(ϕ)

∂

∂ϕ j .

E ij
αβ
6≡ 0— open algebra of symmetries (’on-shell’ symmetries)

E ij
αβ
≡ 0— closed algebra of symmetries (’of-shell’ symmetries)

Rα → λ
β

α (ϕ)Rβ + F [ij]
α (ϕ)Fj
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Symmetries for degenerate Lagrangians

Abelization of symmetries

Consider transformation

Rα → R̃α = λ
β

α (ϕ)Rβ + F [ij]
α (ϕ)Fj

such that [
R̃α , R̃β

]
≡ 0 .

We simplify the theory making symmetries abelian.
On the other hand we pay the enormous price making these
symmetries non-local

It will be great to have a formalism which ’allows’ these
transformations.

This is the Batalin-Vilkovisky (BV) formalism.
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Functional integral for degenerate functional

Return to functional integral

Z =
∫

e
iS(ϕ)

h̄ Dϕ(x), (S(ϕ) =
∫

L(ϕ,∂ϕ)d4x .
In condensed notation Z =

∫
e

iS(ϕ)
h̄ Dϕ, (Dϕ = ∧idϕ i ).

For degenerate Lagrangian: Mstation. = {ϕ i : Fi(ϕ) = 0},

RαS(ϕ) = R i
α

∂S(ϕ)

∂ϕ i = R i
αFi = 0 ,

(
Fi =

∂S(ϕ)

∂ϕ i

)
.

‘dimension’ of Mstation. = ‘dimension’ of algebra of symmetries
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Functional integral for degenerate functional

Surface of gauge conditions

In the space of fields consider a surface Cgauge transversal to
symmetries {Rα},

Cgauge : Ψα = 0 .

Action S(ϕ) is preserved along symmetries. Integrate e
i
h̄ S(ϕ)

along symmetries. We come to non-degenerate measure on
the surface Cg of gauge conditions.
How does this measure look?
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Functional integral for degenerate functional

à la Fadeev-Popov trick

Cgauge —gauge surface.
∫

e
i
h̄ S(ϕ)Dϕ =∫

Dϕ︸︷︷︸
integral over Cgauge

[∫
e

i
h̄ S(ϕg)Dg

]
︸ ︷︷ ︸

integral over symmetries

=
∫

µ(ϕ)Dϕ︸ ︷︷ ︸
integral over Cgauge .

This is gauge independent (but it is non-local).
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Functional integral for degenerate functional

Finite-dimensional case

Toy example
Let K be a compact1 vector field on a space E :

E = RN−1×S1 , K =
∂

∂ϕ
,

x1,x2, . . . ,xN−1,xN—coordinates on E , xN = ϕ

Let ρ = ρ(x)dx1∧·· ·∧dxN be a volume form E .
Suppose that ρ is invariant with respect to K, LKρ = 0.
Let C = Cgauge be N−1-dimensional surface in E transversal to
K, defined by equation Ψ(x) = 0. Then

∫
E

ρ = 2π︸︷︷︸
volume of U(1)

∫
Cgauge

ιKρ = 2π

∫
E

K i ∂ Ψ(x)

∂x i δ (∂ Ψ(x))ρ(x)dNx .

1it generates action of group U(1)
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Functional integral for degenerate functional

Finite-dimensional case

Gauss-Ostrogradsky Law

ZΨ =
∫

E
K i ∂ Ψ(x)

∂x i δ (Ψ(x))ρ(x)dNx =
∫

Cgauge
Kρ ,

is a flux of vector density Kρ trough the surface C.
LKρ = d ◦ ιKρ = 0↔ divρK = 0.
ZΨ does not depend on gauge conditions: ZΨ+δΨ = ZΨ.

Put ρ = ρ(x)dx1∧·· ·∧dxN = e
i
h̄ S(x)dx1∧·· ·∧dxN ,

0 = divρK =
∂K i

∂x i +
i
h̄

K i ∂S(x)

∂x i ,

LKS = K i∂iS(x) = 0. This is Noether identity for ‘action’ S(x).
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Functional integral for degenerate functional

Finite-dimensional case

Flux of multivector field-density

Volume form ρ = e
i
h̄ S(x)dx1∧·· ·∧dxN is invariant with respect

to vector fields {Ka} (a = 1, . . . ,k ).
Cgauge—N−k -dimensional surface transversal to vector fields

Cgauge : Ψb = 0(b = 1, . . . ,k), Z =
∫

E
ρ = (2π)k

∫
Cgauge

K1∧·· ·∧Kk ρ

=
∫

det
(

Ki
a

∂ Ψb(x)

