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Polynomial invariants on even supermatrices

Even matrices

Let K be an even p|q×p|q matrix

K =

(
K00 K01
K10 K11

)
,

where entries of p×p matrix K00 and q×q matrix K11 are even
numbers (even elements of a Grassmann algebra), and entries
of p×q matrix K01 and q×p matrix K10 are odd numbers (odd
elements of a Grassmann algebra)

TrK = trK00− trK11
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Polynomial invariants on even supermatrices

Invariant polynomials

F = F (K ) is an invariant function on entries of p|q×p|q
matrices K if

F (C−1KC) = F (K ) .

Example
Polynomials sr (K ) = TrK r are invariant polynomials:

Tr(C−1KC) = Tr(K ) .

How to describe space of all invariant polynomials (invariant
rational functions) on p|q×p|q even matrices?
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Polynomial invariants on even supermatrices

Bosonic case (q=0)

Textbook answer: the ring of invariant polynomials is freely
generated by polynomials {s1(K ), . . . ,sp(K )}.

Example
F (K ) = detK on 2×2 matrices is invariant polynomial:

detK =
s2

1(K )−s2(K )

2
=

Tr2K −TrK 2

2
.

Corollary
The field of invariant rational functions is also generated by
polynomials {s1(K ), . . . ,sp(K )}.
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Polynomial invariants on even supermatrices

Theorem on ring of invariant polynomials

Proposition
The field of invariant rational functions on even p|q×p|q
matrices K is generated by the finite set of p + q polynomials
{sm(K ) = TrK m} (m = 1,2,3, . . . ,p + q).

Theorem
The ring of invariant polynomials on even p|q×p|q matrices K
is generated by the infinite set of polynomials {sm(K ) = TrK m}
(m = 1,2,3, . . . ) .
This ring is not generated by a finite set of polynomials
(There is an infinite set of relations between sm(K ).)
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Polynomial invariants on even supermatrices

Theorem on ring of invariant polynomials

Proposition
The field of invariant rational functions on even p|q×p|q
matrices K is generated by the finite set of p + q polynomials
{sm(K ) = TrK m} (m = 1,2,3, . . . ,p + q).

Theorem
The ring of invariant polynomials on even p|q×p|q matrices K
is generated by the infinite set of polynomials {sm(K ) = TrK m}
(m = 1,2,3, . . . ) .
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Polynomial invariants on even supermatrices

The Theorem is a not-trivial statement. It states that if F (K ) is
an invariant polynomial, then

F (K ) = G(s1,s2,s3, . . . ,sN)
∣∣
sr =sr (K )=TrK r ,

where N could be arbitrary large. E.g. the polynomial
F (K ) = TrK N+1 cannot be expressed via polynomial of
variables {s1,s2,s3, . . . ,sN}, but it can be expressed as rational
function on polynomials {s1,s2,s3, . . . ,sp+q}.
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Polynomial invariants on even supermatrices

Example: the ring is not finitely generated!

K =

(
a β

γ d

)
, a,d are even, β ,γ are odd

K is 1|1×1|1 even matrix

s1(K ) = TrK = a−d , s2(K ) = TrK 2 = a2−d2 + 2βγ, . . .

s100(K ) = TrK 100 cannot be expressed as a polynomial on
generators s1,s2, . . . ,s99.
It can be expressed as a rational function on generators s1,s2.
If (λ ,µ) are eigenvalues of matrix K then

λ ,µ =
1
2

(
λ 2−µ2

λ −µ
± (λ −µ)

)
=

1
2

(
s2(K )

s1(K )
±s1(K )

)
, thus

s100(K ) = λ
100−µ

100 =
1

2100

(
s2(K )

s1(K )
+ s1(K )

)100

−
(

s2(K )

s1(K )
−s1(K )

)100

.
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Symmetric polynomials satisfying Berezin-Sergeev condition

Reduction to the case of polynomials on eigenvalues

To understand the essence of the statement of Theorem
consider the restrictions of invariant functions on p|q×p|q
diagonalisable matrices.
An invariant polynomial F on p|q×p|q even matrices defines
the polynomial GF on p + q variables (λ1, . . . ,λp; µ1, . . . ,µq)

GF (λ1, . . . ,λp; µ1, . . . ,µq) = F (diag [λ1, . . . ,λp; µ1, . . . ,µq]) .

