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Even matrices

Let K be an even p|q x p|q matrix

Koo  Kof )
K= ,
( Kio Ki
where entries of p x p matrix Kyg and g x g matrix Ki1 are even
numbers (even elements of a Grassmann algebra), and entries

of p x g matrix Koy and q x p matrix Kio are odd numbers (odd
elements of a Grassmann algebra)

TrK = trKpg — tr Ky1



Berezinians and rational functions

L Polynomial invariants on even supermatrices

Invariant polynomials

F = F(K) is an invariant function on entries of p|g x p|q
matrices K if
F(C'KC) = F(K).

Example
Polynomials s,(K) = TrK" are invariant polynomials:

Tr(C~'KC) = Tr (K).

How to describe space of all invariant polynomials (invariant
rational functions) on p|q x p|q even matrices?
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Bosonic case (g=0)

Textbook answer: the ring of invariant polynomials is freely
generated by polynomials {s1(K),...,Sp(K)}.

Example

F(K) =detK on 2 x 2 matrices is invariant polynomial:

s2(K) — s2(K) B Tr?K — Tr K2

detK = 5 5

Corollary
The field of invariant rational functions is also generated by
polynomials {s1(K),...,Sp(K)}.
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Theorem on ring of invariant polynomials

Proposition

The field of invariant rational functions on even p|q x p|q
matrices K is generated by the finite set of p+ g polynomials
{sm(K)=TrK™} (m=1,2,3,...,p+ Q).
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Theorem on ring of invariant polynomials

Proposition

The field of invariant rational functions on even p|q x p|q
matrices K is generated by the finite set of p+ g polynomials
{sm(K)=TrK™} (m=1,2,3,...,p+ Q).

Theorem

The ring of invariant polynomials on even p|q x p|q matrices K
is generated by the infinite set of polynomials {sm(K) = TrK™}
(m=1,2,3,...).

This ring is not generated by a finite set of polynomials

(There is an infinite set of relations between spy(K).)
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The Theorem is a not-trivial statement. It states that if F(K) is
an invariant polynomial, then

F(K) = G(S1,32,S3, .- "SN)‘S,ZSr(K):TrK’ )

where N could be arbitrary large. E.g. the polynomial

F(K) = TrKN+! cannot be expressed via polynomial of
variables {si,58p,S3,...,Sn}, but it can be expressed as rational
function on polynomials {s1,52,53,...,Sp+q}-
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Example: the ring is not finitely generated!

K= ( f/ [31 ), a,d are even, 3,y are odd

Kis 1|1 x 1|1 even matrix
s1(K)=TrK =a—d, sp(K) =TrK? = 8 — d? + 2B7,...

S100(K) = Tr K% cannot be expressed as a polynomial on
generators sy, Sp,. .., Sgg.

It can be expressed as a rational function on generators sy, So.
If (A, ) are eigenvalues of matrix K then

A= ; (A:_Z +(A—p )) - % (:E? is1(K)> , thus

)
100 i
stoo(K) =211 = s (20 si0)) - (2 s
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Reduction to the case of polynomials on eigenvalues

To understand the essence of the statement of Theorem
consider the restrictions of invariant functions on p|q x p|q
diagonalisable matrices.

An invariant polynomial F on p|g x p|g even matrices defines
the polynomial Gr on p+ g variables (A1,...,Ap; i1, ..., liq)

GF(lh...,lp;‘LH,...,‘uq):F(diag[l1,...,7tp;‘ll1,...,‘llq]).

How the invariance of polynomials F(K) is inherited by
polynomials Gr = GF()q e ,A,p; Hi,... ,,uq)‘?
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Polynomials Gr are Sp x Sq invariant

The invariance of polynomial F implies the fact that polynomial
Gr(M, ..., Api 11,..., lUg) IS symmetric polynomial on variables
{A;} and it is symmetric polynomial on variables {p }:

GF(...,A/,...,lj...;[M...,‘LLq):GF(...,)LI',...,QL,'...;‘LL1...,[,Lq)

G,:(M,...,Ap;...,ua,...,uﬁ,...):G,:(/h,...,kp;...,uﬁ,...,ua,...)

(We call this condition Sp x Sg-invariance).
Sp x Sg-invariance is necessary but not sufficient condition.
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Berezin-Sergeev (BS) condition

If Fis invariant polynomial then polynomial
Gr(M,...,Ap; 11,..., Ug) Obeys the following condition:

9Gr , 9Gr
ok Ol

——— 0,1i.e.

