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Differential forms on manifold M
⇔

Semidensities (half-densities) on odd symplectic superspace ΠT ∗M.

The famous Batalin-Vilkovisky operator—Odd Laplacian rightly
viewed stands instead of de Rham differential.

This is underlined by some simple and beautiful facts from
linear algebra of vector superspaces.
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Differential forms and semidensitites

Differential forms on manifolds

Let M be n-dimensional manifold
(local coordinates (x1, . . . ,xn).
Differential form on M

Ω(M) 3 ω = ωi1...ik dx i1 ∧·· ·∧dx ik

To view differential forms on manifolds consider vector bundles
associated with this manifold.
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Differential forms and semidensitites

Spaces ΠT ∗M and ΠTM
TM –space of tangent vectors (local coordinates (x i , ẋ j)

T ∗M space of tangent covectors (local coordinates (x i ,pj))

Canonical (even) symplectic structure on T ∗M:

{x i ,pj}= δ
i
j ,{x

i ,x j}= 0,{pi ,pj}= 0 .

Change parity of fibres
TM → ΠTM with coordinates (x i ,ξ j), ξ j are odd

T ∗M → ΠT ∗M with coordinates (x i ,θj), θj are odd
ΠT ∗M is an odd symplectic supermanifold endowed with
canonical odd symplectic structure:

{x i ,θj}= δ
i
j ,{x

i ,x j}= 0,{θi ,θj}= 0 .
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T ∗M space of tangent covectors (local coordinates (x i ,pj))

Canonical (even) symplectic structure on T ∗M:

{x i ,pj}= δ
i
j ,{x

i ,x j}= 0,{pi ,pj}= 0 .

Change parity of fibres
TM → ΠTM with coordinates (x i ,ξ j), ξ j are odd

T ∗M → ΠT ∗M with coordinates (x i ,θj), θj are odd
ΠT ∗M is an odd symplectic supermanifold endowed with
canonical odd symplectic structure:

{x i ,θj}= δ
i
j ,{x

i ,x j}= 0,{θi ,θj}= 0 .



Differential forms, Odd Laplacian...

Differential forms and semidensitites

Spaces ΠT ∗M and ΠTM
TM –space of tangent vectors (local coordinates (x i , ẋ j)
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Differential forms and semidensitites

F (x ,θ)︸ ︷︷ ︸
function on ΠT ∗M

= F (x) + F i(x)θi + F ij
θiθj + · · ·+ F 1...n

θ1 . . .θn︸ ︷︷ ︸
mulitvector field on M

ω(x ,ξ )︸ ︷︷ ︸
function on ΠTM

= ω(x) + ωi(x)ξ
i + ωijξ

i
ξ

j + · · ·+ ω1...nξ
1 . . .ξ n︸ ︷︷ ︸

differential form on M
Space of differential forms↔ Space of functions on ΠTM

e.g. ω(x)ikdx i ∧dxk 7→ ω(x ,ξ ) = ω(x)ik ξ
i
ξ

k

Space of multivector fields↔ Space of functions on ΠT ∗M

e.g. F ik (x)∂i ∧∂k 7→ F (x ,θ) = F ik (x)θiθk

Differential forms↔ ??? on ΠT ∗M
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Differential forms and semidensitites

Multivector densities↔ differential forms
Let σ be density on M (≈ σ = σ(x)dx1∧dx2 · · ·∧dxn n-form)
Let F = F k (x)∂k be vector field on M (i.e. function
F (x ,θ) = F k (x)θk on ΠT ∗M).

Vector density F ⊗σ = F k (x)
∂

∂xk σ(x)dx1∧·· ·∧dxn

defines n−1 form ω = ∗(Fσ)

ω(X1,X2, . . . ,Xn−1) = σ(F,X1,X2, . . . ,Xn−1)

k -multivector density on M ↔ n−k -form on M

ω(x ,ξ )︸ ︷︷ ︸
function on ΠTM

=
∫

σ(x)F (x ,θ)︸ ︷︷ ︸
??? on ΠT ∗M

eξ k θk dθ1dθ2 . . .dθn



Differential forms, Odd Laplacian...

