PFAFFIANS IN ODD SYMPLECTIC GEOMETRY

Hovhannes Khudaverdian and Theodore Voronov

University of Manchester, Manchester, UK

SUPERSYMMETRIES AND QUANTUM SYMMETRIES July 29 – August 3, 2009 DUBNA

Contents

Pfaffians

"Pfaffian" of an odd canonical transformations

Odd Laplacian of Batalin-Vilkovisky formalism

Canonical odd laplacian on semidensities

Severa's spectral sequence and canonical Laplacian

What is Pfaffian of matrix

Let *K* be an antisymmetrical matrix:

$$K^+ = -K$$
.

Then

$$\det K = (\operatorname{Pf}(K))^2, \ \sqrt{\det K} = \operatorname{Pf}(K),$$

where Pf(K), Pfaffian of matrix K is a polynomial of entries of matrix K

If *m* is an odd number then Pf(K) = 0, since det K = 0:

$$\det K^+ = \det K = (-1)^m \det K = -\det K.$$

$$m=2$$

$$K=\left(\begin{array}{cc}0&a\\-a&0\end{array}\right),$$

$$\det K=a^2, \operatorname{Pf}(K)=\sqrt{\det K}=a$$

Examples (m = 4)

$$K = \begin{pmatrix} 0 & a & b & c \\ -a & 0 & d & e \\ -b & -d & 0 & f \\ -c & -e & -f & 0 \end{pmatrix}, \det K = (af + cd - be)^{2}$$

$$Pf(K) = af + cd - be = K_{12}K_{34} + K_{14}K_{23} - K_{13}K_{24}.$$

Examples (m = 4)

$$K = \begin{pmatrix} 0 & a & b & c \\ -a & 0 & d & e \\ -b & -d & 0 & f \\ -c & -e & -f & 0 \end{pmatrix}, \, \det K = (af + cd - be)^2$$

$$Pf(K) = af + cd - be = K_{12}K_{34} + K_{14}K_{23} - K_{13}K_{24}$$
.

$$F = \begin{pmatrix} 0 & E_{x} & E_{y} & E_{z} \\ -E_{x} & 0 & H_{z} & -H_{y} \\ -E_{y} & -H_{z} & 0 & H_{x} \\ -E_{z} & H_{y} & -H_{x} & 0 \end{pmatrix}$$

$$Pf(F) = \sqrt{\det F} = E_x H_x + E_y H_y + E_z H_z = \mathbf{E}\mathbf{H}$$

Examples (m = 4)

$$K = \begin{pmatrix} 0 & a & b & c \\ -a & 0 & d & e \\ -b & -d & 0 & f \\ -c & -e & -f & 0 \end{pmatrix}, \, \det K = (af + cd - be)^2$$

$$Pf(K) = af + cd - be = K_{12}K_{34} + K_{14}K_{23} - K_{13}K_{24}$$

$$F = \begin{pmatrix} 0 & E_{x} & E_{y} & E_{z} \\ -E_{x} & 0 & H_{z} & -H_{y} \\ -E_{y} & -H_{z} & 0 & H_{x} \\ -E_{z} & H_{y} & -H_{x} & 0 \end{pmatrix}$$

$$Pf(F) = \sqrt{\det F} = E_x H_x + E_y H_y + E_z H_z = \mathbf{E}\mathbf{H}$$

$$F \wedge F = Pf(F)dx^0 \wedge dx^1 \wedge dx^2 \wedge dx^3$$

Odd canonical transformations

n|n-dimensional odd symplectic superspace: $\{x^1, \dots, x^n; \theta_1, \dots, \theta_n\}$

$$\omega = dx^a d\theta_a \tag{*}$$

$$\{f,g\} = \frac{\partial f}{\partial x^a} \frac{\partial g}{\partial \theta_a} + (-1)^{p(f)} \frac{\partial f}{\partial \theta_a} \frac{\partial g}{\partial x^a}$$
 (**)
$$\{x^a, \theta_b\} = \delta_b^a \{x^a, x^b\} = 0, \{\theta_a, \theta_b\} = 0,$$

 $\{x^1,\ldots,x^n;\theta_1,\ldots,\theta_n\}$ are Darboux coordinates

Odd canonical transformation preserve the form (*) (the odd Poisson bracket (**))