G,.—()L1,...,/Ip;m,...,uq)}li:ua:t does not depend on t

for an arbitrary A;,us (i=1,....,p,a=1,...,q).

We call this condition Berezin—Sergeev (BS) condition.
This is highly not-trivial condition.

Explain where it comes from
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Where BS conditions comes from
Let K = ( ‘; g ) be an even 1|1 x 1|1 matrix, (a,d are even,

o, 6 are odd). If a# d then this matrix is diagonalisable:

CKC1:<’L 0)

0 u
.. Br 4. B
A=at_—pu=dt
F(K) = Gr(A. 1) = Gr <a+aﬁ—yd’d+aﬁ_yd>
_ od (JdPg(a,d)  JPg(a,d)
_GF(a,d)+a_d< (2.9) oPr(a.d)).

BS condition implies that F(K) is a polynomial.
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Basis in the space of polynomials

Polynomials
Sf(K) :TrKr:A“Ir—i_z’Qr—i_' ’ +AFI;_Au“1r_:u£_ _nulg7 (r:O717273a" .
are Sp x Sg—invariant and they obey Berezin-Sergeev condition.

Is it true that an arbitrary Sp x Sg-invariant polynomial obeying
BS conditions is a polynomial on {s,}?
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Berezin-Sergeev Theorem

Theorem

(Berezin, Sergeev) The ring of Sp x Sq-invariant polynomials on
p+ q variables (A1,...,Ap; U1, ..., iq) which obey the
Berezin-Sergeev condition is generated by polynomials

Sr:l{—l——&-/l’é—,u{—,uzr——,LL[,/(I’:‘I,Q,&/)

This theorem is equivalent to the Theorem on invariant
polynomials.

F is invariant polynomial on p|q x p|q matrices < Gr is
Sp x Sg-invariant polynomial obeying BS condition, i.e.

Gr = GF(s1,...,5k),

F(K) = Pe(st,..., SK)‘S,:TrKf’
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not Noetherian ring

Ring of Sp x Sg-invariant polynomials obeying Berezin-Sergeev
condition is not finitely generated ring and it is not Noetherian
ring.

Letp=qg=1. Then sp(A,u) =A™ —pu™. The generators {sn}
satisfy infinite set of relations. The BS-condition means that
P(A,u)=c+ (A —u)G(A,u). This ring obviously is not finitely
generated and the ideal J = {P(A,u): P(0,0) =0} is not
finitely generated (over the ring).

ok = (1) 1uk=1(1 — u) obey relations ¢, 1y 1 = 2.

)
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Setup

We consider this problem from another point of view.

Let K be a linear operator on p|g-dimensional superspace V
Consider characteristic function

Rk(z) =Ber(1+ zK)
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Setup

We consider this problem from another point of view.
Let K be a linear operator on p|g-dimensional superspace V
Consider characteristic function

Rk(z) =Ber(1+ zK)

Characteristic function is rational function

Mt aizt a4t apzP
1+ biz+bpz2 4+ bgzd

Rx(z) = Ber(1 + zK)
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What is superspace

V =W & Vi Z-graded vector space, dimVy = p, dimV; = gq.
Assign to an arbitrary Grassmann algebra A = Ag @ A¢ the set

VAa=WVo®@N® Vi @My

p q
Vasx =Y dej+ ) b,
i=1 a=1
Superspace V is a functor A — Vj.
Vj is a set of A-points of the superspace V.
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Berezinian (superdeterminant)

Let K be linear operator on V. lts matrix: ( Koo Ko )
Kio Kt

Entries of matrices Kyg and Ki¢ are even elements of A.
Entries of matrices Ky1 and Kjg are odd elements of A.

det (Koo — Kp1 K1_11 K10)
det K11 ’

BerK = TrK = trKog — tr Ky 1

Ber(AB) =BerA-BerB. Berexp K = exp (TrK)
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Characteristic function is rational function

1+a1z+apz?+---+apzP

14+ b1z+bpz2+ -+ bgz9

If K = diag[A1,... Api i1, .. ig] then

I2_,(1+z4;)

I (1+ z1e)

a; =M —i-'-'—l—lp,...,ap21112...1,3,

bi=pus+---+Up,....0g =2 .. Ug.
1+aiz+apz?+---+apzP

Ber(1 4 2K) — —14ciz+02%+...,

cr=ai—by =Y A4i—Y e =TrK,
Co=ar—b1Cy —ngZl/lj—Zliﬂa%—Z,uaHﬁ— Z Hallg ZTI‘(K/\K)

i<f ia o<f

Rk(z) =Ber(1+2zK) =

Ber(1+4zK) =
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Polynomials ¢,(K) and s;(K)

G =TrA'K, r=1,2,3,...