Differential forms and semidensitites

Multivector densities↔ differential forms
Let σ be density on M (≈ σ = σ(x)dx1∧dx2 · · ·∧dxn n-form)
Let F = F k (x)∂k be vector field on M (i.e. function
F (x ,θ) = F k (x)θk on ΠT ∗M).

Vector density F ⊗σ = F k (x)
∂

∂xk σ(x)dx1∧·· ·∧dxn

defines n−1 form ω = ∗(Fσ)

ω(X1,X2, . . . ,Xn−1) = σ(F,X1,X2, . . . ,Xn−1)

k -multivector density on M ↔ n−k -form on M

ω(x ,ξ )︸ ︷︷ ︸
function on ΠTM

=
∫

σ(x)F (x ,θ)︸ ︷︷ ︸
??? on ΠT ∗M

eξ k θk dθ1dθ2 . . .dθn



Differential forms, Odd Laplacian...

Differential forms and semidensitites

Multivector densitites and semidensities

{
x i = x i(x̃1, . . . , x̃n)

θj = ∂ x̃m(x1,...,xn)
∂x j θ̃m

changing of local coordinates on ΠT ∗M

Ber
(

∂ (x ,θ)

∂ (x̃ , θ̃)

)
= Ber

(
∂x i

∂ x̃k
∂x r

∂xk
∂ 2x̃m

∂x j θm

0 ∂ x̃m(x)
∂x j

)
=

(
det
(

∂x(x̃)

∂ x̃

))2

σ(x)F (x ,θ)dx1∧dxn = σ(x(x̃))det
(

∂x(x̃)

∂ x̃

)
dx̃1 . . .dx̃n

Multivector density σ(x)F (x ,θ) is semidensity (half-density) on ΠT ∗M
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Differential forms and semidensitites

Differential forms and semidensitites

Semidensity

s(x ,θ)
√

D(x ,θ) = s
(

x(x̃ , θ̃),θ(x̃ , θ̃)
)(

Ber
(

∂ (x ,θ)

∂ (x ,θ)

)) 1
2
√

D(x̃ , θ̃)

Differential form on M=Function on ΠTM ↔ Semidensity on
ΠT ∗M

ω(x ,ξ ) =
∫

s(x ,θ)eξ k θk dθ1dθ2 . . .dθn

s(x ,θ)
√

D(x ,θ) =
∫

ω(x ,ξ )eξ k θk dξ
1dξ

2 . . .dξ
n
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Differential forms and semidensitites

Odd canonical transformations of ΠT ∗M

{x i ,θj}= δ i
j ,{x

i ,x j}= 0,{θi ,θj}= 0{
x i = x i(x̃1, . . . , x̃n) odd canonic. transformation

θj = ∂ x̃m(x1,...,xn)
∂x j θ̃m corresponding to diffeomorphims of M{

x i = x̃ i + f i(x̃ , θ̃) (f i
∣∣
θ=0 = 0) odd canonic. transformation

θj = θ̃j + g j(x̃ , θ̃) (g j
∣∣
θ=0 = 0) identical on M{

x i = x̃ i special
θj = θ̃j + Ψj(x̃) (∂k Ψj −∂jΨk = 0) canon. transformation

An arbitrary odd canonical transformation can be considered as
a composition of these transformations. (Kh.2000)
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Differential forms and semidensitites

De Rham differential in ΠT ∗M
Diff.forms = functions on ΠTM
De Rham differential=linear operator on function on ΠTM:

dω = ξ
i ∂ω(x ,ξ )

∂x i

Function on ΠTM τ−→ semidensities on ΠT ∗M
d ↓ ∆# ↓

Function on ΠTM τ−→ semidensities on ΠT ∗M

∆# (τ (ω)) = τ (d (ω)) ,

d = ξ
i ∂

∂x i , exterior differential

Diffeomorphims of M ⊂ canonical transformations of ΠT ∗M
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Differential forms and semidensitites

