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L Pfaffians

What is Pfaffian of matrix

Let K be an antisymmetrical matrix:
K™ =—-K.

Then
detK = (Pf(K))?, VdetK = Pf(K),

where Pf(K), Pfaffian of matrix K is a polynomial of entries of
matrix K
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L Pfaffians

Examples

If mis an odd number then Pf(K) =0, since detK = 0:

detK™ =detK = (—1)"detK = —detK.

0 a
~(55)

detK = & Pf(K) = VdetK = a
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Examples (m = 4)

0 a b
K— -a 0 d

(o
|, detk = (af + cd — be)?
b —d 0 f |
0

-c —e —f

Pf(K) = af + cd — be = Ki2Kz4 + K14 Koz — K13Ko4 .
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Examples (m = 4)

0 a b c
-a 0 d e
-b —-d 0 f
-¢c —e —f 0

K= , detK = (af + cd — be)?

Pf(K) = af + cd — be = Ki2Kz4 + K14 Koz — K13Ko4 .

0 E E E
—Ex 0 H, -H,
~E, —H; 0  Hy
~E, H, —Hy 0

F =



Pfaffians in odd symplectic geometry

L Pfafians

Examples (m=4)

0 a b c
| —a 0 d e _ a2
K= b -d 0 f , detK = (af +cd — be)
-¢c —e —f 0

Pf(K) = af + cd — be = K12Kzs + K14 Koz — K13Ko4 -

0 E E E
~E, —H, 0 Hy
~E, H, -Hy 0

FAF =Pf(F)dx® A dx' Adx® A dx®

F =
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L“F‘faf‘fian“ of an odd canonical transformations

Odd canonical transformations

n|n-dimensional odd symplectic superspace:
X', X" 64,...,6,}
w = andGa (*)

df dg

of d
1.9)= Jasg (P05 30 (+4)

00, 0x@
(X2, 60} = 82 {x3,x°} =0,,{62,6p} =0,
{x',...,x"64,...,6,} are Darboux coordinates

Odd canonical transformation preserve the form (*)
(the odd Poisson bracket (**))
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L”F‘faffian” of an odd canonical transformations

Linear odd canonical transformation

A & y@=xPA2+0,%7
X79 - M :X76 M
()~ rm =) ( 2 7 ) {nasz@bﬁeng

where entries of nx n matrices A and D are even numbers
(even elements of a Grassmann algebra), and entries of nx n
matrices % and ¥ are odd numbers (odd elements of a
Grassmann algebra) and the following conditions are obeyed:

AtC+€¢+TA=0

D*% =%*D
ATD+6T % =1
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I—”P]‘af‘fian” of an odd canonical transformations

Examples

[
N
R >
oK
N———

At +€¢TA=0
D*% =%TD
ATD+6 % =1
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I—”Pfaf‘fian” of an odd canonical transformations

Examples

A @ ATE€+ETA=0
= : + 3z — gt
k=(22): Jou-so
ATD+6T% =1
A0 p_

(43) wo-
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L Pfaffian” of an odd canonical transformations

Examples

(23)

At +€¢TA=0

D*% =%TD
ATD+ET % =1

A +p—
<0 ) ATD=1

0
D
(1+§M )

BT =B,CT =%
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L“F‘faf‘fian" of an odd canonical transformations

Berezinian of odd canon.transform

In a drastic difference to the even case odd canonical
transformations do not preserve a volume form!.
Berezinian (superdeterminant) of an odd canonical
transformation in general is not equal to unity

A A det(A—2D7'%)
K—<<g D),BerK— detD #1

Example

A 0\ detA  detA 5 L
Ber( 0 D)_detD_det(A+)—1 =detA-, since ATD=1.
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L“Pfaf‘fian“ of an odd canonical transformations

Fact from linear algebra

Theorem
LetK = ¢ D ) , be a matrix of a linear odd canonical
transformation. Then

Ber K = (detA)?, vBer A = det A

Polynomial det A is a square root of Berezinian of odd canonical
transformation K ("pfaffian of K”).