How the invariance of polynomials F (K ) is inherited by
polynomials GF = GF (λ1, . . . ,λp; µ1, . . . ,µq)?
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Symmetric polynomials satisfying Berezin-Sergeev condition

Polynomials GF are Sp×Sq invariant

The invariance of polynomial F implies the fact that polynomial
GF (λ1, . . . ,λp; µ1, . . . ,µq) is symmetric polynomial on variables
{λi} and it is symmetric polynomial on variables {µα}:

GF (. . . ,λi , . . . ,λj . . . ; µ1 . . . ,µq) = GF (. . . ,λj , . . . ,λi . . . ; µ1 . . . ,µq)

GF (λ1, . . . ,λp; . . .µα , . . . ,µβ , . . .) = GF (λ1, . . . ,λp; . . . ,µβ , . . . ,µα , . . .)

(We call this condition Sp×Sq-invariance).
Sp×Sq-invariance is necessary but not sufficient condition.
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Symmetric polynomials satisfying Berezin-Sergeev condition

Berezin-Sergeev (BS) condition

If F is invariant polynomial then polynomial
GF (λ1, . . . ,λp; µ1, . . . ,µq) obeys the following condition:(

∂GF

∂λi
+

∂GF

∂ µα

)∣∣
λi =µα

= 0, i.e.

GF (λ1, . . . ,λp; µ1, . . . ,µq)
∣∣
λi =µα =t does not depend on t

for an arbitrary λi ,µa (i = 1, . . . ,p,α = 1, . . . ,q).
We call this condition Berezin—Sergeev (BS) condition.
This is highly not-trivial condition.
Explain where it comes from
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Symmetric polynomials satisfying Berezin-Sergeev condition

Where BS conditions comes from
Let K =

(
a β

γ d

)
, be an even 1|1×1|1 matrix, (a,d are even,

α,δ are odd). If a 6= d then this matrix is diagonalisable:

CKC−1 =

(
λ 0
0 µ

)
,

λ = a +
βγ

a−d
, µ = d +

βγ

a−d
.

F (K ) = GF (λ ,µ) = GF

(
a +

βγ

a−d
,d +

βγ

a−d

)
= GF (a,d) +

αδ

a−d

(
∂PF (a,d)

∂a
+

∂PF (a,d)

∂d

)
.

BS condition implies that F (K ) is a polynomial.
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Basis in the space of polynomials

Polynomials

sr (K ) = TrK r = λ
r
1 +λ

r
2 +· · ·+λ

r
p−µ

r
1−µ

r
2−·· ·−µ

r
p, (r = 0,1,2,3, . . .)

are Sp×Sq–invariant and they obey Berezin-Sergeev condition.

Is it true that an arbitrary Sp×Sq-invariant polynomial obeying
BS conditions is a polynomial on {sr}?
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Symmetric polynomials satisfying Berezin-Sergeev condition

Berezin-Sergeev Theorem
Theorem
(Berezin, Sergeev) The ring of Sp×Sq-invariant polynomials on
p + q variables (λ1, . . . ,λp; µ1, . . . ,µq) which obey the
Berezin-Sergeev condition is generated by polynomials

sr = λ
r
1 + · · ·+ λ

r
p−µ

r
1−µ

r
2−·· ·−µ

r
p, (r = 1,2,3, . . . ,)

This theorem is equivalent to the Theorem on invariant
polynomials.
F is invariant polynomial on p|q×p|q matrices⇔ GF is
Sp×Sq-invariant polynomial obeying BS condition, i.e.
GF = GF (s1, . . . ,sK ),