Example
Let ω = adx1 + bdx2 on M2, i.e. ω(x ,ξ ) = aξ 1 + bξ 2 function on
ΠTM. Then semidensity s = τ(ω) on ΠT ∗M2 equals to(∫

(aξ
1 + bξ

2)eξ 1θ1+ξ 2θ2dξ
1dξ

2
)√

D(x ,θ) =

(aθ2−bθ1)
√

D(x ,θ)

dω =

(
∂b
∂x1 −

∂a
∂x2

)
dx1∧dx2

∆#(aθ2−bθ1)
√

D(x ,θ) = τ(dω) =

τ

((
∂b
∂x1 −

∂a
∂x2

)
ξ

1
ξ

2
)

=

(
− ∂b

∂x1 +
∂a
∂x2

)
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Differential forms and semidensitites

Canonical odd Laplacian on semidensities

Let E be (n|n)-dimensional odd symplectic superspace.
(x i ,θk ) are Darboux coordinates if
{x i ,θj}= δ i

j ,{x
i ,x j}= 0,{θi ,θj}= 0.

Then one can define the following canonical operator on
semidenisites

∆#s =
∂ 2s(x ,θ)

∂x i∂θi

√
D(x ,θ),

where s = s(x ,θ)
√

D(x ,θ) is an expression of semidensity s in

Darboux coordinates (Kh. 1999).

Canonical odd Laplacian can be considered as a geometrically
rightly viewed expression for Batalin-Vilkovisky operator.
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Odd Laplacian of Batalin-Vilkovisky formalism

Batalin-Vilkovisky ∆-operator
In 1981 I. Batalin and G. Vilkovisky considered the following
second-order operator acting on functions on an odd
symplectic superspace:

∆0F (x ,θ) =
∂ 2F (x ,θ)

∂xa∂θa
,

where (xa,θa) are arbitrary Darboux coordinates on the odd
symplectic superspace. This second order operator is invariant
under arbitrary canonical transformations which preserve
volume form dx1 . . .dxndθ1 . . .dθn

{x1, . . . ,xn;θ1, . . . ,θn}︸ ︷︷ ︸
Darboux coordinates

→{x̃1, . . . , x̃n; θ̃1, . . . ,θn}︸ ︷︷ ︸
Darboux coordinates

such that

Ber
∂ (x ,θ)

∂ (x̃ , θ̃)
= 1 .
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Odd Laplacian of Batalin-Vilkovisky formalism

Batalin-Vilkovisky identity
For an arbitrary odd canonical transformation

Ber
∂ (x ,θ)

∂ (x̃ , θ̃)
6= 1 .

This difference with an even canonical transformation is a
reason why second order Laplacian arises.

On the other hand the following identity is obeyed:

∆0

√(
Ber

∂ (x ′,θ ′)
∂ (x ,θ)

)
= 0 .

This highly non-trivial identity obtained by Batalin and
Vilkovisky is a core part of ∆-operators properties.
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Odd Laplacian of Batalin-Vilkovisky formalism

Invariant construction for BV ∆-operator

∆ρF =
1
2

LDF ρ

ρ
=

1
2

divρDF =

∂ 2F (x ,θ)

∂xa∂θa
+

1
2
{logρ,F} ,

where ρ = ρ(x ,θ)D(x ,θ)—density (volume form)

DF = {f ,xa} ∂

∂xa +{f ,θa}
∂

∂θa
—Hamiltonian vector field

∆ρ = ∆0, if ρ = D(x ,θ) .

(Kh. 1989)
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Odd Laplacian of Batalin-Vilkovisky formalism

Properties of ∆−operator . BV master-equation
Let ρ = ρ(x ,θ)D(x ,θ) be a density (volume form) in odd
symplectic superspace, ((x i ,θj) Darboux coordinates).

a) there exist another Darboux coordinates {x̃ i , θ̃j} such that in
these coordinates

ρ(x̃ , θ̃) = 1 .

b)
∆0
√

ρ(x ,θ) = 0 ⇔ ∆#√
ρ = 0 .