In a pure bosonic case (q=0) ¢- =0 for r > p.

In a supercase c; form a recurrent sequence of the period q.
Polynomials ¢,(K) = Tr A" K can be expressed via
sr(K)=TrK" (and vice versa s, can be expressed via c;) by
universal recurrent polynomial relations:

s? — s
2 )

1

§1Cm — 82Cm—1+ -+ (=1)"Sm1
m+1

Cm+1 =
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Invariant polynomials in terms of characteristic
function
An invariant polynomial F = F(K) defines the polynomial G:
G,:(/h,...,)Lp;m,...,uq) = F(diag [l1,...,7tp;[.11,...,‘l.£q]), .

It defines the polynomial Lg on coefficients of numerator and
denominator of characteristic function

T+aiz+apz?+---+apzP  P(2)
14+ b1z+boz2+ - +bgz9  Q(2)

Ri(z) = Ber(1 + zK) =

LF(P(Z)7Q(Z)):LF(a17"'7ap7b17"'7bq):GF(A‘IV'-a)Lp;.uh"'?Hq)a

a‘]:k‘]‘i_‘i‘lp,,apzl‘l “““ ).«p,...,
by =i+ +lg..,bg=p1 - pg.
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Conditions for polynomial Lg
F(K) is invariant polynomial < S, x Sg-invariant polynomial
GF(M, ..., Ap; 1,.. ., Ug) Obeys BS condition < the polynomial
Lr = Lr(P(2),Q(z)) depends on ratio of two polynomials, i.e.,
on rational function:

Lr(P(2).Q(2) = L¢ (gg)

Pi(z) _ P2(2)

Lr(P1(2). i(2)) = Lr(Pa(2). Qe(2)) i 9 v =15 o

This is the condition which stands instead Berezin—Sergeev
condition:

Pi(z) = Po(2)(1 + 2) Pi(z) _ Pr(z) _ Po(2)

Q2) = Q(2)(1+12) "~ Qz)  Qu(z)  Qol2)
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Useful notations
» A space of pairs of (normalised) polynomials
o ={(P.Q), P(2)| ,_o = Q2)| . =1}
» A space of pairs of (hnormalised) polynomials of degree p, q
dpq={(P,Q), P=1+aiz+---+apz° , Q=1 +b1z+-~+quq}

» The space A of (normalised) fractions g(i) (P,Q) e
. . P'(z)
A=/~ (P.Q)~(P.CQ lfPo’:P’ol.e.ﬂ:
/~: (P.Q)~(P,Q) 5= B0
» The space Ay 4 of (normalised) fractions ZEzg
(P,Q) € @pq,
P(z) _ P'(2)

Apig=Tpg/~: (P,Q)=(P,Q)if PQ =P Qi.e. o = o)
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Conditions on Lg(P, Q) < Invariance of F(K)

» F(K) is inv. polynomial on p|qg x p|qg even matrices
» Gr(M,..., Apily,. .., lg) iS Sp x Sg-inv. polynomial and

GF|A,_:”a:tdoes not depend on t (Berezin-Sergeev condition)

» Pol-al Lr(P(z2), Q(2)) on o q is well-defined on Apq.

Le(P@). Q@) = Le (o) )

These conditions are equivalent.

We say polynomial L(P(z),Q(z)) is invariant on <7 q if itis
well-defined on Apq.
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Example of invariant polynomial on <7 ». |

F(K) = TrK? on 2|2 x 2|2 even matrices.
Gr(M Az, i, o) = A7 + A5 —puf — pif .
(1+2,1Z)(1—|—2,22) 1+a1z+a222 >
= y=14+c1z4+ 0z +.
(1 +wm2z)(1+uez)  1+biz+bz? e
Lr(P(z),Q(2)) = (&F —2ap) — (bF —2by) polynomial on o7 o