Linear odd canonical transformation

$$(x,\theta) \rightarrow (y,\eta) = (x,\theta) \begin{pmatrix} A & \mathcal{B} \\ \mathcal{C} & D \end{pmatrix}, \begin{cases} y^a = x^b A_b^a + \theta_b \mathcal{C}_a^b \\ \eta_a = x^b \mathcal{B}_{ba} + \theta_b D_a^b \end{cases}$$

where entries of $n \times n$ matrices A and D are even numbers (even elements of a Grassmann algebra), and entries of $n \times n$ matrices \mathscr{B} and \mathscr{C} are odd numbers (odd elements of a Grassmann algebra) and the following conditions are obeyed:

$$\begin{cases} A^{+}\mathcal{C} + \mathcal{C}^{+}A = 0 \\ D^{+}\mathcal{B} = \mathcal{B}^{+}D \\ A^{+}D + \mathcal{C}^{+}\mathcal{B} = 1 \end{cases}$$

$$K = \begin{pmatrix} A & \mathcal{B} \\ \mathcal{C} & D \end{pmatrix} : \begin{cases} A^{+}\mathcal{C} + \mathcal{C}^{+}A = 0 \\ D^{+}\mathcal{B} = \mathcal{B}^{+}D \\ A^{+}D + \mathcal{C}^{+}\mathcal{B} = 1 \end{cases}$$

$$K = \begin{pmatrix} A & \mathcal{B} \\ \mathcal{C} & D \end{pmatrix} : \begin{cases} A^{+}\mathcal{C} + \mathcal{C}^{+}A = 0 \\ D^{+}\mathcal{B} = \mathcal{B}^{+}D \\ A^{+}D + \mathcal{C}^{+}\mathcal{B} = 1 \end{cases}$$
$$\begin{pmatrix} A & 0 \\ 0 & D \end{pmatrix} \qquad A^{+}D = 1$$

$$K = \begin{pmatrix} A & \mathcal{B} \\ \mathcal{C} & D \end{pmatrix} : \begin{cases} A^{+}\mathcal{C} + \mathcal{C}^{+}A = 0 \\ D^{+}\mathcal{B} = \mathcal{B}^{+}D \\ A^{+}D + \mathcal{C}^{+}\mathcal{B} = 1 \end{cases}$$
$$\begin{pmatrix} A & 0 \\ 0 & D \end{pmatrix} \qquad A^{+}D = 1$$
$$\begin{pmatrix} 1 + \mathcal{B}\mathcal{C} & \mathcal{B} \\ \mathcal{C} & 1 \end{pmatrix} \qquad \mathcal{B}^{+} = \mathcal{B}, \mathcal{C}^{+} = -\mathcal{C}.$$

Berezinian of odd canon.transform

In a drastic difference to the even case odd canonical transformations do not preserve a volume form!.

Berezinian (superdeterminant) of an odd canonical transformation in general is not equal to unity

$$K = \begin{pmatrix} A & \mathscr{B} \\ \mathscr{C} & D \end{pmatrix}, \text{ Ber } K = \frac{\det (A - \mathscr{B}D^{-1}\mathscr{C})}{\det D} \neq 1$$

Example

Ber
$$\begin{pmatrix} A & 0 \\ 0 & D \end{pmatrix} = \frac{\det A}{\det D} = \frac{\det A}{\det (A^+)^{-1}} = \det A^2$$
, since $A^+D = 1$.

Fact from linear algebra

Theorem
Let $K = \begin{pmatrix} A & \mathcal{B} \\ \mathcal{C} & D \end{pmatrix}$, be a matrix of a linear odd canonical transformation. Then

$$\operatorname{Ber} K = (\det A)^2, \sqrt{\operatorname{Ber} A} = \det A$$

Polynomial $\det A$ is a square root of Berezinian of odd canonical transformation K ("pfaffian of K").

