PFAFFIANS IN ODD SYMPLECTIC GEOMETRY

Hovhannes Khudaverdian and Theodore Voronov

University of Manchester, Manchester, UK

SUPERSYMMETRIES AND QUANTUM SYMMETRIES July 29-August 3, 2009 DUBNA

Contents

Pfaffians

"Pfaffian" of an odd canonical transformations

Odd Laplacian of Batalin-Vilkovisky formalism

Canonical odd laplacian on semidensities

Severa's spectral sequence and canonical Laplacian

What is Pfaffian of matrix

Let K be an antisymmetrical matrix:

$$
K^{+}=-K .
$$

Then

$$
\operatorname{det} K=(\operatorname{Pf}(K))^{2}, \sqrt{\operatorname{det} K}=\operatorname{Pf}(K),
$$

where $\operatorname{Pf}(K)$, Pfaffian of matrix K is a polynomial of entries of matrix K

Examples

If m is an odd number then $\operatorname{Pf}(K)=0$, since $\operatorname{det} K=0$:

$$
\operatorname{det} K^{+}=\operatorname{det} K=(-1)^{m} \operatorname{det} K=-\operatorname{det} K
$$

$m=2$

$$
K=\left(\begin{array}{cc}
0 & a \\
-a & 0
\end{array}\right)
$$

$$
\operatorname{det} K=a^{2}, \operatorname{Pf}(K)=\sqrt{\operatorname{det} K}=a
$$

Examples $(m=4)$

$$
\begin{aligned}
& K=\left(\begin{array}{cccc}
0 & a & b & c \\
-a & 0 & d & e \\
-b & -d & 0 & f \\
-c & -e & -f & 0
\end{array}\right), \operatorname{det} K=(a f+c d-b e)^{2} \\
& \operatorname{Pf}(K)=a f+c d-b e=K_{12} K_{34}+K_{14} K_{23}-K_{13} K_{24} .
\end{aligned}
$$

Examples $(m=4)$

$$
\begin{aligned}
& K=\left(\begin{array}{cccc}
0 & a & b & c \\
-a & 0 & d & e \\
-b & -d & 0 & f \\
-c & -e & -f & 0
\end{array}\right), \operatorname{det} K=(a f+c d-b e)^{2} \\
& \operatorname{Pf}(K)=a f+c d-b e=K_{12} K_{34}+K_{14} K_{23}-K_{13} K_{24} .
\end{aligned}
$$

$$
F=\left(\begin{array}{cccc}
0 & E_{x} & E_{y} & E_{z} \\
-E_{x} & 0 & H_{z} & -H_{y} \\
-E_{y} & -H_{z} & 0 & H_{x} \\
-E_{z} & H_{y} & -H_{x} & 0
\end{array}\right)
$$

$$
\operatorname{Pf}(F)=\sqrt{\operatorname{det} F}=E_{x} H_{x}+E_{y} H_{y}+E_{z} H_{z}=\mathbf{E H}
$$

Examples $(m=4)$

$$
\begin{aligned}
& K=\left(\begin{array}{cccc}
0 & a & b & c \\
-a & 0 & d & e \\
-b & -d & 0 & f \\
-c & -e & -f & 0
\end{array}\right), \operatorname{det} K=(a f+c d-b e)^{2} \\
& \operatorname{Pf}(K)=a f+c d-b e=K_{12} K_{34}+K_{14} K_{23}-K_{13} K_{24} .
\end{aligned}
$$

$$
\begin{aligned}
F & =\left(\begin{array}{cccc}
0 & E_{x} & E_{y} & E_{z} \\
-E_{x} & 0 & H_{z} & -H_{y} \\
-E_{y} & -H_{z} & 0 & H_{x} \\
-E_{z} & H_{y} & -H_{x} & 0
\end{array}\right) \\
\operatorname{Pf}(F) & =\sqrt{\operatorname{det} F}=E_{x} H_{x}+E_{y} H_{y}+E_{z} H_{z}=\mathbf{E H}
\end{aligned}
$$

$F \wedge F=\operatorname{Pf}(F) d x^{0} \wedge d x^{1} \wedge d x^{2} \wedge d x^{3}$

Odd canonical transformations

$n \mid n$-dimensional odd symplectic superspace:
$\left\{x^{1}, \ldots, x^{n} ; \theta_{1}, \ldots, \theta_{n}\right\}$

$$
\begin{gather*}
\omega=d x^{a} d \theta_{a} \tag{*}\\
\{f, g\}=\frac{\partial f}{\partial x^{a}} \frac{\partial g}{\partial \theta_{a}}+(-1)^{p(f)} \frac{\partial f}{\partial \theta_{a}} \frac{\partial g}{\partial x^{a}} \tag{**}\\
\left\{x^{a}, \theta_{b}\right\}=\delta_{b}^{a}\left\{x^{a}, x^{b}\right\}=0,,\left\{\theta_{a}, \theta_{b}\right\}=0, \\
\left\{x^{1}, \ldots, x^{n} ; \theta_{1}, \ldots, \theta_{n}\right\} \text { are Darboux coordinates }
\end{gather*}
$$