∂x i

)
∏
a

δ (Ψa)e
i
h̄ S(x)dNx

Z = flux of multivector density through gauge surface
This density is ’prepared’ from gauge symmetries
Gauge independence = divergenceless of the density
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Functional integral for degenerate functional

Multivector density in functional integral

Return to functional integral

Z =
∫

det

(
Ri

α

∂ Ψβ (ϕ)

∂ϕ i

)
∏

γ

δ (Ψγ (ϕ))e
i
h̄ S(ϕ)Dϕ

Partition function is the integral of multivector density ∧
α
Rα︸ ︷︷ ︸

multivector field

⊗ ρ︸︷︷︸
density

 over gauge fixing surfaceCgauge : Ψα = 0 ,

ρ = e
i
h̄ S(ϕ)Dϕ .

This is gauge invariant expression, but functional is non-local,
indices α,β ,γ run over continuous set.
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Functional integral for degenerate functional

Multivector density in functional integral

Localising of functional integral

detA =
∫

eAik θ i θ̄ k
dn

θdn
θ̄ , (A–n×n matrix) ,

and δ (x) = 1
2π

∫
eikxdk . Hence

Z =
∫

det

(
Ri

α

δ Ψβ (ϕ)

δϕ i

)
∏

γ

δ (Ψγ (ϕ))e
i
h̄ S(ϕDϕ =

=
∫

e
i
h̄ S(ϕ)+cα Ri

α
∂Ψβ

δϕ i ηβ +λα Ψα

DϕDcDηDλ
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Functional integral for degenerate functional

Lifting the integral to the space of fields-antifields

Space of fields and antifields

The aim is to construct multivector density in the general case
when symmetries are not abelian. We raise integral:

Z =
∫

Ψa=0
multivector density

to the space of fields and anti-fields.
Consider ΠT ∗M (space of fields and antifields), (M is space of
fields ϕ i ). Denote by ϕ∗ coordinates of fibre: p(ϕ∗i) = p(ϕ i) + 1.
(ϕ i ,ϕ∗j) are Darboux coordinates of odd symplectic superspace
ΠT ∗M. Corresponding canonical odd Poisson bracket:

{ϕ i ,ϕ∗j}= δ
i
j , {ϕ i ,ϕ j}= {ϕ∗i ,ϕ∗j}= 0 .
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Functional integral for degenerate functional

Lifting the integral to the space of fields-antifields

Surface of gauge conditions→ Lagrangian surface in
ΠT ∗M

To surface Cgauge = {ϕ : Ψα (ϕ) = 0} in the space M of fields we
assign a Lagrangian surface LCgauge in the space ΠT ∗M of fields
and anti-fields

LC =

{
ϕ∗i =

∂ Ψ(ϕ,η)

∂ϕ i =
∂ Ψα (ϕ)

∂ϕ i ηα ,
∂ Ψ(ϕ,η)

∂ηa
= Ψα (ϕ) = 0

}
,

where Ψ(ϕ) = Ψα (ϕ)ηα , (ηα are odd parameters).

(N−k)-dimensional surface C defines
(N−k ,N−k)-dimensional Lagrangian surface LC .
Ψ(ϕ) is called gauge fermion
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Functional integral for degenerate functional

Lifting the integral to the space of fields-antifields

Multivector density→ Half-density
Density ρ on M is an half density on symplectic space ΠT ∗M
Multivector field ∧αR on M is a function on ΠT ∗M
Hence multivector density on M is an half-density on ΠT ∗M

Example
Let (ϕ i ,ϕ∗j) be coordinates of ΠT ∗E . Vector field K = K i ∂

∂ϕ i on

E is a function K i(ϕ)ϕ∗i on ΠT ∗E . Vector density Kρ is a
half-density in odd symplectic superspace ΠT ∗E :

sK = K i(ϕ)ϕ∗iρ(ϕ)
√

D(ϕ,ϕ∗)

If

{
ϕ i ′ = ϕ i ′(ϕ i)

ϕ∗i ′ = ∂ϕ i

∂ϕ i ′ ϕ∗i
then Ber

(
∂(ϕ,ϕ∗)
∂(ϕ ′,ϕ ′∗)

)
=

 ∂ϕ i ′

∂ϕ i
∂ϕ∗j ′

∂ϕ j

0
∂ϕ∗j ′

∂ϕ∗j

=

(
det
(

∂ϕ i ′

∂ϕ i

))2
.
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Functional integral for degenerate functional

Lifting the integral to the space of fields-antifields

Partition function—integral of half-density over
Lagrangian surface

Z =
∫

det

(
Ri

α

∂ Ψβ (ϕ)

∂ϕ i

)
∏

γ

δ (Ψγ (ϕ))e
i
h̄ S(ϕ)Dϕ

∫
surface C : Ψα = 0

∧Rαρ︸ ︷︷ ︸
multivector density

=
∫

Lagrangian surface LC
s︸︷︷︸

half-density

ρ = e
i
h̄ S(ϕ)D(ϕ) , s = e

i
h̄ S (ϕ,ϕ∗)

√
D(ϕ,ϕ∗) ,

S (ϕ,ϕ∗) = S(ϕ) + cαR i
α (ϕ)ϕ∗i + . . .