$$\begin{split} K = K_1 K_2 = \left(\begin{array}{cc} A_1 & \mathcal{B}_1 \\ \mathcal{C}_1 & D_1 \end{array} \right) \left(\begin{array}{cc} A_2 & \mathcal{B}_2 \\ \mathcal{C}_2 & D_2 \end{array} \right) = \left(\begin{array}{cc} A_1 A_2 + \mathcal{B}_1 \mathcal{C}_2 & \dots \\ \dots & \dots \end{array} \right) \\ & \text{Ber } K = \text{Ber } K_1 \text{Ber } K_2 \\ & \text{det} (A_1 A_2 + \mathcal{B}_1 \mathcal{C}_2) = \text{det } A_1 \, \text{det } A_2 \end{split}$$

Proof

$$K = \left(\begin{array}{cc} A & \mathcal{B} \\ \mathcal{C} & D \end{array} \right) : \qquad \begin{cases} A^+\mathcal{C} + \mathcal{C}^+A = 0 \\ D^+\mathcal{B} = \mathcal{B}^+D \\ A^+D + \mathcal{C}^+\mathcal{B} = 1 \end{cases}$$

Proof

$$K = \begin{pmatrix} A & \mathcal{B} \\ \mathcal{C} & D \end{pmatrix} : \begin{cases} A^{+}\mathcal{C} + \mathcal{C}^{+}A = 0 \\ D^{+}\mathcal{B} = \mathcal{B}^{+}D \\ A^{+}D + \mathcal{C}^{+}\mathcal{B} = 1 \end{cases}$$
$$\begin{pmatrix} A & 0 \\ 0 & D \end{pmatrix} \qquad A^{+}D = 1$$

Proof

$$K = \begin{pmatrix} A & \mathcal{B} \\ \mathcal{C} & D \end{pmatrix} : \begin{cases} A^{+}\mathcal{C} + \mathcal{C}^{+}A = 0 \\ D^{+}\mathcal{B} = \mathcal{B}^{+}D \\ A^{+}D + \mathcal{C}^{+}\mathcal{B} = 1 \end{cases}$$
$$\begin{pmatrix} A & 0 \\ 0 & D \end{pmatrix} \qquad A^{+}D = 1$$
$$\begin{pmatrix} 1 + \mathcal{B}\mathcal{C} & \mathcal{B} \\ \mathcal{C} & 1 \end{pmatrix} \qquad \mathcal{B}^{+} = \mathcal{B}, \mathcal{C}^{+} = -\mathcal{C}.$$

Proof...

$$K = \left(\begin{array}{cc} A & 0 \\ 0 & D \end{array}\right) \left(\begin{array}{cc} A' & \mathscr{B} \\ \mathscr{C} & 1 \end{array}\right)$$

Proof...

$$K = \begin{pmatrix} A & 0 \\ 0 & D \end{pmatrix} \begin{pmatrix} A' & \mathcal{B} \\ \mathcal{C} & 1 \end{pmatrix}$$

$$K = \begin{pmatrix} A & 0 \\ 0 & (A^{+})^{-1} \end{pmatrix} \begin{pmatrix} 1 + \mathcal{B}\mathcal{C} & \mathcal{B} \\ \mathcal{C} & 1 \end{pmatrix}$$

Proof...

$$K = \begin{pmatrix} A & 0 \\ 0 & D \end{pmatrix} \begin{pmatrix} A' & \mathcal{B} \\ \mathcal{C} & 1 \end{pmatrix}$$

$$K = \begin{pmatrix} A & 0 \\ 0 & (A^{+})^{-1} \end{pmatrix} \begin{pmatrix} 1 + \mathcal{B}\mathcal{C} & \mathcal{B} \\ \mathcal{C} & 1 \end{pmatrix}$$

One can show that $\det(1+\mathscr{B}\mathscr{C})=1$ since $\operatorname{Tr}^k(\mathscr{B}\mathscr{C})=0$

$$\operatorname{Ber} K = \operatorname{Ber} \begin{pmatrix} A & 0 \\ 0 & (A^{+})^{-1} \end{pmatrix} \operatorname{Ber} \begin{pmatrix} 1 + \mathcal{BC} & \mathcal{B} \\ \mathcal{C} & 1 \end{pmatrix}$$
$$= \frac{\det A}{\det (A^{+})^{-1}} \frac{\det (1 + \mathcal{BC} - \mathcal{BC})}{\det 1} = \det A^{2}.$$

Odd Laplacian of Batalin-Vilkovisky formalism

The fact stated above underlines the deep geometrical properties of the odd Laplacian operator in Batalin Vilkovisky formalism.