Ber(1+Kz) =

LE(P,Q)= | 1+d2)(1 +t2),(1+f2) (1 +t2) | =
P=1 +(d:t)z+dt22 Q=1+ (f+t)z+ftz2
P

(d+t)2—2dt—(f+t)2+2ft=d?> -2 =LF <Q>

Lr is an invariant polynomial on <% », i.e. it is a polynomial
well-defined on Ap2.
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Theorem on ring of invariant polynomials

Equivalent formulations
» Invariant polynomials F(K) depend on s, = TrK”, or on
Cr= Tr /\I’ K
» Sp x Sy invariant-polynomial G(A;, uq) obeying
Berezin—Sergeev condition depends on s, =Y, A/ — ¥, i,
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Theorem on ring of invariant polynomials

Equivalent formulations

» Invariant polynomials F(K) depend on s, = TrK", or on
Cr = Tr ATK

» Sp x Sy invariant-polynomial G(A;, uq) obeying
Berezin—Sergeev condition depends on s, =Y, A/ — ¥, i,

» An invariant polynomial L(P, Q) on 7, 4 (a well-defined
function on A 4) is a restriction of an invariant polynomial
on </ (a well-defined function on A)
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Polynomials on rational functions.
A polynomial L*(cq, co, ..., cy) defines polynomial function on a
space A of (normalised) fractions:
P(z) 1+aiz+az®+ - +apz™
Q(z) 1+bjz+boz2+---+bpz"
P *
then L<Q> =L (C1,C2,...,CN) Ci:Ci(g)’ (*)

Ct=a—by,co=ax—Ciby —bo,Cc3 =as—C1bo— Coby — b3, ...

—14c1z4+ 2%+ c32%+...

Example. L* = ¢f — c».

L (utﬂ%) = (a—by)? — (b — aby — by) since

1+az
14+ byz+ byz?
L*(cy,Co,...,cpn) is inv. polynomial on 7. Its restriction (*)
defines inv. polynomial on 7, 4, i.e. a function on-Ay 4.

=1+(a—by)z+ (b2 —aby —bp)Z° +...
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Formulation of Theorem in terms of functions on
fractions

Theorem

Any polynomial on <7 4 such that it is well-defined on A4 is a
restriction of a polynomial on A.

L(P,Q):V(P,Q) e p_1,q-1

Ol .

L(P'(1+tz),Q'(1+tz)) does not depend on t <L =L (

)

C,‘ZC,‘(

JL*=L*(cy,...,CN), such that L(P, Q)= L*(¢y,C,...,CN)

)

Qv

P(Z) . 1+a12+3222+...+apzp rozie 22+C 23+
Q(z)_1+b1Z—|—b222_|-..._|_bqu_ 1 2 3
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This is an equivalent reformulation

Let F(K) be invariant polynomial on p|q x p|q even matrices.
Consider a polynomial L(P, Q) on <7, 4 defined by

_ P(z) _ _
L(P,Q) = F(K)where Qa2 Ber(1+2zK), L(P,Q) = Le(P, Q).

L(P,Q)=L"(c1,co,.. -,CN)|C,.:C,(g) e F(K)="L(c1,¢2,-.ON)| gopy i
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Example of invariant polynomial on o7 5.1l

F(K) = TrK? on 2|2 x 2|2 even matrices.
GF()"M}LZ?“‘IJJQ) = )"IZ-I_)"ZZ _nu12_:u22

(1+42)(1+242) 1+a1z+axz? 5
(+mz)(+z) 1+biztbpz2’ | T GZTRET

Lr(P(2),Q(2)) = (&F —2ap) — (b? —2b,) is well defined on Az »
Consider L* = ¢Z —2¢,. ¢y =ay —by, o =a— Ciby — bo
L[ g2y = (@1 —b1)*—2(a2— (a1 — b1)b; — bp) =

& —2ap — b2 +2by = LE(P, Q)

Ber(1+Kz) =
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Example of invariant polynomial on o7 5.1l

F(K) = TrK? on 2|2 x 2|2 even matrices.
GF()"M}LZ?“‘IJJQ) = )"IZ-I_)"ZZ _nu12_:u22

(1+42)(1+242) 1+a1z+axz? 5
(+mz)(+z) 1+biztbpz2’ | T GZTRET

Lr(P(2),Q(2)) = (&F —2ap) — (b? —2b,) is well defined on Az »
Consider L* = ¢Z —2¢,. ¢y =ay —by, o =a— Ciby — bo
L[ g2y = (@1 —b1)*—2(a2— (a1 — b1)b; — bp) =

& —2ap — b2 +2by = LE(P, Q)

Ber(1+Kz) =

(cf —20,) =Tr?K —2Tr A2 K = TrK?

