# BEREZINIANS, RATIONAL FUNCTIONS AND POLYNOMIAL INVARIANTS 

Hovhannes Khudaverdian

University of Manchester, Manchester, UK
INTEGRABLE SYSTEMS AND QUANTUM SYMMETRIES 18-20 July 2009 PRAGUE

## Contents

Polynomial invariants on even supermatrices

Symmetric polynomials satisfying Berezin-Sergeev condition

Berezinians and invariants on rational functions

## Even matrices

Let $K$ be an even $p|q \times p| q$ matrix

$$
K=\left(\begin{array}{ll}
K_{00} & K_{01} \\
K_{10} & K_{11}
\end{array}\right)
$$

where entries of $p \times p$ matrix $K_{00}$ and $q \times q$ matrix $K_{11}$ are even numbers (even elements of a Grassmann algebra), and entries of $p \times q$ matrix $K_{01}$ and $q \times p$ matrix $K_{10}$ are odd numbers (odd elements of a Grassmann algebra)

$$
\operatorname{Tr} K=\operatorname{tr} K_{00}-\operatorname{tr} K_{11}
$$

## Invariant polynomials

$F=F(K)$ is an invariant function on entries of $p|q \times p| q$ matrices $K$ if

$$
F\left(C^{-1} K C\right)=F(K)
$$

## Example

Polynomials $s_{r}(K)=\operatorname{Tr} K^{r}$ are invariant polynomials:

$$
\operatorname{Tr}\left(C^{-1} K C\right)=\operatorname{Tr}(K)
$$

How to describe space of all invariant polynomials (invariant rational functions) on $p|q \times p| q$ even matrices?

## Bosonic case ( $q=0$ )

Textbook answer: the ring of invariant polynomials is freely generated by polynomials $\left\{s_{1}(K), \ldots, s_{p}(K)\right\}$.
Example $F(K)=\operatorname{det} K$ on $2 \times 2$ matrices is invariant polynomial:

$$
\operatorname{det} K=\frac{s_{1}^{2}(K)-s_{2}(K)}{2}=\frac{\operatorname{Tr}^{2} K-\operatorname{Tr} K^{2}}{2}
$$

Corollary
The field of invariant rational functions is also generated by polynomials $\left\{s_{1}(K), \ldots, s_{p}(K)\right\}$.

## Theorem on ring of invariant polynomials

## Proposition

The field of invariant rational functions on even $p|q \times p| q$ matrices $K$ is generated by the finite set of $p+q$ polynomials $\left\{s_{m}(K)=\operatorname{Tr} K^{m}\right\}(m=1,2,3, \ldots, p+q)$.

## Theorem on ring of invariant polynomials

## Proposition

The field of invariant rational functions on even $p|q \times p| q$ matrices $K$ is generated by the finite set of $p+q$ polynomials $\left\{s_{m}(K)=\operatorname{Tr} K^{m}\right\}(m=1,2,3, \ldots, p+q)$.

## Theorem

The ring of invariant polynomials on even $p|q \times p| q$ matrices $K$ is generated by the infinite set of polynomials $\left\{s_{m}(K)=\operatorname{Tr} K^{m}\right\}$ ( $m=1,2,3, \ldots$ ).
This ring is not generated by a finite set of polynomials (There is an infinite set of relations between $s_{m}(K)$.)

The Theorem is a not-trivial statement. It states that if $F(K)$ is an invariant polynomial, then

$$
F(K)=\left.G\left(s_{1}, s_{2}, s_{3}, \ldots, s_{N}\right)\right|_{s_{r}=s_{r}(K)=\operatorname{Tr} K^{r}},
$$

where $N$ could be arbitrary large. E.g. the polynomial $F(K)=\operatorname{Tr} K^{N+1}$ cannot be expressed via polynomial of variables $\left\{s_{1}, s_{2}, s_{3}, \ldots, s_{N}\right\}$, but it can be expressed as rational function on polynomials $\left\{s_{1}, s_{2}, s_{3}, \ldots, s_{p+q}\right\}$.