Gauge independence How is it expressed
div

ρ
∧α R = 0 in terms of half-densities?
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Functional integral for degenerate functional

Canonical odd operator on half-densities

Theorem
(H.Kh.(1999)) In an odd symplectic supermanifold there exists
canonical odd operator ∆ acting on half-densities. In local
Darboux coordinates (ϕ i ,ϕ∗j)

∆
(

s(ϕ,ϕ∗)
√

D(ϕ,ϕ∗)
)

= ∑
i

∂ 2s(ϕ,ϕ∗)

∂ϕ iϕ∗i

√
D(ϕ,ϕ∗) .

Consider s = 1 ·
√

D(ϕ,ϕ∗). Obviously ∆s = 0. We come to

Corollary
(Batalin-Vilkovisky identity (1981)) Let (ϕ,ϕ∗)→ (ϕ ′,ϕ ′∗) be an
arbitrary canonical transformation, then

∑
∂ 2

∂ϕ i∂ϕ∗i

√
Ber

(
∂ (ϕ ′,ϕ ′∗)

∂ (ϕ,ϕ∗)

)
= 0 .



... of Batalin-Vilkovisky formalism

Functional integral for degenerate functional

Canonical odd operator on half-densities

Relation of operator ∆ on half-densities with operator
∆Dv on functions

∆DvF =
1
2

divDvD̂F ,

where Dv is a volume form on odd sympelctic supermanifold,
and D̂F is Hamiltonian vector field defined by F , D̂F G = {F ,G}.
In Darboux coordinates {ϕ i ,ϕ∗j}

∆DvF =
∂ 2F (ϕ,ϕ∗)

∂ϕ i∂ϕ∗i
+

1
2
{logV ,F} ,

where Dv = V (ϕ,ϕ∗)D(ϕ,ϕ∗)

∆(Fs) = F∆(s) + (−1)p(F ) (∆DvF )

If s is half-density such that s2 = Dv is a volume form then
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Functional integral for degenerate functional

Canonical odd operator on half-densities

Nilpotency of operators ∆ and ∆Dv. Relation with { , }

∆2 = 0 ,

∆2
Dv(F ) =

{
1√
Dv

∆
(√

Dv
)

,F
}

,

∆Dv{F ,G}= {∆DvF ,G}+ (−1)p(f )+1{F ,∆DvG}

∆Dv (F ·G) = ∆DvF ·G + (−1)p(f )F ·∆DvG + (−1)p(f ){F ,G} .
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Functional integral for degenerate functional

Canonical odd operator on half-densities

Divergence→ ∆-operator

In a special case if ρ = ρ(ϕ) is a volume form on M and a
semidensity sρ = ρ(ϕ)

√
D(ϕ,ϕ∗) then for a multivector field

P = Pa1...ak ∂a1 ∧·· ·∧∂ak = Pa1...ak ϕ∗a1 . . .ϕ∗ak ,

divρK s = ∆(Psρ )

multivector density on ΠT ∗M ↔ differential form on M, ∆↔ de Rham
differential.

If half-density s corresponds to multivector density K then

divK = 0→∆s = 0 .

(K = P⊗ρ,s = P⊗s
ρ

)
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Functional integral for degenerate functional

BV master-equation

Master-equation for Partition function
Returning to partiion function

Z =
∫

det

(
Ri

α

∂ Ψβ (ϕ)

∂ϕ i

)
∏

γ

δ (Ψγ (ϕ))e
i
h̄ S(ϕ)Dϕ

∫
surface C : Ψα = 0

∧Rαρ︸ ︷︷ ︸
multivector density

=
∫

Lagrangian surface LC
s︸︷︷︸

half-density

ρ = e
i
h̄ S(ϕ)D(ϕ) , s = e

i
h̄ S (ϕ,ϕ∗)

√
D(ϕ,ϕ∗) ,

S (ϕ,ϕ∗) = S(ϕ) + cαR i
α (ϕ)ϕ∗i + . . .