Odd canonical transformation preserve the form (*) (the odd Poisson bracket (**))

Linear odd canonical transformation

$$
(x, \theta) \rightarrow(y, \eta)=(x, \theta)\left(\begin{array}{cc}
A & \mathscr{B} \\
\mathscr{C} & D
\end{array}\right),\left\{\begin{array}{l}
y^{a}=x^{b} A_{b}^{a}+\theta_{b} \mathscr{C}_{a}^{b} \\
\eta_{a}=x^{b} \mathscr{B}_{b a}+\theta_{b} D_{a}^{b}
\end{array}\right.
$$

where entries of $n \times n$ matrices A and D are even numbers (even elements of a Grassmann algebra), and entries of $n \times n$ matrices \mathscr{B} and \mathscr{C} are odd numbers (odd elements of a Grassmann algebra) and the following conditions are obeyed:

$$
\left\{\begin{array}{l}
A^{+} \mathscr{C}+\mathscr{C}^{+} A=0 \\
D^{+} \mathscr{B}=\mathscr{B}^{+} D \\
A^{+} D+\mathscr{C}^{+} \mathscr{B}=1
\end{array}\right.
$$

Examples

$$
K=\left(\begin{array}{ll}
A & \mathscr{B} \\
\mathscr{C} & D
\end{array}\right): \quad\left\{\begin{array}{l}
A^{+} \mathscr{C}+\mathscr{C}+A=0 \\
D^{+} \mathscr{B}=\mathscr{B}^{+} D \\
A^{+} D+\mathscr{C}+\mathscr{B}=1
\end{array}\right.
$$

Examples

$$
K=\left(\begin{array}{ll}
A & \mathscr{B} \\
\mathscr{C} & D
\end{array}\right): \quad\left\{\begin{array}{l}
A^{+} \mathscr{C}+\mathscr{C}^{+} A=0 \\
D^{+} \mathscr{B}=\mathscr{B}+D \\
A^{+} D+\mathscr{C}+\mathscr{B}=1
\end{array}\right.
$$

$$
\left(\begin{array}{cc}
A & 0 \\
0 & D
\end{array}\right) \quad A^{+} D=1
$$

Examples

$$
K=\left(\begin{array}{ll}
A & \mathscr{B} \\
\mathscr{C} & D
\end{array}\right): \quad\left\{\begin{array}{l}
A^{+} \mathscr{C}+\mathscr{C}+A=0 \\
D^{+} \mathscr{B}=\mathscr{B}^{+} D \\
A^{+} D+\mathscr{C}+\mathscr{B}=1
\end{array}\right.
$$

$$
\begin{gathered}
\left(\begin{array}{cc}
A & 0 \\
0 & D
\end{array}\right) \quad A^{+} D=1 \\
\left(\begin{array}{cc}
1+\mathscr{B} \mathscr{C} & \mathscr{B} \\
\mathscr{C} & 1
\end{array}\right) \quad \mathscr{B}^{+}=\mathscr{B}, \mathscr{C}^{+}=-\mathscr{C} .
\end{gathered}
$$

Berezinian of odd canon.transform

In a drastic difference to the even case odd canonical transformations do not preserve a volume form!. Berezinian (superdeterminant) of an odd canonical transformation in general is not equal to unity

$$
K=\left(\begin{array}{cc}
A & \mathscr{B} \\
\mathscr{C} & D
\end{array}\right), \operatorname{Ber} K=\frac{\operatorname{det}\left(A-\mathscr{B} D^{-1} \mathscr{C}\right)}{\operatorname{det} D} \neq 1
$$

Example

$$
\operatorname{Ber}\left(\begin{array}{cc}
A & 0 \\
0 & D
\end{array}\right)=\frac{\operatorname{det} A}{\operatorname{det} D}=\frac{\operatorname{det} A}{\operatorname{det}\left(A^{+}\right)^{-1}}=\operatorname{det} A^{2}, \text { since } A^{+} D=1
$$

Fact from linear algebra

Theorem
Let $K=\left(\begin{array}{cc}A & \mathscr{B} \\ \mathscr{C} & D\end{array}\right)$, be a matrix of a linear odd canonical transformation. Then

$$
\operatorname{Ber} K=(\operatorname{det} A)^{2}, \sqrt{\operatorname{Ber} A}=\operatorname{det} A
$$

Polynomial $\operatorname{det} A$ is a square root of Berezinian of odd canonical transformation K ("pfaffian of K ").