e
Pfaffians in odd symplectic geometry
I—”Pfaf‘fian" of an odd canonical transformations

K=K1K2:( At

A P> . A1As + P16
¢ Dy € D> )

Ber K = Ber KiBer Ko

det(A1 Ao + B4 (52) =detA;detAs
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I—”P]‘af‘fian” of an odd canonical transformations

Proof

[
N
R >
oK
N———

At +€¢TA=0
D*% =%TD
ATD+6 % =1
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I—”Pfaf‘fian” of an odd canonical transformations

Proof

A @ AT6¢+€¢TA=0

= : + 37— @t

k=2 5) {ps=#D
ATD+¢+% =1

A0 h
<0D) ATD=1
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L Pfaffian” of an odd canonical transformations

Proof

(23)

At +€¢TA=0

D*% =%TD
ATD+ET % =1

A +p—
<0 ) ATD=1

0
D
(1+§M )

BT =B,CT =%
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I—”P]‘af‘fian” of an odd canonical transformations

Proof...
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I—”P]‘af‘fian” of an odd canonical transformations

Proof...

(5 0)(%

A 0
K=(5 )

)

B
¢ 1
1+ %8¢ %

S7)
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L“F‘faf‘fian“ of an odd canonical transformations

Proof...

(5 0)(%7)
(0w ) (T

One can show that det(1+%%) =1 since Tr"(#%) =0

B A 0 1+%5¢ A
BerK_Ber( 0 (A+) )Ber( @ 1 )

_ detA  det(1+ %% — %%)
~ det(A*)1 det1

=detA?.
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I—Odd Laplacian of Batalin-Vilkovisky formalism

The fact stated above underlines the deep geometrical
formalism.

properties of the odd Laplacian operator in Batalin Vilkovisky
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LOdd Laplacian of Batalin-Vilkovisky formalism

Batalin-Vilkovisky A-operator

In 1981 I. Batalin and G. Vilkovisky considered the following
second-order operator acting on functions on an odd
symplectic superspace:

9%F(x,0)

0x300, ’
where (x2, 0,) are arbitrary Darboux coordinates on the odd
symplectic superspace. This second order operator is invariant

under arbitrary canonical transformations which preserve
volume form dx'...dx"d6;...d6,

AoF(x,0) =

(X', x"64,...,0,) — {X',...,X";64,...,6,} such that
Darboux tgaordinates Darboux coordinates

a(x',0")
a(x,0)

Ber
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LOdd Laplacian of Batalin-Vilkovisky formalism

Batalin-Vilkovisky identity
For an arbitrary odd canonical transformation

I(x',9)

Ber 3(x,0) #1.

This difference with an even canonical transformation is a
reason why second order Laplacian arises.

On the other hand the following identity is obeyed:

a(x,0)\
Ao\/<Ber 3(x.9) ) =0.
This highly non-trivial identity obtained by Batalin and
Vilkovisky is a core part of A-operators properties.
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I—Odd Laplacian of Batalin-Vilkovisky formalism

Invariant construction for BV A-operator
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I—Odd Laplacian of Batalin-Vilkovisky formalism

Invariant construction for BV A-operator

d2F(x,0) 1
2d1VpDF = T&Ga + é{logp,F}
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I—Odd Laplacian of Batalin-Vilkovisky formalism

Invariant construction for BV A-operator

2
L 92F(x,0) 1

axaaea +§{|09PaF}
p=p(x,0)dx"...dx"d6;...d6,—volume form

1 1
2 p
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LOdd Laplacian of Batalin-Vilkovisky formalism

Invariant construction for BV A-operator

1 Sop 1. 9PF(x,0) 1
5 0 —EdIVpDF—Taea-i—é{lng,F}

>
he)
~n
I
|
|

p=p(x,0)dx"...dx"d6;...d6,—volume form

Df = {f, xﬂ»% +{f, Oa}aiea—Hamiltonian vector field

Ay =D, ifp=1.
(Kh. 1989)
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LOdd Laplacian of Batalin-Vilkovisky formalism