Batalin-Vilkovisky △-operator

In 1981 I. Batalin and G. Vilkovisky considered the following second-order operator acting on functions on an odd symplectic superspace:

$$\Delta_0 F(x,\theta) = \frac{\partial^2 F(x,\theta)}{\partial x^a \partial \theta_a},$$

where (x^a, θ_a) are arbitrary Darboux coordinates on the odd symplectic superspace. This second order operator is invariant under arbitrary canonical transformations which preserve volume form $dx^1 \dots dx^n d\theta_1 \dots d\theta_n$

$$\underbrace{\{x^1,\ldots,x^n;\theta_1,\ldots,\theta_n\}}_{\text{Darboux coordinates}} \to \underbrace{\{\tilde{x}^1,\ldots,\tilde{x}^n;\theta_1,\ldots,\theta_n\}}_{\text{Darboux coordinates}} \text{ such that }$$

Ber
$$\frac{\partial(x',\theta')}{\partial(x,\theta)} = 1$$
.

Batalin-Vilkovisky identity

For an arbitrary odd canonical transformation

Ber
$$\frac{\partial(x',\theta')}{\partial(x,\theta)} \neq 1$$
.

This difference with an even canonical transformation is a reason why second order Laplacian arises.

On the other hand the following identity is obeyed:

$$\Delta_0 \sqrt{\left(\operatorname{Ber} \frac{\partial (x', \theta')}{\partial (x, \theta)}\right)} = 0.$$

This highly non-trivial identity obtained by Batalin and Vilkovisky is a core part of Δ -operators properties.

Invariant construction for BV Δ-operator

$$\Delta_{\rho}F = \frac{1}{2} \frac{\mathscr{L}_{D_F} \rho}{\rho} = \frac{1}{2} \mathrm{div}_{\rho} D_F =$$

Invariant construction for BV Δ-operator

$$\Delta_{\rho}F = \frac{1}{2} \frac{\mathcal{L}_{D_{F}}\rho}{\rho} = \frac{1}{2} \operatorname{div}_{\rho}D_{F} = \frac{\partial^{2}F(x,\theta)}{\partial x^{a}\partial\theta_{a}} + \frac{1}{2} \{\log\rho, F\}$$

Invariant construction for BV Δ-operator

$$\Delta_{\rho}F = \frac{1}{2} \frac{\mathscr{L}_{D_{F}}\rho}{\rho} = \frac{1}{2} \operatorname{div}_{\rho}D_{F} = \frac{\partial^{2}F(x,\theta)}{\partial x^{a}\partial\theta_{a}} + \frac{1}{2} \{\log\rho, F\}$$
$$\rho = \rho(x,\theta)dx^{1} \dots dx^{n}d\theta_{1} \dots d\theta_{n} \text{--volume form}$$

Invariant construction for BV △-operator

$$\Delta_{\rho}F = \frac{1}{2}\frac{\mathscr{L}_{D_{F}}\rho}{\rho} = \frac{1}{2}\mathrm{div}_{\rho}D_{F} = \frac{\partial^{2}F(x,\theta)}{\partial x^{a}\partial\theta_{a}} + \frac{1}{2}\{\log\rho,F\}$$

$$\rho = \rho(x,\theta)dx^{1}\dots dx^{n}d\theta_{1}\dots d\theta_{n}\text{—volume form}$$

$$D_{F} = \{f,x^{a}\}\frac{\partial}{\partial x^{a}} + \{f,\theta_{a}\}\frac{\partial}{\partial\theta_{a}}\text{—Hamiltonian vector field}$$

$$\Delta_{\rho} = \Delta_{0}, \text{ if } \rho = 1.$$
(Kh. 1989)

Let $\rho = \rho(x, \theta) dx^1 \dots dx^n d\theta_1 \dots d\theta_p$ be a volume form in odd symplectic superspace, $((x^i, \theta_i)$ Darboux coordinates)

Let $\rho = \rho(x, \theta) dx^1 \dots dx^n d\theta_1 \dots d\theta_p$ be a volume form in odd symplectic superspace, $((x^i, \theta_j)$ Darboux coordinates)

a) there exist another Darboux coordinates $\{\tilde{x}^i, \tilde{\theta}_j\}$ such that in these coordinates

$$\rho(\tilde{x},\tilde{\theta})=1$$
.