$$
K=K_{1} K_{2}=\left(\begin{array}{cc}
A_{1} & \mathscr{B}_{1} \\
\mathscr{C}_{1} & D_{1}
\end{array}\right)\left(\begin{array}{cc}
A_{2} & \mathscr{B}_{2} \\
\mathscr{C}_{2} & D_{2}
\end{array}\right)=\left(\begin{array}{cc}
A_{1} A_{2}+\mathscr{B}_{1} \mathscr{C}_{2} & \ldots \\
\ldots & \ldots
\end{array}\right)
$$

$\operatorname{Ber} K=\operatorname{Ber} K_{1} \operatorname{Ber} K_{2}$

$\operatorname{det}\left(A_{1} A_{2}+\mathscr{B}_{1} \mathscr{C}_{2}\right)=\operatorname{det} A_{1} \operatorname{det} A_{2}$

Proof

$$
K=\left(\begin{array}{cc}
A & \mathscr{B} \\
\mathscr{C} & D
\end{array}\right): \quad\left\{\begin{array}{l}
A^{+} \mathscr{C}+\mathscr{C}^{+} A=0 \\
D^{+} \mathscr{B}=\mathscr{B}^{+} D \\
A^{+} D+\mathscr{C}^{+} \mathscr{B}=1
\end{array}\right.
$$

Proof

$$
K=\left(\begin{array}{cc}
A & \mathscr{B} \\
\mathscr{C} & D
\end{array}\right): \quad\left\{\begin{array}{l}
A^{+} \mathscr{C}+\mathscr{C}^{+} A=0 \\
D^{+} \mathscr{B}=\mathscr{B}^{+} D \\
A^{+} D+\mathscr{C}^{+} \mathscr{B}=1
\end{array}\right.
$$

$$
\left(\begin{array}{cc}
A & 0 \\
0 & D
\end{array}\right) \quad A^{+} D=1
$$

Proof

$$
K=\left(\begin{array}{ll}
A & \mathscr{B} \\
\mathscr{C} & D
\end{array}\right): \quad\left\{\begin{array}{l}
A^{+} \mathscr{C}+\mathscr{C}^{+} A=0 \\
D^{+} \mathscr{B}=\mathscr{B}+D \\
A^{+} D+\mathscr{C}+\mathscr{B}=1
\end{array}\right.
$$

$$
\begin{gathered}
\left(\begin{array}{cc}
A & 0 \\
0 & D
\end{array}\right)
\end{gathered} \quad A^{+} D=1 .
$$

Proof...

$$
K=\left(\begin{array}{ll}
A & 0 \\
0 & D
\end{array}\right)\left(\begin{array}{cc}
A^{\prime} & \mathscr{B} \\
\mathscr{C} & 1
\end{array}\right)
$$

Proof...

$$
\begin{gathered}
K=\left(\begin{array}{cc}
A & 0 \\
0 & D
\end{array}\right)\left(\begin{array}{cc}
A^{\prime} & \mathscr{B} \\
\mathscr{C} & 1
\end{array}\right) \\
K=\left(\begin{array}{cc}
A & 0 \\
0 & \left(A^{+}\right)^{-1}
\end{array}\right)\left(\begin{array}{cc}
1+\mathscr{B} \mathscr{C} & \mathscr{B} \\
\mathscr{C} & 1
\end{array}\right)
\end{gathered}
$$

Proof...

$$
\begin{gathered}
K=\left(\begin{array}{cc}
A & 0 \\
0 & D
\end{array}\right)\left(\begin{array}{cc}
A^{\prime} & \mathscr{B} \\
\mathscr{C} & 1
\end{array}\right) \\
K=\left(\begin{array}{cc}
A & 0 \\
0 & \left(A^{+}\right)^{-1}
\end{array}\right)\left(\begin{array}{cc}
1+\mathscr{B} \mathscr{C} & \mathscr{B} \\
\mathscr{C} & 1
\end{array}\right)
\end{gathered}
$$

One can show that $\operatorname{det}(1+\mathscr{B} \mathscr{C})=1$ since $\operatorname{Tr}^{k}(\mathscr{B} \mathscr{C})=0$

$$
\begin{gathered}
\text { Ber } K=\operatorname{Ber}\left(\begin{array}{cc}
A & 0 \\
0 & \left(A^{+}\right)^{-1}
\end{array}\right) \operatorname{Ber}\left(\begin{array}{cc}
1+\mathscr{B} \mathscr{C} & \mathscr{B} \\
\mathscr{C} & 1
\end{array}\right) \\
=\frac{\operatorname{det} A}{\operatorname{det}\left(A^{+}\right)^{-1}} \frac{\operatorname{det}(1+\mathscr{B} \mathscr{C}-\mathscr{B} \mathscr{C})}{\operatorname{det} 1}=\operatorname{det} A^{2} .
\end{gathered}
$$

The fact stated above underlines the deep geometrical properties of the odd Laplacian operator in Batalin Vilkovisky formalism.