Properties of A — operator. BV master-equation
Let p = p(x,0)dx"...dx"d6; ...d6p be a volume form in odd
symplectic superspace, ((x', 6;) Darboux coordinates)
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LOdd Laplacian of Batalin-Vilkovisky formalism

Properties of A — operator. BV master-equation
Let p = p(x,0)dx"...dx"d6; ...d6p be a volume form in odd
symplectic superspace, ((x', 6;) Darboux coordinates)

a) there exist another Darboux coordinates {X’, éj} such that in
these coordinates y
p(x,0)=1.
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LOdd Laplacian of Batalin-Vilkovisky formalism

Properties of A — operator. BV master-equation
Let p = p(x,0)dx"...dx"d6; ...d6p be a volume form in odd
symplectic superspace, ((x', 6;) Darboux coordinates)

a) there exist another Darboux coordinates {X’, éj} such that in

these coordinates )
p(x,0)=1.

b)

on/p(X, 9) =0.
Batalin-Vilkovisky master-equation for the master action
S=log,/p.
c)

2 _
A =0.
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LOdd Laplacian of Batalin-Vilkovisky formalism

Properties of A — operator. BV master-equation
Let p = p(x,0)dx"...dx"d6;...d6, be a volume form in odd
symplectic superspace, ((x', 6;) Darboux coordinates)

a) there exist another Darboux coordinates {X’, éj} such that in
these coordinates
p(%,0)=1.

b)

on/p(X, 9) =0.
Batalin-Vilkovisky master-equation for the master action
S=log,/p.
c)

A5 =0.

These conditions are equivalent (under some technical assumptions)
(Kh., A. Nersessian, 1991-1993)
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LOdd Laplacian of Batalin-Vilkovisky formalism

Properties of A — operator. BV master-equation
Let p = p(x,0)dx"...dx"d6;...d6, be a volume form in odd
symplectic superspace, ((x', 6;) Darboux coordinates)

a) there exist another Darboux coordinates {X’, éj} such that in
these coordinates
p(%,0)=1.

b)

on/p(X, 9) =0.
Batalin-Vilkovisky master-equation for the master action
S=log,/p.
c)

A5 =0.

These conditions are equivalent (under some technical assumptions)
(Kh., A. Nersessian, 1991-1993) , (A. Schwarz—1993)
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LCanonical odd laplacian on semidensities

Canonical odd laplacian on semidensities.

Construction
Let M be an odd symplectic (super)manifold, i.e.
n|n-dimensional (super)manifold endowed with an odd closed
non-degenerate 2-form. The action of canonical odd Laplacian
on an arbitrary semidensity s = s(x,0)\/dx"...dx"d6;...d6, is
defined by the formula

8 s(x,0)
# 1
Atg=—"2"7) aaea \/d .dx"d6; ...d6,
where {x',...,x":6y,...,6,} are an arbitrary Darboux
coordinates on M.

Contrary to the A,-operator on functions, the operator A# does
not depend on volume form.
(Kh., 1999)
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I—Canonical odd laplacian on semidensities

Spaces NT*M and NTM

Let M be n-dimensional manifold (local coordinates (x').

N



Pfaffians in odd symplectic geometry

LCanonical odd laplacian on semidensities

Spaces NT*M and NTM

Let M be n-dimensional manifold (local coordinates (x').

TM —space of tangent vectors (local coordinates (x', x/)
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LCanonical odd laplacian on semidensities

Spaces NT*M and NTM

Let M be n-dimensional manifold (local coordinates (x').
TM —space of tangent vectors (local coordinates (x', x/)
T*M space of tangent covectors (local coordinates (x’, ;)
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LCanonical odd laplacian on semidensities

Spaces NT*M and NTM

Let M be n-dimensional manifold (local coordinates (x').
TM —space of tangent vectors (local coordinates (x', x/)
T*M space of tangent covectors (local coordinates (x’, ;)
Canonical (even) symplectic structure on T*M:

{x',pj} =&, {x',x'} =0,{p;,pj} =0
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LCanonical odd laplacian on semidensities