F (K ) = PF (s1, . . . ,sK )
∣∣
sr =TrK r .
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Symmetric polynomials satisfying Berezin-Sergeev condition

not Noetherian ring

Ring of Sp×Sq-invariant polynomials obeying Berezin-Sergeev
condition is not finitely generated ring and it is not Noetherian
ring.
Let p = q = 1. Then sm(λ ,µ) = λ m−µm. The generators {sm}
satisfy infinite set of relations. The BS-condition means that
P(λ ,µ) = c + (λ −µ)G(λ ,µ). This ring obviously is not finitely
generated and the ideal J = {P(λ ,µ) : P(0,0) = 0} is not
finitely generated (over the ring).

ck = (−1)k−1µk−1(λ −µ) obey relations ck−1ck+1 = c2
k .(

ck = Tr ∧k
(

λ 0
0 µ

))
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Berezinians and invariants on rational functions

Setup

We consider this problem from another point of view.
Let K be a linear operator on p|q-dimensional superspace V
Consider characteristic function

RK (z) = Ber(1 + zK )

Characteristic function is rational function

RK (z) = Ber(1 + zK ) =
1 + a1z + a2z2 + · · ·+ apzp

1 + b1z + b2z2 + · · ·+ bqzq
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Consider characteristic function
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Berezinians and invariants on rational functions

What is superspace

V = V0⊕V1 Z2-graded vector space, dimV0 = p, dimV1 = q.
Assign to an arbitrary Grassmann algebra Λ = Λ0⊕Λ1 the set

VΛ = V0⊗Λ0⊕V1⊗Λ1

VΛ 3 x =
p

∑
i=1

aiei +
q

∑
α=1

bα fα

Superspace V is a functor Λ→ VΛ.
VΛ is a set of Λ-points of the superspace V .
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Berezinian (superdeterminant)

Let K be linear operator on V . Its matrix:
(

K00 K01
K10 K11

)
Entries of matrices K00 and K11 are even elements of Λ.
Entries of matrices K01 and K10 are odd elements of Λ.

BerK =
det
(

K00−K01K−1
11 K10

)
detK11

, TrK = trK00− trK11

Ber(AB) = BerA ·BerB. Ber expK = exp(TrK )
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Characteristic function is rational function

RK (z) = Ber(1 + zK ) =
1 + a1z + a2z2 + · · ·+ apzp

1 + b1z + b2z2 + · · ·+ bqzq

If K = diag[λ1, . . .λp; µ1, . . .µq] then

Ber(1 + zK ) =
∏

p
i=1(1 + zλi)

∏
q
α=1(1 + zµα )

a1 = λ1 + · · ·+ λp, . . . ,ap = λ1λ2 . . .λp,
b1 = µ1 + · · ·+ µp, . . . ,bq = µ1µ2 . . .µq.

Ber(1+zK ) =
1 + a1z + a2z2 + · · ·+ apzp

1 + b1z + b2z2 + · · ·+ bqzq = 1+c1z +c2z2 + . . . ,

c1 = a1−b1 = ∑λi −∑µα = TrK ,

c2 = a2−b1c1−b2 = ∑
i<j

λiλj−∑
i ,α

λi µα +∑µα µβ− ∑
α<β

µα µβ = Tr(K ∧K ),

. . .
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Polynomials cr (K ) and sr (K )

cr = Tr ∧r K , r = 1,2,3, . . .