Gauge independence How is it expressed?
div

ρ
∧α R = 0 ∆s = 0
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Functional integral for degenerate functional

BV master-equation

BV-master-equation

∆s = 0 ,

where
s = e

i
h̄ S (ϕ,ϕ∗)

√
D(ϕ,ϕ∗) ,

with boundary conditions:

S (ϕ,ϕ∗) = S(ϕ) + cαR i
α (ϕ)ϕ∗i i + . . . ,

where Rα = R i
α

∂

∂ϕ i are initial symmetries.
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Functional integral for degenerate functional

BV master-equation

Quasiclassical approximation

Master equation is ∆
(

e
i
h̄ S (ϕ,ϕ∗)

√
D(ϕ,ϕ∗)

)
=(

i
h̄

∂ 2S

∂ϕ iϕ∗i
− 1

2h̄2 {S ,S }
)

e
i
h̄ S (ϕ,ϕ∗)

√
D(ϕ,ϕ∗) = 0 .

If h̄→ 0 then we come to classical BV-equation:

{S ,S }= 0 .

Solution of classical BV -equation defines odd Hamiltonian
vector field Q̂ : Q̂F = S which defines the structure of
Q-manifold on the space of fields and anti-fields.
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Functional integral for degenerate functional

BV master-equation

Invariance of BV-master equation
Let S(ϕ) be an action

Let Rα be an abelian algebra of symmetries S (ϕ,ϕ∗) = S(ϕ)

[Rα ,Rβ ] = 0, then = +cαR i
α (ϕ)ϕ∗i

Cgauge : Ψa = 0 LC : ϕ∗i = ∂iΨ
aηα

Z =
∫

Cgauge
P Z =

∫
LC

s
P is a multivector density s is a half-density

P = ∧αRαe
i
h̄ S(ϕ)Dϕ s = e

i
h̄ S (ϕ,ϕ∗)

√
D(ϕ,ϕ∗)

divP = 0 ∆s = 0
Go to an open algebra of symmetries canonic. transformat.

Rα → λ
β

α (ϕ)Rβ + F [ij]
α (ϕ)Fj master-equation remains

[Rα ,Rβ ] = tγ

αβ
(ϕ)Rγ + E ij

αβ
(ϕ)Fj(ϕ)∂jϕ

j S →S )

P→? = S(ϕ) + cαR i
αϕ∗i + . . .
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Severa’s spectral sequence and canonical Laplacian

Finally two words about how to describe ∆ operator on
half-densities in invariant way?

(The original formula ∆s = ∂ 2s(ϕ,ϕ∗)
∂ϕ i ∂ϕ∗i

√
Dϕ,ϕ∗ is written in

Darboux coordinates).
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Severa’s spectral sequence and canonical Laplacian

∆-operator and Severa’s spectral sequence

Let Ω(M) be a space of all (pseudo)differential forms on ΠT ∗M,
i.e. functions F (ϕ,ϕ∗,dϕ,dϕ∗) (dϕ,dϕ∗ have parity reverse to
parity of ϕ,ϕ∗, ϕ and dϕ∗ are even dϕ and ϕ∗ are odd

Consider differential Q = d + ω, where d is de Rham differential
and ω = dϕ idϕ∗i defines canonical symplectic structure on
ΠT ∗M:

QF = (d + ω)F (ϕ,ϕ∗,dϕ,dϕ∗) =(
dϕ

i ∂F (ϕ,ϕ∗)

∂ϕ i + dϕ∗i
∂F (ϕ,ϕ∗)

∂ϕ∗i

)
︸ ︷︷ ︸

dF

+
(

dϕ
idϕ∗i F (ϕ,ϕ∗)

)
︸ ︷︷ ︸

ωF

,

Q2 = d2 = ω
2 = 0,dω + ωd = 0 .
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Severa’s spectral sequence and canonical Laplacian

Consider spectral sequence {Er ,dr}

Er+1 = H(Er ,dr )

with E0 = Ω(M), d0 = ω.
The space E1 = H(Ω(M),ω) can be naturally identified with the
space of semidensities on M:

s = [s(ϕ,ϕ∗)dϕ
1dϕ

2 . . .dϕ
N ]

(ωs = 0,s 6= ωf)
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s = s(ϕ,ϕ∗)dϕ1dϕ2 . . .dϕN

↓d
(−1)k ∂s

∂ϕ∗k
dϕ1 . . .dϕk−1dϕk+1 . . .dϕN ω−→ ∂s

∂ϕ∗i
dϕ∗idϕ1dϕ2 . . .dϕN

↓d
∆s = ∂ 2s

∂ϕ i ∂ϕ∗I
dϕ1dϕ2 . . .dϕN

The differential d1 of the Severa’s spectral sequence vanishes
and differential d2 coincides with the canonical operator ∆.
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Thank you
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