Batalin-Vilkovisky Δ-operator

In 1981 I. Batalin and G. Vilkovisky considered the following second-order operator acting on functions on an odd symplectic superspace:

$$
\Delta_{0} F(x, \theta)=\frac{\partial^{2} F(x, \theta)}{\partial x^{2} \partial \theta_{a}}
$$

where (x^{a}, θ_{a}) are arbitrary Darboux coordinates on the odd symplectic superspace. This second order operator is invariant under arbitrary canonical transformations which preserve volume form $d x^{1} \ldots d x^{n} d \theta_{1} \ldots d \theta_{n}$
$\underbrace{\left\{x^{1}, \ldots, x^{n} ; \theta_{1}, \ldots, \theta_{n}\right\}} \rightarrow \underbrace{\left\{\tilde{x}^{1}, \ldots, \tilde{x}^{n} ; \theta_{1}, \ldots, \theta_{n}\right\}}$ such that
Darboux coordinates Darboux coordinates

$$
\operatorname{Ber} \frac{\partial\left(x^{\prime}, \theta^{\prime}\right)}{\partial(x, \theta)}=1
$$

Batalin-Vilkovisky identity

For an arbitrary odd canonical transformation

$$
\operatorname{Ber} \frac{\partial\left(x^{\prime}, \theta^{\prime}\right)}{\partial(x, \theta)} \neq 1 .
$$

This difference with an even canonical transformation is a reason why second order Laplacian arises.

On the other hand the following identity is obeyed:

$$
\Delta_{0} \sqrt{\left(\operatorname{Ber} \frac{\partial\left(x^{\prime}, \theta^{\prime}\right)}{\partial(x, \theta)}\right)}=0
$$

This highly non-trivial identity obtained by Batalin and Vilkovisky is a core part of Δ-operators properties.

Invariant construction for BV Δ-operator

$$
\Delta_{\rho} F=\frac{1}{2} \frac{\mathscr{L}_{D_{F}} \rho}{\rho}=\frac{1}{2} \operatorname{div}_{\rho} D_{F}=
$$

Invariant construction for BV Δ-operator

$$
\Delta_{\rho} F=\frac{1}{2} \frac{\mathscr{L}_{D_{F}} \rho}{\rho}=\frac{1}{2} \operatorname{div}_{\rho} D_{F}=\frac{\partial^{2} F(x, \theta)}{\partial x^{a} \partial \theta_{a}}+\frac{1}{2}\{\log \rho, F\}
$$

Invariant construction for BV Δ-operator

$$
\begin{aligned}
\Delta_{\rho} F & =\frac{1}{2} \frac{\mathscr{L}_{D_{F}} \rho}{\rho}=\frac{1}{2} \operatorname{div}_{\rho} D_{F}=\frac{\partial^{2} F(x, \theta)}{\partial x^{2} \partial \theta_{a}}+\frac{1}{2}\{\log \rho, F\} \\
\rho & =\rho(x, \theta) d x^{1} \ldots d x^{n} d \theta_{1} \ldots d \theta_{n} \text {-volume form }
\end{aligned}
$$

Invariant construction for BV Δ-operator

$$
\begin{gathered}
\Delta_{\rho} F=\frac{1}{2} \frac{\mathscr{L}_{D_{F}} \rho}{\rho}=\frac{1}{2} \operatorname{div}_{\rho} D_{F}=\frac{\partial^{2} F(x, \theta)}{\partial x^{a} \partial \theta_{a}}+\frac{1}{2}\{\log \rho, F\} \\
\rho=\rho(x, \theta) d x^{1} \ldots d x^{n} d \theta_{1} \ldots d \theta_{n} \text {-volume form } \\
D_{F}=\left\{f, x^{a}\right\} \frac{\partial}{\partial x^{a}}+\left\{f, \theta_{a}\right\} \frac{\partial}{\partial \theta_{a}}-H a m i l t o n i a n ~ v e c t o r ~ f i e l d ~ \\
\Delta_{\rho}=\Delta_{0}, \text { if } \rho=1 .
\end{gathered}
$$

(Kh. 1989)

Properties of Δ - operator. BV master-equation

 Let $\rho=\rho(x, \theta) d x^{1} \ldots d x^{n} d \theta_{1} \ldots d \theta_{\rho}$ be a volume form in odd symplectic superspace, (($\left.x^{i}, \theta_{j}\right)$ Darboux coordinates)
Properties of Δ - operator. BV master-equation