## Example: the ring is not finitely generated!

$$
K=\left(\begin{array}{ll}
a & \beta \\
\gamma & d
\end{array}\right), a, d \text { are even, } \beta, \gamma \text { are odd }
$$

$K$ is $1|1 \times 1| 1$ even matrix

$$
s_{1}(K)=\operatorname{Tr} K=a-d, s_{2}(K)=\operatorname{Tr} K^{2}=a^{2}-d^{2}+2 \beta \gamma, \ldots
$$

$s_{100}(K)=\operatorname{Tr} K^{100}$ cannot be expressed as a polynomial on generators $s_{1}, s_{2}, \ldots, s_{99}$.
It can be expressed as a rational function on generators $s_{1}, s_{2}$. If $(\lambda, \mu)$ are eigenvalues of matrix $K$ then

$$
\begin{aligned}
\lambda, \mu & =\frac{1}{2}\left(\frac{\lambda^{2}-\mu^{2}}{\lambda-\mu} \pm(\lambda-\mu)\right)=\frac{1}{2}\left(\frac{s_{2}(K)}{s_{1}(K)} \pm s_{1}(K)\right), \text { thus } \\
s_{100}(K) & =\lambda^{100}-\mu^{100}=\frac{1}{2^{100}}\left(\frac{s_{2}(K)}{s_{1}(K)}+s_{1}(K)\right)^{100}-\left(\frac{s_{2}(K)}{s_{1}(K)}-s_{1}(K)\right)^{1}
\end{aligned}
$$

## Reduction to the case of polynomials on eigenvalues

To understand the essence of the statement of Theorem consider the restrictions of invariant functions on $p|q \times p| q$ diagonalisable matrices.
An invariant polynomial $F$ on $p|q \times p| q$ even matrices defines the polynomial $G_{F}$ on $p+q$ variables $\left(\lambda_{1}, \ldots, \lambda_{p} ; \mu_{1}, \ldots, \mu_{q}\right)$

$$
G_{F}\left(\lambda_{1}, \ldots, \lambda_{p} ; \mu_{1}, \ldots, \mu_{q}\right)=F\left(\operatorname{diag}\left[\lambda_{1}, \ldots, \lambda_{p} ; \mu_{1}, \ldots, \mu_{q}\right]\right)
$$

How the invariance of polynomials $F(K)$ is inherited by polynomials $G_{F}=G_{F}\left(\lambda_{1}, \ldots, \lambda_{p} ; \mu_{1}, \ldots, \mu_{q}\right)$ ?

## Polynomials $G_{F}$ are $S_{p} \times S_{q}$ invariant

The invariance of polynomial $F$ implies the fact that polynomial $G_{F}\left(\lambda_{1}, \ldots, \lambda_{p} ; \mu_{1}, \ldots, \mu_{q}\right)$ is symmetric polynomial on variables $\left\{\lambda_{i}\right\}$ and it is symmetric polynomial on variables $\left\{\mu_{\alpha}\right\}$ :

$$
G_{F}\left(\ldots, \lambda_{i}, \ldots, \lambda_{j} \ldots ; \mu_{1} \ldots, \mu_{q}\right)=G_{F}\left(\ldots, \lambda_{j}, \ldots, \lambda_{i} \ldots ; \mu_{1} \ldots, \mu_{q}\right)
$$

$G_{F}\left(\lambda_{1}, \ldots, \lambda_{p} ; \ldots \mu_{\alpha}, \ldots, \mu_{\beta}, \ldots\right)=G_{F}\left(\lambda_{1}, \ldots, \lambda_{p} ; \ldots, \mu_{\beta}, \ldots, \mu_{\alpha}, \ldots\right)$
(We call this condition $S_{p} \times S_{q}$-invariance).
$S_{p} \times S_{q}$-invariance is necessary but not sufficient condition.

## Berezin-Sergeev (BS) condition

If $F$ is invariant polynomial then polynomial $G_{F}\left(\lambda_{1}, \ldots, \lambda_{p} ; \mu_{1}, \ldots, \mu_{q}\right)$ obeys the following condition:

$$
\left.\left(\frac{\partial G_{F}}{\partial \lambda_{i}}+\frac{\partial G_{F}}{\partial \mu_{\alpha}}\right)\right|_{\lambda_{i}=\mu_{\alpha}}=0, \text { i.e. }
$$

$\left.G_{F}\left(\lambda_{1}, \ldots, \lambda_{p} ; \mu_{1}, \ldots, \mu_{q}\right)\right|_{\lambda_{i}=\mu_{\alpha}=t}$ does not depend on $t$
for an arbitrary $\lambda_{i}, \mu_{a}(i=1, \ldots, p, \alpha=1, \ldots, q)$.
We call this condition Berezin-Sergeev (BS) condition.
This is highly not-trivial condition.
Explain where it comes from