Let $\rho = \rho(x, \theta) dx^1 \dots dx^n d\theta_1 \dots d\theta_p$ be a volume form in odd symplectic superspace, $((x^i, \theta_j)$ Darboux coordinates)

a) there exist another Darboux coordinates $\{\tilde{x}^i, \tilde{\theta}_j\}$ such that in these coordinates

$$\rho(\tilde{x},\tilde{\theta})=1$$
.

$$\Delta_0 \sqrt{\rho(x,\theta)} = 0.$$

Batalin-Vilkovisky master-equation for the master action $S = \log \sqrt{\rho}$.

$$\Delta_0^2 = 0$$
.

Let $\rho = \rho(x, \theta) dx^1 \dots dx^n d\theta_1 \dots d\theta_p$ be a volume form in odd symplectic superspace, $((x^i, \theta_j)$ Darboux coordinates)

a) there exist another Darboux coordinates $\{\tilde{x}^i, \tilde{\theta}_j\}$ such that in these coordinates

$$\rho(\tilde{x},\tilde{\theta})=1$$
.

$$\Delta_0 \sqrt{\rho(x,\theta)} = 0$$
.

Batalin-Vilkovisky master-equation for the master action $S = \log \sqrt{\rho}$.

c)

$$\Delta_0^2 = 0$$
.

These conditions are equivalent (under some technical assumptions)

Let $\rho = \rho(x, \theta) dx^1 \dots dx^n d\theta_1 \dots d\theta_p$ be a volume form in odd symplectic superspace, $((x^i, \theta_j)$ Darboux coordinates)

a) there exist another Darboux coordinates $\{\tilde{x}^i, \tilde{\theta}_j\}$ such that in these coordinates

$$\rho(\tilde{x},\tilde{\theta})=1.$$

$$\Delta_0 \sqrt{\rho(x,\theta)} = 0$$
.

Batalin-Vilkovisky master-equation for the master action $\mathcal{S} = \log \sqrt{\rho}$.

c)

$$\Delta_0^2 = 0$$
.

These conditions are equivalent (under some technical assumptions) (Kh., A. Nersessian, 1991–1993), (A. Schwarz—1993)

Canonical odd laplacian on semidensities. Construction

Let *M* be an odd symplectic (super)manifold, i.e.

n|n-dimensional (super)manifold endowed with an odd closed non-degenerate 2-form. The action of canonical odd Laplacian on an arbitrary semidensity $\mathbf{s} = s(x,\theta) \sqrt{dx^1 \dots dx^n d\theta_1 \dots d\theta_n}$ is defined by the formula

$$\Delta^{\#}\mathbf{s} = \frac{\partial^{2}s(x,\theta)}{\partial x^{a}\partial\theta_{a}}\sqrt{dx^{1}\dots dx^{n}d\theta_{1}\dots d\theta_{n}}$$

where $\{x^1, \dots, x^n; \theta_1, \dots, \theta_n\}$ are an arbitrary Darboux coordinates on M.

Contrary to the Δ_{ρ} -operator on functions, the operator $\Delta^{\#}$ does not depend on volume form.

(Kh., 1999)

Canonical odd laplacian on semidensities

Spaces ΠT^*M and ΠTM

Let M be n-dimensional manifold (local coordinates (x^i) .

Canonical odd laplacian on semidensities

Spaces ΠT^*M and ΠTM

Let M be n-dimensional manifold (local coordinates (x^i) .

TM –space of tangent vectors (local coordinates (x^i, \dot{x}^j)

Spaces ΠT^*M and ΠTM

Let *M* be *n*-dimensional manifold (local coordinates (x^i)).

TM –space of tangent vectors (local coordinates (x^i, \dot{x}^j)

 T^*M space of tangent covectors (local coordinates (x^i, p_j))

Spaces ΠT^*M and ΠTM

Let M be n-dimensional manifold (local coordinates (x^i) .

TM –space of tangent vectors (local coordinates (x^i, \dot{x}^j)

 T^*M space of tangent covectors (local coordinates (x^i, p_j))

Canonical (even) symplectic structure on T^*M :

$$\{x^{i},p_{j}\}=\delta_{j}^{i},\{x^{i},x^{j}\}=0,\{p_{i},p_{j}\}=0$$

Spaces ΠT^*M and ΠTM

Let *M* be *n*-dimensional manifold (local coordinates (x^i)).