G=TrA\'K
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Weight of polynomials

G(ak) = G(bk) = G(Ck) =k

If(P,Q)EJZ{[,sthenL:L(P,Q):L(a‘|,az,...,ar;b17...,bs)
(P,Q)=(1+ajz+apz?+---+az",1+bjz+bpz? +-- -+ bsz%)

L(P,Q) = & —2a, — b2 + 2by, o(L) = 2.
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Key lemma
The theorem follows from the following

Lemma

Let L(P, Q) be an invariant polynomial on <#; s, i.e. it is
well-defined on A, s. Then there exists an invariant polynomial
L' on <1 511 , i.e. the polynomial which is well-defined on
Ari1)s+1 Such that 6(L") = o(L) and L is the restriction of L' on
rs!

(P,Q) e s, L(P,Q)=L'(P(1+1t2),Q1 +1z)) i.e.

P P\ (P
P enat(D)-v(2)
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Key lemma
The theorem follows from the following

Lemma

Let L(P, Q) be an invariant polynomial on <#; s, i.e. it is
well-defined on A, s. Then there exists an invariant polynomial
L' on ;.4 541 , i.e. the polynomial which is well-defined on
Ari1)s+1 Such that 6(L") = o(L) and L is the restriction of L' on
rs!

(P,Q) € s, L(P,Q) = L'(P(1 +tz),Q(1 + tz)) i.c.
P P\ (P
P enat(D)-v(2)

L' — L'+Res(P,Q)F(P,Q)
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Proof of the Theorem
Let L = L(P, Q) be an invariant polynomial on .27, i.e.

L=L(5) on Agp and o(L) = 15.
Using lemma consider prolongation of L on polynomial L on
Aq03102

Azip — Agz — Asjg — ... — Aqo2j101 — A103/102

Q
on Aqoayi02 such that L is a restriction of L

(3212

where (P, Q) € 5273’2, HZz)=1+hz+ h222 +--- —|—h10021o

.. /P\ .
L:L() =L(ay,a,...,a103;b1,...,b102)

0
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O'(L) = G(L’) =15. Hence Z: 1(31,32,...,315;b1,...,b15).

'a1 =Cq+ by
a = Cx+Ciby — b2

a5 = C15+ C1aby + Ciaba + -+ C1b14a — bis

where

P(z) 14aiz+apz?+--+ay32'%®

— —1401Z2+CZ°+32%+...
Q2) ~ 14 b1z + boZ2+ -+ byopz +C1Z+C2Z"+C32" +

L:1(01,Cg,...,C15,b1,b2,...,b15).
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If (P(z),Q(z)) € <732 then there exists
HO(Z) =1 +~--—|—h1002100 such that

Q(2)Ho(2) =1+0(z")
We have

(P,Q)e a2 L(P,Q)= L(PHy, QHy) = L(PHy, 1+ 0(2'%)) =

L(c1,Cay.-+C15,01,02, ., b18) | _p . _p o =L7(C1,Co,..,Ct5).
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P P P
L=L (o(é;) % € Agjo. Consider % € Agjs.

P(z) 1+aiz+apz?+azz® ( P12 pez . psz )
Q(z) 1+biz+byz2+b3z3 1+uz 14+upz  1+usz

<Q( ;>_L/<1 <1i1;iz+1-€2;22+1i3;z>>:
( <—€1:12 1£2:22>)+{(1,2)—>(1,3)}—1—{(1,2)_)(2’3)}

(e (7z) (e (252) (0 (+252))

+L(1)
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A(a1,32733;b17b2;b3)
B(a1,327a3;b17b27b3)

! P !

L (08) =L'(a1,ap,a3;b1,b2,b3) =

A(ay,az,as; by, bz, b3)

B(a1,ap,a3; b1,b2,b3)
A _ A+ GRes(P,Q)
B B

= L(ay,ap,as; by, b2, b3) if Res (P, Q) =0

=L



R
Berezinians and rational functions
I—Berezinians and invariants on rational functions

THANK YOU

DA



	Polynomial invariants on even supermatrices
	Symmetric polynomials satisfying Berezin-Sergeev condition
	Berezinians and invariants on rational functions