In a pure bosonic case (q = 0) cr = 0 for r > p.
In a supercase cr form a recurrent sequence of the period q.
Polynomials cr (K ) = Tr ∧r K can be expressed via
sr (K ) = TrK r (and vice versa sr can be expressed via cr ) by
universal recurrent polynomial relations:

c1 = s1,c2 =
s2

1−s2

2
,c3 =

1
6

(s3
1−3s1s2 + 2s3), . . .

cm+1 =
s1cm−s2cm−1 + · · ·+ (−1)msm+1

m + 1
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Berezinians and invariants on rational functions

Invariant polynomials in terms of characteristic
function

An invariant polynomial F = F (K ) defines the polynomial GF :

GF (λ1, . . . ,λp; µ1, . . . ,µq) = F (diag [λ1, . . . ,λp; µ1, . . . ,µq]) , .

It defines the polynomial LF on coefficients of numerator and
denominator of characteristic function

RK (z) = Ber(1 + zK ) =
1 + a1z + a2z2 + · · ·+ apzp

1 + b1z + b2z2 + · · ·+ bqzq =
P(z)

Q(z)

LF (P(z),Q(z)) = LF (a1, . . . ,ap,b1, . . . ,bq) = GF (λ1, . . . ,λp; µ1, . . . ,µq),

a1 = λ1 + · · ·+ λp, . . . ,ap = λ1 · · · · ·λp, . . . ,
b1 = µ1 + · · ·+ µq, . . . ,bq = µ1 · · · · ·µq.
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Conditions for polynomial LF
F (K ) is invariant polynomial⇔ Sp×Sq-invariant polynomial
GF (λ1, . . . ,λp; µ1, . . . ,µq) obeys BS condition⇔ the polynomial
LF = LF (P(z),Q(z)) depends on ratio of two polynomials, i.e.,
on rational function:

LF (P(z),Q(z)) = LF

(
P(z)

Q(z)

)

LF (P1(z),Q1(z)) = LF (P2(z),Q2(z)) if
P1(z)

Q1(z)
=

P2(z)

Q2(z)

This is the condition which stands instead Berezin–Sergeev
condition:

Pt (z) = P0(z)(1 + tz)
Qt (z) = Q0(z)(1 + tz)

, ⇒ Pt (z)

Qt (z)
=

Pt ′(z)

Qt ′(z)
=

P0(z)

Q0(z)
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Useful notations
I A space of pairs of (normalised) polynomials

A = {(P,Q), P(z)
∣∣
z=0 = Q(z)

∣∣
z=0 = 1}

I A space of pairs of (normalised) polynomials of degree p, q

Ap,q = {(P,Q), P = 1+a1z +· · ·+apzp ,Q = 1+b1z +· · ·+bqzq}

I The space A of (normalised) fractions P(z)
Q(z) , (P,Q) ∈A

A = A /≈ : ((P,Q)≈ (P ′,Q′) ifPQ′= P ′Q i.e.
P(z)

Q(z)
=

P ′(z)

Q′(z)

I The space Ap|q of (normalised) fractions P(z)
Q(z) ,

(P,Q) ∈Ap,q,

Ap|q = Ap,q/≈ : (P,Q)≈ (P ′,Q′) if PQ′= P ′Q i.e.
P(z)

Q(z)
=

P ′(z)

Q′(z)
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Conditions on LF (P,Q)⇔ Invariance of F (K )

I F (K ) is inv. polynomial on p|q×p|q even matrices
I GF (λ1, . . . ,λp; µ1, . . . ,µq) is Sp×Sq-inv. polynomial and

GF
∣∣
λi =µα =t does not depend on t (Berezin-Sergeev condition)

I Pol-al LF (P(z),Q(z)) on Ap,q is well-defined on Ap|q.

LF (P(z),Q(z)) = LF

(
P(z)

Q(z)

)
These conditions are equivalent.

We say polynomial L(P(z),Q(z)) is invariant on Ap,q if it is
well-defined on Ap|q.
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Example of invariant polynomial on A2,2. I

F (K ) = TrK 2 on 2|2×2|2 even matrices.

GF (λ1,λ2,µ1,µ2) = λ
2
1 + λ

2
2 −µ

2
1 −µ

2
2 .