 Let $\rho=\rho(x, \theta) d x^{1} \ldots d x^{n} d \theta_{1} \ldots d \theta_{\rho}$ be a volume form in odd symplectic superspace, (($\left.x^{i}, \theta_{j}\right)$ Darboux coordinates)a) there exist another Darboux coordinates $\left\{\tilde{x}^{i}, \tilde{\theta}_{j}\right\}$ such that in these coordinates

$$
\rho(\tilde{x}, \tilde{\theta})=1 \text {. }
$$

Properties of Δ - operator. BV master-equation

 Let $\rho=\rho(x, \theta) d x^{1} \ldots d x^{n} d \theta_{1} \ldots d \theta_{\rho}$ be a volume form in odd symplectic superspace, (($\left.x^{i}, \theta_{j}\right)$ Darboux coordinates)a) there exist another Darboux coordinates $\left\{\tilde{x}^{i}, \tilde{\theta}_{j}\right\}$ such that in these coordinates

$$
\rho(\tilde{x}, \tilde{\theta})=1 .
$$

b)

$$
\Delta_{0} \sqrt{\rho(x, \theta)}=0
$$

Batalin-Vilkovisky master-equation for the master action $S=\log \sqrt{\rho}$.
c)

$$
\Delta_{\rho}^{2}=0
$$

Properties of Δ-operator. BV master-equation

 Let $\rho=\rho(x, \theta) d x^{1} \ldots d x^{n} d \theta_{1} \ldots d \theta_{\rho}$ be a volume form in odd symplectic superspace, (($\left.x^{i}, \theta_{j}\right)$ Darboux coordinates)a) there exist another Darboux coordinates $\left\{\tilde{x}^{i}, \tilde{\theta}_{j}\right\}$ such that in these coordinates

$$
\rho(\tilde{x}, \tilde{\theta})=1 .
$$

b)

$$
\Delta_{0} \sqrt{\rho(x, \theta)}=0
$$

Batalin-Vilkovisky master-equation for the master action $S=\log \sqrt{\rho}$.
c)

$$
\Delta_{\rho}^{2}=0
$$

These conditions are equivalent (under some technical assumptions) (Kh., A. Nersessian, 1991-1993)

Properties of Δ-operator. BV master-equation

 Let $\rho=\rho(x, \theta) d x^{1} \ldots d x^{n} d \theta_{1} \ldots d \theta_{\rho}$ be a volume form in odd symplectic superspace, (($\left.x^{i}, \theta_{j}\right)$ Darboux coordinates)a) there exist another Darboux coordinates $\left\{\tilde{x}^{i}, \tilde{\theta}_{j}\right\}$ such that in these coordinates

$$
\rho(\tilde{x}, \tilde{\theta})=1 .
$$

b)

$$
\Delta_{0} \sqrt{\rho(x, \theta)}=0
$$

Batalin-Vilkovisky master-equation for the master action $S=\log \sqrt{\rho}$.
c)

$$
\Delta_{\rho}^{2}=0
$$

These conditions are equivalent (under some technical assumptions) (Kh., A. Nersessian, 1991-1993), (A. Schwarz-1993)

Canonical odd laplacian on semidensities. Construction

Let M be an odd symplectic (super)manifold, i.e. $n \mid n$-dimensional (super)manifold endowed with an odd closed non-degenerate 2 -form. The action of canonical odd Laplacian on an arbitrary semidensity $\mathbf{s}=s(x, \theta) \sqrt{d x^{1} \ldots d x^{n} d \theta_{1} \ldots d \theta_{n}}$ is defined by the formula

$$
\Delta^{\#} \mathbf{s}=\frac{\partial^{2} s(x, \theta)}{\partial x^{2} \partial \theta_{a}} \sqrt{d x^{1} \ldots d x^{n} d \theta_{1} \ldots d \theta_{n}}
$$

where $\left\{x^{1}, \ldots, x^{n} ; \theta_{1}, \ldots, \theta_{n}\right\}$ are an arbitrary Darboux coordinates on M.

Contrary to the Δ_{ρ}-operator on functions, the operator $\Delta^{\#}$ does not depend on volume form.
(Kh., 1999)

Spaces $\Pi T^{*} M$ and $\Pi T M$

Let M be n-dimensional manifold (local coordinates $\left(x^{i}\right)$.

Spaces $\Pi T^{*} M$ and $П T M$

Let M be n-dimensional manifold (local coordinates (x^{i}).
TM -space of tangent vectors (local coordinates (x^{i}, \dot{x}^{j})

Spaces $\Pi T^{*} M$ and $\Pi T M$

Let M be n-dimensional manifold (local coordinates $\left(x^{i}\right)$.
TM -space of tangent vectors (local coordinates (x^{i}, \dot{x}^{j})
$T^{*} M$ space of tangent covectors (local coordinates $\left.\left(x^{i}, p_{j}\right)\right)$

Spaces $\Pi T^{*} M$ and $\Pi T M$

Let M be n-dimensional manifold (local coordinates $\left(x^{i}\right)$.
TM -space of tangent vectors (local coordinates (x^{i}, \dot{x}^{j})
$T^{*} M$ space of tangent covectors (local coordinates $\left(x^{i}, p_{j}\right)$)
Canonical (even) symplectic structure on $T^{*} M$:

$$
\left\{x^{i}, p_{j}\right\}=\delta_{j}^{i},\left\{x^{i}, x^{j}\right\}=0,\left\{p_{i}, p_{j}\right\}=0
$$