Batalin-Vilkovisky master-equation for the master action
S = log

√
ρ .

c)
∆2

ρ = 0 .

These conditions are equivalent (under some technical assumptions)
(Kh., A. Nersessian, 1991–1993) , (A. Schwarz—1993) .
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Odd Laplacian of Batalin-Vilkovisky formalism

Odd Laplacians on functions and on densities

(
∆#
)2

= 0 .

Let ρ be a density (volume form) on an odd symplectic
superspace.
Then for an arbitrary function F = F (x ,θ)

∆# (F
√

ρ) =
(
∆ρF

)√
ρ + (−1)p(F )F∆#√

ρ .

∆2
ρF =

{
1
√

ρ
∆#√

ρ,F
}

.

A scalar 1√
ρ

∆#√ρ is a scalar curvature of a connection which
is compatible with the symplectic structure and the volume form
(I. Batalin, K. Bering 2006.)
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Odd Laplacian of Batalin-Vilkovisky formalism

Batalin-Vilkovisky identity (revisited)
Consider semidensity s = 1 ·

√
D(x ,θ). By construction

∆#s =
(

∆#s
)√

D(x ,θ) =

(
∂ 2

∂x i∂θi
1
)√

D(x ,θ) =

0 .

In new Darboux coordinates (x̃ , θ̃)

s = 1 ·
√

D(x ,θ) =

√(
Ber

∂ (x ,θ)

∂ (x̃ , θ̃)

)√
D(x̃ , θ̃) ,

∆#s = 0 =

(
∂ 2

∂ x̃ i∂ θ̃i

√(
Ber

∂ (x ,θ)

∂ (x̃ , θ̃)

))√
D(x̃ , θ̃) .

Batalin-Vilkovisky identity:
∂ 2

∂ x̃ i∂ θ̃i

√(
Ber

∂ (x ,θ)

∂ (x̃ , θ̃)

)
= 0 .
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Odd Laplacian of Batalin-Vilkovisky formalism

What is linear algebra reasoning of these phenomena?
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”Pfaffian” of an odd canonical transformations

Recalling: Pfaffian of matrix

Let K be an antisymmetrical matrix:

K + =−K .

Then
detK = (Pf(K ))2 ,

√
detK = Pf(K ) ,

where Pf(K ), Pfaffian of matrix K is a polynomial of entries of
matrix K
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”Pfaffian” of an odd canonical transformations

Examples

If m is an odd number then Pf(K ) = 0, since detK = 0:

detK + = detK = (−1)m detK =−detK .

m = 2

K =

(
0 a
−a 0

)
,

detK = a2,Pf(K ) =
√

detK = a
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”Pfaffian” of an odd canonical transformations

Examples (m = 4)

K =


0 a b c
−a 0 d e
−b −d 0 f
−c −e −f 0

 , detK = (af + cd −be)2

Pf(K ) = af + cd −be = K12K34 + K14K23−K13K24 .

F =


0 Ex Ey Ez
−Ex 0 Hz −Hy
−Ey −Hz 0 Hx
−Ez Hy −Hx 0


Pf(F ) =

√
detF = ExHx + EyHy + EzHz = EH

F ∧F = Pf(F )dx0∧dx1∧dx2∧dx3
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”Pfaffian” of an odd canonical transformations

Odd canonical transformations

n|n-dimensional odd symplectic superspace:
{x1, . . . ,xn;θ1, . . . ,θn}

ω = dxadθa (∗)

{f ,g}=
∂ f

∂xa
∂g
∂θa

+ (−1)p(f ) ∂ f
∂θa

∂g
∂xa (∗∗)