Ber(1+Kz) =
(1 + λ1z)(1 + λ2z)

(1 + µ1z)(1 + µ2z)
=

1 + a1z + a2z2

1 + b1z + b2z2 ,= 1+c1z +c2z2 +. . .

LF (P(z),Q(z)) = (a2
1−2a2)− (b2

1−2b2) polynomial on A2,2

LF (P,Q) =

(1 + dz)(1 + tz)︸ ︷︷ ︸
P=1+(d+t)z+dtz2

,(1 + fz)(1 + tz)︸ ︷︷ ︸
Q=1+(f +t)z+ftz2

=

(d + t)2−2dt− (f + t)2 + 2ft = d2− f 2 = LF

(
P
Q

)
LF is an invariant polynomial on A2,2, i.e. it is a polynomial
well-defined on A2|2.
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Theorem on ring of invariant polynomials

Equivalent formulations

I Invariant polynomials F (K ) depend on sr = TrK r , or on
cr = Tr ∧r K

I Sp×Sq invariant-polynomial G(λi ,µα ) obeying
Berezin–Sergeev condition depends on sr = ∑i λ r

i −∑i µ r
α .

I An invariant polynomial L(P,Q) on Ap,q (a well-defined
function on Ap|q) is a restriction of an invariant polynomial
on A (a well-defined function on A)
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Theorem on ring of invariant polynomials

Equivalent formulations

I Invariant polynomials F (K ) depend on sr = TrK r , or on
cr = Tr ∧r K

I Sp×Sq invariant-polynomial G(λi ,µα ) obeying
Berezin–Sergeev condition depends on sr = ∑i λ r

i −∑i µ r
α .

I An invariant polynomial L(P,Q) on Ap,q (a well-defined
function on Ap|q) is a restriction of an invariant polynomial
on A (a well-defined function on A)
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Polynomials on rational functions.
A polynomial L∗(c1,c2, . . . ,cN) defines polynomial function on a
space A of (normalised) fractions:

P(z)

Q(z)
=

1 + a1z + a2z2 + · · ·+ amzm

1 + b1z + b2z2 + · · ·+ bnzn = 1+c1z +c2z2 +c3z3 + . . .

then L
(

P
Q

)
= L∗(c1,c2, . . . ,cN)

∣∣
ci =ci( P

Q ), (∗)

c1 = a1−b1,c2 = a2−c1b1−b2,c3 = a3−c1b2−c2b1−b3, . . .

Example. L∗ = c2
1 −c2.

L
(

1+az
1+b1z+b2z2

)
= (a−b1)2− (b2

1−ab1−b2) since

1 + az
1 + b1z + b2z2 = 1 + (a−b1)z + (b2

1−ab1−b2)z2 + . . .

L∗(c1,c2, . . . ,cN) is inv. polynomial on A . Its restriction (*)
defines inv. polynomial on Ap,q, i.e. a function on Ap|q.
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Formulation of Theorem in terms of functions on
fractions

Theorem
Any polynomial on Ap,q such that it is well-defined on Ap|q is a
restriction of a polynomial on A.

L(P,Q) : ∀(P ′,Q′) ∈Ap−1,q−1

L(P ′(1 + tz),Q′(1 + tz)) does not depend on t
(

L = L
(

P
Q

))
∃L∗= L∗(c1, . . . ,cN), such that L(P,Q) = L∗(c1,c2, . . . ,cN)

∣∣
ci =ci( P

Q )

P(z)

Q(z)
=

1 + a1z + a2z2 + · · ·+ apzp

1 + b1z + b2z2 + · · ·+ bqzq = 1 + c1z + c2z2 + c3z3 + . . .
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This is an equivalent reformulation

Let F (K ) be invariant polynomial on p|q×p|q even matrices.
Consider a polynomial L(P,Q) on Ap,q defined by

L(P,Q) = F (K )where
P(z)

Q(z)
= Ber(1 + zK ), L(P,Q) = LF (P,Q).