Spaces $\Pi T^{*} M$ and $\Pi T M$

Let M be n-dimensional manifold (local coordinates $\left(x^{i}\right)$.
TM -space of tangent vectors (local coordinates (x^{i}, \dot{x}^{j})
$T^{*} M$ space of tangent covectors (local coordinates $\left.\left(x^{i}, p_{j}\right)\right)$
Canonical (even) symplectic structure on $T^{*} M$:

$$
\left\{x^{i}, p_{j}\right\}=\delta_{j}^{i},\left\{x^{i}, x^{j}\right\}=0,\left\{p_{i}, p_{j}\right\}=0
$$

Change parity of fibres
$T M \rightarrow \Pi T M$ with coordinates $\left(x^{i}, \xi^{j}\right)$,
$T^{*} M \rightarrow \Pi T^{*} M$ with coordinates $\left(x^{i}, \theta_{j}\right)$
$\Pi T^{*} M$ is an odd symplectic supermanifold endowed with canonical odd symplectic structure:

$$
\left\{x^{i}, \theta_{j}\right\}=\delta_{j}^{i},\left\{x^{i}, x^{j}\right\}=0,\left\{\theta_{i}, \theta_{j}\right\}=0
$$

$$
\underbrace{F(x, \theta)}_{\text {tion on } \Pi T^{*} M}=\underbrace{F(x)+F^{i}(x) \theta_{i}+F^{i j} \theta_{i} \theta_{j}+\cdots+F^{1 \ldots n} \theta_{1} \ldots \theta_{n}}_{\text {mulitvector field on } M}
$$

$$
\underbrace{\omega(x, \xi)}=\underbrace{\omega(x)+\omega_{i}(x) \xi^{i}+\omega_{i j} \xi^{i} \xi^{j}+\cdots+\omega_{1 \ldots n} \xi^{1} \ldots \xi^{n}}
$$

$$
\text { function on ПТМ } \quad \text { differential form on } M
$$

Differential form \leftrightarrow Function on $\Pi T^{*} M$?

$$
\underbrace{F(x, \theta)}_{\text {tion on } \Pi T^{*} M}=\underbrace{F(x)+F^{i}(x) \theta_{i}+F^{i j} \theta_{i} \theta_{j}+\cdots+F^{1 \ldots n} \theta_{1} \ldots \theta_{n}}_{\text {mulitvector field on } M}
$$

$$
\underbrace{\omega(x, \xi)}=\underbrace{\omega(x)+\omega_{i}(x) \xi^{i}+\omega_{i j} \xi^{i} \xi^{j}+\cdots+\omega_{1 \ldots n} \xi^{1} \ldots \xi^{n}}
$$

function on ПTM

Differential form \leftrightarrow Function on $\Pi T^{*} M$? NO!

$$
\underbrace{F(x, \theta)}_{\text {tion on } \Pi T^{*} M}=\underbrace{F(x)+F^{i}(x) \theta_{i}+F^{i j} \theta_{i} \theta_{j}+\cdots+F^{1 \ldots n} \theta_{1} \ldots \theta_{n}}_{\text {mulitvector field on } M}
$$

$$
\underbrace{\omega(x, \xi)}_{\text {function on ПTM }}=\underbrace{\omega(x)+\omega_{i}(x) \xi^{i}+\omega_{i j} \xi^{i} \xi^{j}+\cdots+\omega_{1 \ldots n} \xi^{1} \ldots \xi^{n}}_{\text {differential form on } M}
$$

Differential form \leftrightarrow Function on $\Pi T^{*} M$? NO!

Differential form \leftrightarrow semidensity on $\Pi T^{*} M$

$\omega(x, \xi) \xrightarrow{\tau} \mathbf{s}=\left(\int \omega(x, \xi) e^{\xi^{i} \theta_{i}} d \xi^{1} \ldots d \xi^{n}\right) \sqrt{d x^{1} d x^{2} \ldots d x^{n} d \theta_{1} \ldots d \theta_{n}}$

Example

Let $\omega=a d x^{1}+b d x^{2}$ on M^{2}. Then

$$
\begin{gathered}
\mathbf{s}=\tau(\omega)= \\
\left(\int\left(a \xi^{1}+b \xi^{2}\right) e^{\xi^{1} \theta_{1}+\xi^{2} \theta_{2}} d \xi^{1} d \xi^{2}\right) \sqrt{d x^{1} d x^{2} d \theta_{1} d \theta_{2}}= \\
\left(a \theta_{2}-b \theta_{1}\right) \sqrt{d x^{1} d x^{2} d \theta_{1} d \theta_{2}}
\end{gathered}
$$

semidensity on $\Pi T^{*} M^{2}$.