TM –space of tangent vectors (local coordinates (x^i, \dot{x}^j)

 T^*M space of tangent covectors (local coordinates (x^i, p_j))

Canonical (even) symplectic structure on T^*M :

$$\{x^i, p_j\} = \delta^i_j, \{x^i, x^j\} = 0, \{p_i, p_j\} = 0$$

Change parity of fibres

 $TM \rightarrow \Pi TM$ with coordinates (x^i, ξ^j) ,

 $T^*M \to \Pi T^*M$ with coordinates (x^i, θ_j)

 ΠT^*M is an odd symplectic supermanifold endowed with canonical odd symplectic structure:

$$\{x^{i}, \theta_{i}\} = \delta_{i}^{i}, \{x^{i}, x^{j}\} = 0, \{\theta_{i}, \theta_{j}\} = 0$$

$$F(x,\theta) = F(x) + F^{i}(x)\theta_{i} + F^{ij}\theta_{i}\theta_{j} + \dots + F^{1\dots n}\theta_{1}\dots\theta_{n}$$
function on $\Pi T^{*}M$ mulitvector field on M

$$\omega(x,\xi) = \omega(x) + \omega_{i}(x)\xi^{i} + \omega_{ij}\xi^{i}\xi^{j} + \dots + \omega_{1\dots n}\xi^{1}\dots\xi^{n}$$
function on ΠTM differential form on M

Differential form \leftrightarrow Function on ΠT^*M ?

$$F(x,\theta) = F(x) + F^{i}(x)\theta_{i} + F^{ij}\theta_{i}\theta_{j} + \dots + F^{1...n}\theta_{1} \dots \theta_{n}$$
function on $\Pi T^{*}M$ mulitvector field on M

$$\omega(x,\xi) = \omega(x) + \omega_{i}(x)\xi^{i} + \omega_{ij}\xi^{i}\xi^{j} + \dots + \omega_{1...n}\xi^{1} \dots \xi^{n}$$
function on ΠTM differential form on M

Differential form \leftrightarrow Function on ΠT^*M ? NO!

$$F(x,\theta) = F(x) + F^{i}(x)\theta_{i} + F^{ij}\theta_{i}\theta_{j} + \dots + F^{1...n}\theta_{1} \dots \theta_{n}$$
function on $\Pi T^{*}M$ mulitvector field on M

$$\omega(x,\xi) = \omega(x) + \omega_{i}(x)\xi^{i} + \omega_{ij}\xi^{i}\xi^{j} + \dots + \omega_{1...n}\xi^{1} \dots \xi^{n}$$
function on ΠTM differential form on M

Differential form \leftrightarrow Function on ΠT^*M ? NO!

Differential form \leftrightarrow semidensity on ΠT^*M

$$\omega(x,\xi) \xrightarrow{\tau} \mathbf{s} = \left(\int \omega(x,\xi) e^{\xi^i \theta_i} d\xi^1 \dots d\xi^n \right) \sqrt{dx^1 dx^2 \dots dx^n d\theta_1 \dots d\theta_n}$$

Example

Let $\omega = adx^1 + bdx^2$ on M^2 . Then

$$\mathbf{s}= au(\omega)=$$

$$\left(\int (a\xi^1+b\xi^2)e^{\xi^1 heta_1+\xi^2 heta_2}d\xi^1d\xi^2\right)\sqrt{dx^1dx^2d heta_1d heta_2}=$$

$$(a\theta_2 - b\theta_1)\sqrt{dx^1dx^2d\theta_1d\theta_2}$$

semidensity on ΠT^*M^2 .