L(P,Q) = L∗(c1,c2, . . . ,cN)
∣∣
ci =ci( P

Q )⇔F (K ) = L∗(c1,c2, . . . ,cN)
∣∣
ci =Tr∧i K
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Example of invariant polynomial on A2,2.II

F (K ) = TrK 2 on 2|2×2|2 even matrices.

GF (λ1,λ2,µ1,µ2) = λ
2
1 + λ

2
2 −µ

2
1 −µ

2
2 .

Ber(1+Kz) =
(1 + λ1z)(1 + λ2z)

(1 + µ1z)(1 + µ2z)
=

1 + a1z + a2z2

1 + b1z + b2z2 ,= 1+c1z +c2z2 +. . .

LF (P(z),Q(z)) = (a2
1−2a2)− (b2

1−2b2) is well defined on A2,2

Consider L∗ = c2
1 −2c2. c1 = a1−b1, c2 = a2−c1b1−b2

L∗
∣∣
ci =ci (

P
Q )

= (a1−b1)2−2(a2− (a1−b1)b1−b2) =

a2
1−2a2−b2

1 + 2b2 = LF (P,Q)

(c2
1 −2c2)

∣∣
ci =Tr∧i K = Tr2K −2Tr ∧2 K = TrK 2
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Example of invariant polynomial on A2,2.II

F (K ) = TrK 2 on 2|2×2|2 even matrices.

GF (λ1,λ2,µ1,µ2) = λ
2
1 + λ

2
2 −µ

2
1 −µ

2
2 .

Ber(1+Kz) =
(1 + λ1z)(1 + λ2z)

(1 + µ1z)(1 + µ2z)
=

1 + a1z + a2z2

1 + b1z + b2z2 ,= 1+c1z +c2z2 +. . .

LF (P(z),Q(z)) = (a2
1−2a2)− (b2

1−2b2) is well defined on A2,2

Consider L∗ = c2
1 −2c2. c1 = a1−b1, c2 = a2−c1b1−b2

L∗
∣∣
ci =ci (

P
Q )

= (a1−b1)2−2(a2− (a1−b1)b1−b2) =

a2
1−2a2−b2

1 + 2b2 = LF (P,Q)

(c2
1 −2c2)

∣∣
ci =Tr∧i K = Tr2K −2Tr ∧2 K = TrK 2
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Weight of polynomials

σ(ak ) = σ(bk ) = σ(ck ) = k

If (P,Q) ∈Ar ,s then L = L(P,Q) = L(a1,a2, . . . ,ar ;b1, . . . ,bs)

(P,Q) = (1 + a1z + a2z2 + · · ·+ ar zr ,1 + b1z + b2z2 + · · ·+ bszs)

L(P,Q) = a2
1−2a2−b2

1 + 2b2, σ(L) = 2.
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Berezinians and invariants on rational functions

Key lemma
The theorem follows from the following

Lemma
Let L(P,Q) be an invariant polynomial on Ar ,s, i.e. it is
well-defined on Ar |s. Then there exists an invariant polynomial
L′ on Ar+1,s+1 , i.e. the polynomial which is well-defined on
Ar+1|s+1 such that σ(L′) = σ(L) and L is the restriction of L′ on
Ar ,s:

(P,Q) ∈Ar ,s, L(P,Q) = L′(P(1 + tz),Q(1 + tz)) i.e.

P
Q
∈ Ar |s, L

(
P
Q

)
= L′

(
P
Q

)
.

L′→ L′+ Res(P,Q)F (P,Q)
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Berezinians and invariants on rational functions

Key lemma
The theorem follows from the following

Lemma
Let L(P,Q) be an invariant polynomial on Ar ,s, i.e. it is
well-defined on Ar |s. Then there exists an invariant polynomial
L′ on Ar+1,s+1 , i.e. the polynomial which is well-defined on
Ar+1|s+1 such that σ(L′) = σ(L) and L is the restriction of L′ on
Ar ,s:

(P,Q) ∈Ar ,s, L(P,Q) = L′(P(1 + tz),Q(1 + tz)) i.e.