## Where BS conditions comes from

Let $K=\left(\begin{array}{ll}a & \beta \\ \gamma & d\end{array}\right)$, be an even $1|1 \times 1| 1$ matrix, ( $a, d$ are even, $\alpha, \delta$ are odd). If $a \neq d$ then this matrix is diagonalisable:

$$
\begin{gathered}
C K C^{-1}=\left(\begin{array}{cc}
\lambda & 0 \\
0 & \mu
\end{array}\right), \\
\lambda=a+\frac{\beta \gamma}{a-d}, \mu=d+\frac{\beta \gamma}{a-d} . \\
F(K)=G_{F}(\lambda, \mu)=G_{F}\left(a+\frac{\beta \gamma}{a-d}, d+\frac{\beta \gamma}{a-d}\right) \\
=G_{F}(a, d)+\frac{\alpha \delta}{a-d}\left(\frac{\partial P_{F}(a, d)}{\partial a}+\frac{\partial P_{F}(a, d)}{\partial d}\right) .
\end{gathered}
$$

$B S$ condition implies that $F(K)$ is a polynomial.

## Basis in the space of polynomials

Polynomials
$s_{r}(K)=\operatorname{Tr} K^{r}=\lambda_{1}^{r}+\lambda_{2}^{r}+\cdots+\lambda_{p}^{r}-\mu_{1}^{r}-\mu_{2}^{r}-\cdots-\mu_{p}^{r},(r=0,1,2,3, \ldots)$
are $S_{p} \times S_{q}$-invariant and they obey Berezin-Sergeev condition.
Is it true that an arbitrary $S_{p} \times S_{q}$-invariant polynomial obeying BS conditions is a polynomial on $\left\{s_{r}\right\}$ ?

## Berezin-Sergeev Theorem

## Theorem

(Berezin, Sergeev) The ring of $S_{p} \times S_{q}$-invariant polynomials on $p+q$ variables $\left(\lambda_{1}, \ldots, \lambda_{p} ; \mu_{1}, \ldots, \mu_{q}\right)$ which obey the
Berezin-Sergeev condition is generated by polynomials

$$
s_{r}=\lambda_{1}^{r}+\cdots+\lambda_{p}^{r}-\mu_{1}^{r}-\mu_{2}^{r}-\cdots-\mu_{p}^{r},(r=1,2,3, \ldots,)
$$

This theorem is equivalent to the Theorem on invariant polynomials.
$F$ is invariant polynomial on $p|q \times p| q$ matrices $\Leftrightarrow G_{F}$ is $S_{p} \times S_{q}$-invariant polynomial obeying $B S$ condition, i.e. $G_{F}=G_{F}\left(s_{1}, \ldots, s_{K}\right)$,

$$
F(K)=\left.P_{F}\left(s_{1}, \ldots, s_{K}\right)\right|_{s_{r}=\operatorname{Tr} K^{r}}
$$

## not Noetherian ring

Ring of $S_{p} \times S_{q}$-invariant polynomials obeying Berezin-Sergeev condition is not finitely generated ring and it is not Noetherian ring.
Let $p=q=1$. Then $s_{m}(\lambda, \mu)=\lambda^{m}-\mu^{m}$. The generators $\left\{s_{m}\right\}$ satisfy infinite set of relations. The BS-condition means that $P(\lambda, \mu)=c+(\lambda-\mu) G(\lambda, \mu)$. This ring obviously is not finitely generated and the ideal $J=\{P(\lambda, \mu): P(0,0)=0\}$ is not finitely generated (over the ring).

$$
\begin{aligned}
& c_{k}=(-1)^{k-1} \mu^{k-1}(\lambda-\mu) \text { obey relations } c_{k-1} c_{k+1}=c_{k}^{2} . \\
& \left(c_{k}=\operatorname{Tr} \wedge^{k}\left(\begin{array}{cc}
\lambda & 0 \\
0 & \mu
\end{array}\right)\right)
\end{aligned}
$$

## Setup

We consider this problem from another point of view. Let $K$ be a linear operator on $p \mid q$-dimensional superspace $V$ Consider characteristic function

$$
R_{K}(z)=\operatorname{Ber}(1+z K)
$$

## Setup

We consider this problem from another point of view. Let $K$ be a linear operator on $p \mid q$-dimensional superspace $V$ Consider characteristic function

$$
R_{K}(z)=\operatorname{Ber}(1+z K)
$$

Characteristic function is rational function

$$
R_{K}(z)=\operatorname{Ber}(1+z K)=\frac{1+a_{1} z+a_{2} z^{2}+\cdots+a_{p} z^{p}}{1+b_{1} z+b_{2} z^{2}+\cdots+b_{q} z^{q}}
$$

## What is superspace

$V=V_{0} \oplus V_{1} Z_{2}$-graded vector space, $\operatorname{dim} V_{0}=p, \operatorname{dim} V_{1}=q$. Assign to an arbitrary Grassmann algebra $\Lambda=\Lambda_{0} \oplus \Lambda_{1}$ the set

$$
\begin{gathered}
V_{\Lambda}=V_{0} \otimes \Lambda_{0} \oplus V_{1} \otimes \Lambda_{1} \\
V_{\Lambda} \ni x=\sum_{i=1}^{p} a^{i} \mathbf{e}_{i}+\sum_{\alpha=1}^{q} b^{\alpha} f_{\alpha}
\end{gathered}
$$

Superspace $V$ is a functor $\Lambda \rightarrow V_{\Lambda}$.
$V_{\Lambda}$ is a set of $\Lambda$-points of the superspace $V$.