Geometrical meaning of $\Delta^{\#}$

differential form on
$$M \leftrightarrow \text{semidensities on } \Pi T^*M$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$
differential form on $M \leftrightarrow \text{semidensities on } \Pi T^*M$

$$\Delta^\#(\tau(\omega)) = \tau(d(\omega)),$$

$$d = \xi^i \frac{\partial}{\partial x^i}, \text{ exterior differential}$$

Geometrical meaning of $\Delta^{\#}$

differential form on
$$M \leftrightarrow \text{semidensities on } \Pi T^*M$$

$$\downarrow \qquad \qquad \downarrow$$
differential form on $M \leftrightarrow \text{semidensities on } \Pi T^*M$

$$\Delta^\#(\tau(\omega)) = \tau(d(\omega)),$$

$$d = \xi^i \frac{\partial}{\partial x^i}, \text{ exterior differential}$$

Diffeomorphims of $M \subset \text{canonical transformations of } \Pi T^*M$

Diffeomorphism of M defines canonical transformation of ΠT^*M :

$$\tilde{x}^i = \tilde{x}^i(x^1, \dots, x^n) \to (\tilde{x}^i, \tilde{\theta}_j) \colon \begin{cases} \tilde{x}^i = \tilde{x}^i(x^1, \dots, x^n) \\ \tilde{\theta}_j = \frac{\partial x^m}{\partial x^j} \theta_m \end{cases}$$
(*)

On the other hand a canonical transformation can be considered as a composition of transformation (*) and a special canonical transformation:

$$\begin{cases} \tilde{x}^i = x^i + f^i(x, \theta) \\ \tilde{\theta}_j = \theta_j + g(x, \theta) \end{cases} \text{ where } f^i(x, \theta)|_{\theta=0} = g^i(x, \theta)|_{\theta=0} = 0,$$

$$\sqrt{\operatorname{Ber}\frac{\partial(\tilde{x},\tilde{\theta})}{\partial(x,\theta)}} = \det\frac{\partial \tilde{x}^i}{\partial x^j}$$

Compare this with decomposition for linear canonical transformation I

$$K = \begin{pmatrix} A & 0 \\ 0 & D \end{pmatrix} \begin{pmatrix} A' & \mathcal{B} \\ \mathcal{C} & 1 \end{pmatrix}$$

$$K = \begin{pmatrix} A & 0 \\ 0 & (A^{+})^{-1} \end{pmatrix} \begin{pmatrix} 1 + \mathcal{B}\mathcal{C} & \mathcal{B} \\ \mathcal{C} & 1 \end{pmatrix}$$

$$K = \begin{pmatrix} A & 0 \\ 0 & D \end{pmatrix} \begin{pmatrix} A' & \mathcal{B} \\ \mathcal{C} & 1 \end{pmatrix}$$

$$K = \begin{pmatrix} A & 0 \\ 0 & (A^+)^{-1} \end{pmatrix} \begin{pmatrix} 1 + \mathcal{B}\mathcal{C} & \mathcal{B} \\ \mathcal{C} & 1 \end{pmatrix}$$
One can show that $\det(1 + \mathcal{B}\mathcal{C}) = 1$ since $\operatorname{Tr}^k(\mathcal{B}\mathcal{C}) = 0$

$$\operatorname{Ber} K = \operatorname{Ber} \begin{pmatrix} A & 0 \\ 0 & (A^{+})^{-1} \end{pmatrix} \operatorname{Ber} \begin{pmatrix} 1 + \mathcal{B}\mathcal{C} & \mathcal{B} \\ \mathcal{C} & 1 \end{pmatrix}$$
$$= \frac{\det A}{\det(A^{+})^{-1}} \frac{\det(1 + \mathcal{B}\mathcal{C} - \mathcal{B}\mathcal{C})}{\det 1} = \det A^{2}.$$

Question: How to describe canonical $\Delta^{\#}$ operator in invariant way?

(The original formula $\Delta^\# \mathbf{s} = \frac{\partial^2 s(x,\theta)}{\partial x^a \partial \theta_a} \sqrt{dx^1 \dots dx^p d\theta_1 \dots d\theta_p}$ is written in Darboux coordinates).

Question: How to describe canonical $\Delta^{\#}$ operator in invariant way?

(The original formula $\Delta^{\#}\mathbf{s} = \frac{\partial^2 s(x,\theta)}{\partial x^a \partial \theta_a} \sqrt{dx^1 \dots dx^p d\theta_1 \dots d\theta_p}$ is written in Darboux coordinates).