P
Q
∈ Ar |s, L

(
P
Q

)
= L′

(
P
Q

)
.

L′→ L′+ Res(P,Q)F (P,Q)
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Proof of the Theorem
Let L = L(P,Q) be an invariant polynomial on A3,2, i.e.

L = L
(

P
Q

)
on A3|2 and σ(L) = 15.

Using lemma consider prolongation of L on polynomial L̃ on
A103|102

A3|2 −→ A4|3 −→ A5|4 −→ . . .−→ A102|101 −→ A103|102

L̃ = L̃
(

P
Q

)
= L̃(a1,a2, . . . ,a103;b1, . . . ,b102)

on A103|102 such that L is a restriction of L′:

L
(

P(z)

Q(z)

)
= L̃

(
P(z) ·H(z)

Q(z) ·H(z)

)
where (P,Q) ∈A3,2, H(z) = 1 + h1z + h2z2 + · · ·+ h100z100
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σ(L) = σ(L′) = 15. Hence L̃ = L̃(a1,a2, . . . ,a15;b1, . . . ,b15).

a1 = c1 + b1

a2 = c2 + c1b1−b2

. . .

a15 = c15 + c14b1 + c13b2 + · · ·+ c1b14−b15

. . .

where

P(z)

Q(z)
=

1 + a1z + a2z2 + · · ·+ a103z103

1 + b1z + b2z2 + · · ·+ b102z102 = 1+c1z +c2z2 +c3z3 +. . .

L̃ = L̃(c1,c2, . . . ,c15,b1,b2, . . . ,b15).
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If (P(z),Q(z)) ∈A3,2 then there exists
H0(z) = 1 + · · ·+ h100z100 such that

Q(z)H0(z) = 1 + o(z15)

We have

(P,Q) ∈A3,2 L(P,Q) = L̃(PH0,QH0) = L̃(PH0,1 + o(z15)) =

L̃(c1,c2, . . . ,c15,b1,b2, . . . ,b15)
∣∣
b1=b2=···=b15=0 = L∗(c1,c2, . . . ,c15) .
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L = L
(

P(z)
Q(z)

)
, P(z)

Q(z) ∈ A2|2. Consider P(z)
Q(z) ∈ A3|3.

P(z)

Q(z)
=

1 + a1z + a2z2 + a3z3

1 + b1z + b2z2 + b3z3 = 1+

(
p1z

1 + µ1z
+

p2z
1 + µ2z

+
p3z

1 + µ3z

)

L′
(

P(z)

Q(z)

)
= L′

(
1 +

(
p1z

1 + µ1z
+

p2z
1 + µ2z

+
p3z

1 + µ3z

))
=

L
(

1 +

(
p1z

1 + µ1z
+

p2z
1 + µ2z

))
+{(1,2)→ (1,3)}+{(1,2)→ (2,3)}

−L
(

1 +

(
p1z

1 + µ1z

))
−L
(

1 +

(
p2z

1 + µ2z

))
−L
(

1 +

(
p3z

1 + µ3z

))
+L(1)
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L′
(

P(z)

Q(z)

)
= L′(a1,a2,a3;b1,b2,b3) =

A(a1,a2,a3;b1,b2,b3)

B(a1,a2,a3;b1,b2,b3)

A(a1,a2,a3;b1,b2,b3)

B(a1,a2,a3;b1,b2,b3)
= L(a1,a2,a3;b1,b2,b3) if Res(P,Q) = 0

A
B
→ A + GRes(P,Q)

B
= L



Berezinians and rational functions

Berezinians and invariants on rational functions

THANK YOU


	Polynomial invariants on even supermatrices
	Symmetric polynomials satisfying Berezin-Sergeev condition
	Berezinians and invariants on rational functions