Spaces NT*M and NTM

Let M be n-dimensional manifold (local coordinates (x').
TM —space of tangent vectors (local coordinates (x', x/)
T*M space of tangent covectors (local coordinates (x’, ;)
Canonical (even) symplectic structure on T*M:
{x'.p} =8 .{x' . ¥} =0,{p;,pj} =0
Change parity of fibres
TM — N TM with coordinates (x',&/),

T*M — NT*M with coordinates (x', 6))
MNT*M is an odd symplectic supermanifold endowed with
canonical odd symplectic structure:

{Xiv 9]} = 6.’.’{)("’)(/'} = 07{9176j} =0



Pfaffians in odd symplectic geometry

LCanonical odd laplacian on semidensities

F(x,0) =F(X)+F'(x)0;+ F16,6;+---+ F'"0;...0,
~—— ~ ~~
function on NT*M mulitvector field on M
o(x,§) = 0(x) +0()E + @&/ +-- -+ oy _nE"...E"
——— —
function on NTM differential form on M

Differential form «— Function on NT*M?
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LCanonical odd laplacian on semidensities

F(x,0) =F(X)+F'(x)0;+ F16,6;+---+ F'"0;...0,
~—— ~ ~~
function on NT*M mulitvector field on M
o(x,§) = 0(x) +0()E + @&/ +-- -+ oy _nE"...E"
——— —
function on NTM differential form on M

Differential form < Function on M 7T*M? NO!
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LCanonical odd laplacian on semidensities

F(x,0) =F(X)+F'(x)0;+ F16,6;+---+ F'"0;...0,
~—— ~ ~~
function on NT*M mulitvector field on M
o(x,§) = 0(x) +0()E + @&/ +-- -+ oy _nE"...E"
——— —
function on NTM differential form on M

Differential form < Function on M 7T*M? NO!

Differential form < semidensity on N7T*M
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LCanonical odd laplacian on semidensities

o(x,&)-s= (/ w(x,&)ef fge! ...d.f;") Vax'dx2...dx"de ...de,

Example
Let w = adx' + bdx? on M?. Then

s=17(0)=
(/(a.»:1 +b52)e5‘91+5292d<§1d§2) Vdx1dx2d6;d6, =
(892 — bb;, )\/ dx? dX2d91 do,

semidensity on M T*M?.
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LCanonical odd laplacian on semidensities

Geometrical meaning of A%

differential formon M < semidensities on N T*M
l

i}
differential formon M < semidensities on N T*M

A% (t(w)) = 7(d(®)),
d= &f"i, exterior differential
ax!
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LCanonical odd laplacian on semidensities

Geometrical meaning of A%

differential formon M < semidensities on N T*M

! !

differential formon M < semidensities on N T*M
A*(1(w)) = 7(d(w)),

d= 5"%, exterior differential

Diffeomorphims of M C canonical transformations of M T*M
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LCanonical odd laplacian on semidensities

Diffeomorphism of M defines canonical transformation of
nrm:

Si iy n

o wisoA oioay )X =X(x",..x")

X =X(x"...,x")— (X', 6): {G_axme (*)
] axi ~m

On the other hand a canonical transformation can be
considered as a composition of transformation (*) and a special
canonical transformation:

{;(" = x'+fi(x,6)

- where f/(x,0)|g—o = g' (X, 0)|g—0 = O,
6= 6,+g(x,0) (X,0)[e=0 = g'(X,0)lo=0

J(x,0) . o

a(x,0) %o
Compare this with decomposition for linear canonical
transformation |

Ber
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I—Canonical odd laplacian on semidensities
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LCanonical odd laplacian on semidensities

k=(5 wy ) (T T)

One can show that det(1+ %%) =1 since Trk(#%) =0
A 0 1+%B¢ X5
BerK—Ber( 0 (AH) )Ber( ¥ 1 )

detA det(1+ 2% — %)

det(At) det1 det
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LSevera‘s spectral sequence and canonical Laplacian

Question: How to describe canonical A# operator in invariant
way?

(The original formula A#s = ‘9 S(X 9) -\/dxT...dxPd; .