In 2006 K. Bering wrote the explicit expression for $\Delta^{\#}$ operator in an arbitrary coordinates in terms of components of 2-form defining symplectic structure. He proved by straightforward calculations that this expression defines invariant operator which coincides with $\Delta^{\#}\text{-}\text{operator}.$

(See K. Bering "A Note on Semidensites in Antisymplectic Geometry".hep-th/0604)

Severa's spectral sequence

In 2005 P.Severa constructed the remarkable spectral sequence which contains as ingridients semidensites and $\Delta^\#\text{-}\text{-}\text{operator}.$ Thus he finds a natural definition of this 'somewhat miracolous operator'. (See P. Severa "On the origin of the BV operator…" (math/050633))

Let M be n|n-dimensional manifold with symplectic structure defined by odd non-degenerate closed two form ω .

Let $\Omega(M)$ be a space of all (pseudo)differential forms on M, i.e. functions on ΠTM .

Consider differential $Q = d + \omega$. For any F-function on ΠTM (differential form on E) $QF = dF + \omega F$.

One can see that

$$Q^2 = d^2 = \omega^2 = 0, d\omega + \omega d = 0$$

Spectral sequence $\{E_r, d_r\}$

$$E_{r+1}=H(E_r,d_r)$$

with
$$E_0 = \Omega(M)$$
, $d_0 = \omega$.

Theorem

The space $E_1 = H(\Omega(M), \omega)$ can be naturally identified with the space of semidensities on M.

Spectral sequence $\{E_r, d_r\}$

$$E_{r+1}=H(E_r,d_r)$$

with $E_0 = \Omega(M)$, $d_0 = \omega$.

Theorem

The space $E_1 = H(\Omega(M), \omega)$ can be naturally identified with the space of semidensities on M.

Elements of cohomology space $E_1 = H(\Omega(M), \omega)$ are represented in Darboux coordinates as classes $s(x,\theta)[dx^1 \dots dx^n]$. Under a change of Darboux coordinates $(x,\theta) \to (\tilde{x},\tilde{\theta})$

$$[dx^1 \dots dx^n] \to \det \left(\frac{\partial x}{\partial \tilde{x}}\right)$$

Spectral sequence $\{E_r, d_r\}$

$$E_{r+1}=H(E_r,d_r)$$

with $E_0 = \Omega(M)$, $d_0 = \omega$.

Theorem

The space $E_1 = H(\Omega(M), \omega)$ can be naturally identified with the space of semidensities on M.

Elements of cohomology space $E_1 = H(\Omega(M), \omega)$ are represented in Darboux coordinates as classes $s(x,\theta)[dx^1 \dots dx^n]$. Under a change of Darboux coordinates $(x,\theta) \to (\tilde{x},\tilde{\theta})$

$$[dx^{1} \dots dx^{n}] \to \underbrace{\det \left(\frac{\partial x}{\partial \tilde{x}}\right)}_{\sqrt{\operatorname{Ber} \frac{\partial (\tilde{x}, \tilde{\theta})}{\partial (x, \theta)}}} [d\tilde{x}^{1} \dots d\tilde{x}^{n}]$$

Theorem

With identification of E_1 with semidensities the differential d_2 of the Severa's spectral sequence vanishes and differential d_3 coincides with the canonical operator $\Delta^{\#}$. The spectral sequence degenerates at the term E_3 .

Severa's spectral sequence and canonical Laplacian

Theorem

With identification of E_1 with semidensities the differential d_2 of the Severa's spectral sequence vanishes and differential d_3 coincides with the canonical operator $\Delta^\#$.

The spectral sequence degenerates at the term E_3 .

Remark Odd symplectic manifold is symplectomorphic to ΠT^*N , where N is (n,0)-dimensional Lagrangian surface in M. $Q = d + \omega$ is twisted differential:

$$QF = e^{-\Theta} de^{\Theta} F$$
,

where
$$d\Theta = \omega$$
, $(\Theta = \theta_a dx^a)$, Hence

$$H(Q, \Omega(M)) = H(d, M) = H_{\text{de Rham}}(N)$$

Severa's spectral sequence and canonical Laplacian

A.Schwarz, I.Shapiro Twisted de Rham cohomology, homological definition of integral and "Physics over ring" arXiv;0809.0086 [math.AG]

Pfaffians in odd symplectic geometry

Severa's spectral sequence and canonical Laplacian

Thank you