{xa,θb}= δ
a
b {x

a,xb}= 0, ,{θa,θb}= 0,

{x1, . . . ,xn;θ1, . . . ,θn} are Darboux coordinates

Odd canonical transformation preserve the form (*)
(the odd Poisson bracket (**))
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”Pfaffian” of an odd canonical transformations

Linear odd canonical transformation

(x ,θ)→ (y ,η) = (x ,θ)

(
A B
C D

)
,

{
ya = xbAa

b + θbC b
a

ηa = xbBba + θbDb
a

where entries of n×n matrices A and D are even numbers
(even elements of a Grassmann algebra), and entries of n×n
matrices B and C are odd numbers (odd elements of a
Grassmann algebra) and the following conditions are obeyed:

A+C +C +A = 0
D+B = B+D
A+D +C +B = 1

n|n×n|n matrix M =

(
A B
C D

)
is an even matrix.
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”Pfaffian” of an odd canonical transformations

Group and algebra of linear odd canonical
transformations

Supergroup ΠSp(n|n) and superalgebra πsp(n|n).

K =

(
A B
C D

)
∈ ΠSp(n|n) if


A+C +C +A = 0
D+B = B+D
A+D +C +B = 1

M =

(
a β

γ d

)
∈ πsp(n|n) if


γ + γ+ = 0
d+ = d
a+ + d = 0

K = eM ∈ ΠSp(n|n) ifM ∈ πsp(n|n) .

( K , M even n|n×n|n matrices)
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”Pfaffian” of an odd canonical transformations

Examples
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A B
C D
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0 D
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C 1

)
B+ = B,C + =−C .
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”Pfaffian” of an odd canonical transformations

Berezinian of an odd canon.transform

Recall formulae for Berezinian (superdeterminant)

Ber
(

A B
C D

)
=

det
(
A−BD−1C

)
detD

,

Bere

a β

γ d


= e

Tr

a β

γ d


= etra−trd
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”Pfaffian” of an odd canonical transformations

In a drastic difference to the even case odd canonical
transformations do not preserve a volume form.
Berezinian of an odd canonical transformation in general is not

equal to unity. If M =

(
a β

γ d

)
∈ πsp(n|n) then for matrix

K = eM ∈ ΠSp(n|n)

BereM = eTrM = etra−trd = e2tra ,since a+ + d = 0.

Example

M =

(
a 0
0 d

)
, K = eM =

(
ea 0
0 ed

)
=

(
A 0
0 D

)
,

a+ + d = 0⇒ A+D = 1

Ber
(

A 0
0 D

)
=

detA
detD

=
detA

det(A+)−1 = detA2
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”Pfaffian” of an odd canonical transformations

Fact from linear algebra

Theorem
Let K =

(
A B
C D

)
, be a matrix of a linear odd canonical

transformation. Then

BerK = (detA)2,
√

BerA = detA .

Polynomial detA is a square root of Berezinian of odd canonical
transformation K (”pfaffian of K ”).
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”Pfaffian” of an odd canonical transformations

K = K1K2 =

(
A1 B1
C1 D1

)(
A2 B2
C2 D2

)
=

(
A1A2 +B1C2 . . .

. . . . . .

)
BerK = BerK1BerK2

det(A1A2 +B1C2) = detA1 detA2
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”Pfaffian” of an odd canonical transformations

Proof

K =

(
A B
C D

)
:


A+C +C +A = 0
D+B = B+D
A+D +C +B = 1

(
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0 D

)
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C 1
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”Pfaffian” of an odd canonical transformations

Proof...

K =

(
A 0
0 D

)(
A′ B
C 1

)

K =

(
A 0
0 (A+)−1

)(
1 +BC B

C 1

)
One can show that det(1 +BC ) = 1 since Tr k (BC ) = 0

BerK = Ber
(

A 0
0 (A+)−1

)
Ber

(
1 +BC B

C 1

)
=

detA
det(A+)−1

det(1 +BC −BC )

det1
= detA2 .
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”Pfaffian” of an odd canonical transformations

Batalin-Vilkovisky identity (re-revisited)
Consider transformation from Darboux coordinates (x ,θ) to
Darboux coordinates (x̃ , θ̃).