..d6pis
written in Darboux coordinates)
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LSevera’s spectral sequence and canonical Laplacian

Question: How to describe canonical A# operator in invariant
way?

2
(The original formula A#s = %)fgig’e?\/dﬂ ...dxPd6;...d6p is
written in Darboux coordinates).

In 2006 K. Bering wrote the explicit expression for A# operator in an arbitrary
coordinates in terms of components of 2-form defining symplectic structure.
He proved by straightforward calculations that this expression defines
invariant operator which coincides with A#-operator.

(See K. Bering "A Note on Semidensites in Antisymplectic

Geometry”.hep-th/0604)
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LSevera’s spectral sequence and canonical Laplacian

Severa’s spectral sequence
In 2005 P.Severa constructed the remarkable spectral
sequence which contains as ingridients semidensites and
A7 -operator. Thus he finds a natural definition of this
‘'somewhat miracolous operator’. (See P. Severa "On the origin
of the BV operator...” (math/050633))

Let M be n|n-dimensional manifold with symplectic structure
defined by odd non-degenerate closed two form w.

Let Q(M) be a space of all (pseudo)differential forms on M, i.e.
functions on MNMTM.

Consider differential Q = d + . For any F-function on NTM
(differential form on E) QF = dF + oF.
One can see that

FP=d?=w’=0,do+wd=0
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LSevera‘s spectral sequence and canonical Laplacian

Spectral sequence {E;,d;}
Er+1 = H(Eradr)
with Eo = Q(M), do = .

Theorem

The space E; = H(Q2(M), w) can be naturally identified with the
space of semidensities on M.
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LSevera’s spectral sequence and canonical Laplacian

Spectral sequence {E;,d,}
Er+1 = H(Eradr)
with Eg = Q(M), dh = o.

Theorem

The space E; = H(Q2(M), w) can be naturally identified with the
space of semidensities on M.

Elements of cohomology space E; = H(Q(M), ») are
represented in Darboux coordinates as classes
s(x,0)[dx"...dx"]. Under a change of Darboux coordinates
(x,0) — (%.,6)

ax
1 nm_, et
[dX ...dX] det(a;(>
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LSevera’s spectral sequence and canonical Laplacian

Spectral sequence {E;,d,}
Er+1 = H(Eradr)
with Eg = Q(M), dh = »

Theorem

The space E; = H(Q2(M), w) can be naturally identified with the
space of semidensities on M.

Elements of cohomology space E; = H(Q(M), ») are
represented in Darboux coordinates as classes
s(x,0)[dx"...dx"]. Under a change of Darboux coordinates
(x,0) — (%.,6)

m et [0 N
[ax"...dx"] det( )[dx .dx"]

(.6
Ber 62;9;
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LSevera’s spectral sequence and canonical Laplacian

Theorem

With identification of E; with semidensities the differential d» of
the Severa’s spectral sequence vanishes and differential ds
coincides with the canonical operator A¥ .

The spectral sequence degenerates at the term Ej.
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LSevera’s spectral sequence and canonical Laplacian

Theorem
With identification of E; with semidensities the differential d» of

the Severa’s spectral sequence vanishes and differential ds
coincides with the canonical operator A7 .

The spectral sequence degenerates at the term Ej.

Remark Odd symplectic manifold is symplectomorphic to
MNT*N, where N is (n,0)-dimensional Lagrangian surface in M.
Q = d + w is twisted differential:

QF = e ©de®F,
where d© = o, (© = 6,dx4), Hence

H(Q,Q(M)) = H(d, M) = Hyerbam(N)
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I—Several‘s spectral sequence and canonical Laplacian

A.Schwarz, |.Shapiro Twisted de Rham cohomology,
homological definition of integral and "Physics over ring”
arXiv;0809.0086 [math.AG]
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I—Severa’s spectral sequence and canonical Laplacian

Thank you

DA



	Pfaffians
	"Pfaffian" of an odd canonical transfor•mations
	Odd Laplacian of Batalin-Vilkovisky formalism
	Canonical odd laplacian on semidensities
	Severa's spectral sequence and canonical Laplacian