Geometrical meaning of $\Delta^{\#}$

differential form on $M \leftrightarrow$ semidensities on $\Pi T^{*} M$

differential form on $M \leftrightarrow$ semidensities on $\Pi T^{*} M$

$$
\begin{gathered}
\Delta^{\#}(\tau(\omega))=\tau(d(\omega)), \\
d=\xi^{i} \frac{\partial}{\partial x^{i}}, \text { exterior differential }
\end{gathered}
$$

Geometrical meaning of $\Delta^{\#}$

differential form on $M \leftrightarrow$ semidensities on $\Pi T^{*} M$

differential form on $M \leftrightarrow$ semidensities on $\Pi T^{*} M$

$$
\begin{gathered}
\Delta^{\#}(\tau(\omega))=\tau(d(\omega)) \\
d=\xi^{i} \frac{\partial}{\partial x^{i}}, \text { exterior differential }
\end{gathered}
$$

Diffeomorphims of $M \subset$ canonical transformations of $\Pi T^{*} M$

Diffeomorphism of M defines canonical transformation of $\Pi T^{*} M$:

$$
\tilde{x}^{i}=\tilde{x}^{i}\left(x^{1}, \ldots, x^{n}\right) \rightarrow\left(\tilde{x}^{i}, \tilde{\theta}_{j}\right):\left\{\begin{array}{l}
\tilde{x}^{i}=\tilde{x}^{i}\left(x^{1}, \ldots, x^{n}\right) \tag{*}\\
\tilde{\theta}_{j}=\frac{\partial x^{m}}{\partial x^{j}} \theta_{m}
\end{array}\right.
$$

On the other hand a canonical transformation can be considered as a composition of transformation (*) and a special canonical transformation:

$$
\left\{\begin{array}{l}
\tilde{x}^{i}=x^{i}+f^{i}(x, \theta) \\
\tilde{\theta}_{j}=\theta_{j}+g(x, \theta)
\end{array} \quad \text { where }\left.f^{i}(x, \theta)\right|_{\theta=0}=\left.g^{i}(x, \theta)\right|_{\theta=0}=0\right.
$$

$$
\sqrt{\operatorname{Ber} \frac{\partial(\tilde{x}, \tilde{\theta})}{\partial(x, \theta)}}=\operatorname{det} \frac{\partial \tilde{x}^{i}}{\partial x^{j}}
$$

Compare this with decomposition for linear canonical transformation I

$$
\begin{gathered}
K=\left(\begin{array}{cc}
A & 0 \\
0 & D
\end{array}\right)\left(\begin{array}{cc}
A^{\prime} & \mathscr{B} \\
\mathscr{C} & 1
\end{array}\right) \\
K=\left(\begin{array}{cc}
A & 0 \\
0 & \left(A^{+}\right)^{-1}
\end{array}\right)\left(\begin{array}{cc}
1+\mathscr{B} \mathscr{C} & \mathscr{B} \\
\mathscr{C} & 1
\end{array}\right)
\end{gathered}
$$

$$
\begin{gathered}
K=\left(\begin{array}{cc}
A & 0 \\
0 & D
\end{array}\right)\left(\begin{array}{cc}
A^{\prime} & \mathscr{B} \\
\mathscr{C} & 1
\end{array}\right) \\
K=\left(\begin{array}{cc}
A & 0 \\
0 & \left(A^{+}\right)^{-1}
\end{array}\right)\left(\begin{array}{cc}
1+\mathscr{B} \mathscr{C} & \mathscr{B} \\
\mathscr{C} & 1
\end{array}\right)
\end{gathered}
$$

One can show that $\operatorname{det}(1+\mathscr{B} \mathscr{C})=1$ since $\operatorname{Tr}^{k}(\mathscr{B} \mathscr{C})=0$

$$
\operatorname{Ber} K=\operatorname{Ber}\left(\begin{array}{cc}
A & 0 \\
0 & \left(A^{+}\right)^{-1}
\end{array}\right) \operatorname{Ber}\left(\begin{array}{cc}
1+\mathscr{B} \mathscr{C} & \mathscr{B} \\
\mathscr{C} & 1
\end{array}\right)
$$

$$
=\frac{\operatorname{det} A}{\operatorname{det}\left(A^{+}\right)^{-1}} \frac{\operatorname{det}(1+\mathscr{B} \mathscr{C}-\mathscr{B} \mathscr{C})}{\operatorname{det} 1}=\operatorname{det} A^{2}
$$

Question: How to describe canonical $\Delta^{\#}$ operator in invariant way?
(The original formula $\Delta^{\#} \mathbf{s}=\frac{\partial^{2} s(x, \theta)}{\partial x^{2} \partial \theta_{a}} \sqrt{d x^{1} \ldots d x^{p} d \theta_{1} \ldots d \theta_{p}}$ is written in Darboux coordinates).