K =
∂ (x ,θ)

∂ (x̃ , θ̃)
=

(
∂x
∂ x̃

∂θ

∂ x̃
∂x
∂ θ̃

∂θ

∂ θ̃

)
∈ ΠSp(n|n) .

√
BerK =

√
Ber

∂ (x ,θ)

∂ (x̃ , θ̃)
= det

∂x i

∂ x̃ j .

∆0

(√
Ber

∂ (x ,θ)

∂ (x̃ , θ̃)

)
=

∂ 2

∂ x̃ i∂ θ̃i

(√
Ber

∂ (x ,θ)

∂ (x̃ , θ̃)

)
=

∂ 2

∂ x̃ i∂ θ̃i

(
det

∂x i

∂̃x j

)
= 0 .

l



Differential forms, Odd Laplacian...

Severa’s spectral sequence and canonical Laplacian

Question: How to describe canonical ∆# operator in invariant
way?
(The original formula ∆#s = ∂ 2s(x ,θ)

∂xa∂θa

√
dx1 . . .dxpdθ1 . . .dθp is

written in Darboux coordinates).

In 2006 K. Bering wrote the explicit expression for ∆# operator in an arbitrary
coordinates in terms of components of 2-form defining symplectic structure.
He proved by straightforward calculations that this expression defines
invariant operator which coincides with ∆#-operator.
(See K. Bering ”A Note on Semidensites in Antisymplectic
Geometry”.hep-th/0604)
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Severa’s spectral sequence and canonical Laplacian

Severa’s spectral sequence
In 2005 P.Severa constructed the remarkable spectral
sequence which contains as ingridients semidensites and
∆#-operator. Thus he finds a natural definition of this
’somewhat miracolous operator’. (See P. Severa ”On the origin
of the BV operator...” (math/050633))

Let M be n|n-dimensional manifold with symplectic structure
defined by odd non-degenerate closed two form ω.

Let Ω(M) be a space of all (pseudo)differential forms on M, i.e.
functions on ΠTM.

Consider differential Q = d + ω. For any F -function on ΠTM
(differential form on E) QF = dF + ωF .
One can see that

Q2 = d2 = ω
2 = 0,dω + ωd = 0
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Severa’s spectral sequence and canonical Laplacian

Spectral sequence {Er ,dr}

Er+1 = H(Er ,dr )

with E0 = Ω(M), d0 = ω.

Theorem
The space E1 = H(Ω(M),ω) can be naturally identified with the
space of semidensities on M.

Elements of cohomology space E1 = H(Ω(M),ω) are
represented in Darboux coordinates as classes
s(x ,θ)[dx1 . . .dxn]. Under a change of Darboux coordinates
(x ,θ)→ (x̃ , θ̃)

[dx1 . . .dxn]→ det
(

∂x
∂ x̃

)
︸ ︷︷ ︸√

Ber ∂(x ,θ)

∂(x̃ ,θ̃)

[dx̃1 . . .dx̃n]
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Severa’s spectral sequence and canonical Laplacian

Theorem
With identification of E1 with semidensities the differential d2 of
the Severa’s spectral sequence vanishes and differential d3
coincides with the canonical operator ∆#.
The spectral sequence degenerates at the term E3.

Remark Odd symplectic manifold is symplectomorphic to
ΠT ∗N, where N is (n,0)-dimensional Lagrangian surface in M.
Q = d + ω is twisted differential:

QF = e−ΘdeΘF ,

where dΘ = ω, (Θ = θadxa), Hence

H(Q,Ω(M)) = H(d ,M) = HdeRham(N)
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Severa’s spectral sequence and canonical Laplacian

A.Schwarz, I.Shapiro Twisted de Rham cohomology,
homological definition of integral and ”Physics over ring”
arXiv;0809.0086 [math.AG]
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Severa’s spectral sequence and canonical Laplacian

Thank you
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