Question: How to describe canonical $\Delta^{\#}$ operator in invariant way?
(The original formula $\Delta^{\#} \mathbf{s}=\frac{\partial^{2} s(x, \theta)}{\partial x^{2} \partial \theta_{a}} \sqrt{d x^{1} \ldots d x^{p} d \theta_{1} \ldots d \theta_{p}}$ is written in Darboux coordinates).
In 2006 K. Bering wrote the explicit expression for $\Delta^{\#}$ operator in an arbitrary coordinates in terms of components of 2-form defining symplectic structure.
He proved by straightforward calculations that this expression defines invariant operator which coincides with $\Delta^{\#}$-operator.
(See K. Bering "A Note on Semidensites in Antisymplectic
Geometry".hep-th/0604)

Severa's spectral sequence

In 2005 P.Severa constructed the remarkable spectral sequence which contains as ingridients semidensites and $\Delta^{\#}$-operator. Thus he finds a natural definition of this 'somewhat miracolous operator'. (See P. Severa "On the origin of the BV operator..." (math/050633))

Let M be $n \mid n$-dimensional manifold with symplectic structure defined by odd non-degenerate closed two form ω.

Let $\Omega(M)$ be a space of all (pseudo)differential forms on M, i.e. functions on ПTM.

Consider differential $Q=d+\omega$. For any F-function on $П T M$ (differential form on E) $Q F=d F+\omega F$.
One can see that

$$
Q^{2}=d^{2}=\omega^{2}=0, d \omega+\omega d=0
$$

Spectral sequence $\left\{E_{r}, d_{r}\right\}$

$$
E_{r+1}=H\left(E_{r}, d_{r}\right)
$$

with $E_{0}=\Omega(M), d_{0}=\omega$.
Theorem
The space $E_{1}=H(\Omega(M), \omega)$ can be naturally identified with the space of semidensities on M.

Spectral sequence $\left\{E_{r}, d_{r}\right\}$

$$
E_{r+1}=H\left(E_{r}, d_{r}\right)
$$

with $E_{0}=\Omega(M), d_{0}=\omega$.
Theorem
The space $E_{1}=H(\Omega(M), \omega)$ can be naturally identified with the space of semidensities on M.
Elements of cohomology space $E_{1}=H(\Omega(M), \omega)$ are represented in Darboux coordinates as classes
$s(x, \theta)\left[d x^{1} \ldots d x^{n}\right]$. Under a change of Darboux coordinates
$(x, \theta) \rightarrow(\tilde{x}, \tilde{\theta})$

$$
\left[d x^{1} \ldots d x^{n}\right] \rightarrow \underbrace{\operatorname{det}\left(\frac{\partial x}{\partial \tilde{x}}\right)}
$$

Spectral sequence $\left\{E_{r}, d_{r}\right\}$

$$
E_{r+1}=H\left(E_{r}, d_{r}\right)
$$

with $E_{0}=\Omega(M), d_{0}=\omega$.
Theorem
The space $E_{1}=H(\Omega(M), \omega)$ can be naturally identified with the space of semidensities on M.
Elements of cohomology space $E_{1}=H(\Omega(M), \omega)$ are represented in Darboux coordinates as classes $s(x, \theta)\left[d x^{1} \ldots d x^{n}\right]$. Under a change of Darboux coordinates $(x, \theta) \rightarrow(\tilde{x}, \tilde{\theta})$

$$
\left[d x^{1} \ldots d x^{n}\right] \rightarrow \underbrace{\operatorname{det}\left(\frac{\partial x}{\partial \tilde{x}}\right)}_{\sqrt{\operatorname{Ber} \frac{\partial(\tilde{x}, \tilde{\theta})}{\partial(x, \theta)}}}\left[d \tilde{x}^{1} \ldots d \tilde{x}^{n}\right]
$$

Theorem

With identification of E_{1} with semidensities the differential d_{2} of the Severa's spectral sequence vanishes and differential d_{3} coincides with the canonical operator $\Delta^{\#}$. The spectral sequence degenerates at the term E_{3}.

Theorem

With identification of E_{1} with semidensities the differential d_{2} of the Severa's spectral sequence vanishes and differential d_{3} coincides with the canonical operator $\Delta^{\#}$.
The spectral sequence degenerates at the term E_{3}.
Remark Odd symplectic manifold is symplectomorphic to
$\Pi T^{*} N$, where N is ($n, 0$)-dimensional Lagrangian surface in M.
$Q=d+\omega$ is twisted differential:

$$
Q F=e^{-\Theta} d e^{\ominus} F,
$$

where $d \Theta=\omega,\left(\Theta=\theta_{a} d x^{a}\right)$, Hence

$$
H(Q, \Omega(M))=H(d, M)=H_{\text {deRham }}(N)
$$

A.Schwarz, I.Shapiro Twisted de Rham cohomology, homological definition of integral and "Physics over ring" arXiv;0809.0086 [math.AG]

Thank you