## Berezinian (superdeterminant)

Let $K$ be linear operator on $V$. Its matrix: $\left(\begin{array}{cc}K_{00} & K_{01} \\ K_{10} & K_{11}\end{array}\right)$
Entries of matrices $K_{00}$ and $K_{11}$ are even elements of $\Lambda$. Entries of matrices $K_{01}$ and $K_{10}$ are odd elements of $\Lambda$.

$$
\begin{gathered}
\operatorname{Ber} K=\frac{\operatorname{det}\left(K_{00}-K_{01} K_{11}^{-1} K_{10}\right)}{\operatorname{det} K_{11}}, \quad \operatorname{Tr} K=\operatorname{tr} K_{00}-\operatorname{tr} K_{11} \\
\operatorname{Ber}(A B)=\operatorname{Ber} A \cdot \operatorname{Ber} B . \quad \text { Ber } \exp K=\exp (\operatorname{Tr} K)
\end{gathered}
$$

## Characteristic function is rational function

$$
R_{K}(z)=\operatorname{Ber}(1+z K)=\frac{1+a_{1} z+a_{2} z^{2}+\cdots+a_{p} z^{p}}{1+b_{1} z+b_{2} z^{2}+\cdots+b_{q} z^{q}}
$$

If $K=\operatorname{diag}\left[\lambda_{1}, \ldots \lambda_{p} ; \mu_{1}, \ldots \mu_{q}\right]$ then

$$
\begin{gathered}
\operatorname{Ber}(1+z K)=\frac{\prod_{i=1}^{p}\left(1+z \lambda_{i}\right)}{\prod_{\alpha=1}^{q}\left(1+z \mu_{\alpha}\right)} \\
a_{1}=\lambda_{1}+\cdots+\lambda_{p}, \ldots, a_{p}=\lambda_{1} \lambda_{2} \ldots \lambda_{p}, \\
b_{1}=\mu_{1}+\cdots+\mu_{p}, \ldots, b_{q}=\mu_{1} \mu_{2} \ldots \mu_{q} \\
\operatorname{Ber}(1+z K)=\frac{1+a_{1} z+a_{2} z^{2}+\cdots+a_{p} z^{p}}{1+b_{1} z+b_{2} z^{2}+\cdots+b_{q} z^{q}}=1+c_{1} z+c_{2} z^{2}+\ldots, \\
c_{1}=a_{1}-b_{1}=\sum_{i} \lambda_{i}-\sum \mu_{\alpha}=\operatorname{Tr} K, \\
c_{2}=a_{2}-b_{1} c_{1}-b_{2}=\sum_{i<j} \lambda_{i} \lambda_{j}-\sum_{i, \alpha} \lambda_{i} \mu_{\alpha}+\sum \mu_{\alpha} \mu_{\beta}-\sum_{\alpha<\beta} \mu_{\alpha} \mu_{\beta}=\operatorname{Tr}(K \wedge K)
\end{gathered}
$$

## Polynomials $c_{r}(K)$ and $s_{r}(K)$

$$
c_{r}=\operatorname{Tr} \wedge^{r} K, \quad r=1,2,3, \ldots
$$

In a pure bosonic case $(q=0) c_{r}=0$ for $r>p$.
In a supercase $c_{r}$ form a recurrent sequence of the period $q$.
Polynomials $c_{r}(K)=\operatorname{Tr} \wedge^{r} K$ can be expressed via
$s_{r}(K)=\operatorname{Tr} K^{r}$ (and vice versa $s_{r}$ can be expressed via $c_{r}$ ) by universal recurrent polynomial relations:

$$
\begin{gathered}
c_{1}=s_{1}, c_{2}=\frac{s_{1}^{2}-s_{2}}{2}, c_{3}=\frac{1}{6}\left(s_{1}^{3}-3 s_{1} s_{2}+2 s_{3}\right), \ldots \\
c_{m+1}= \\
s_{1} c_{m}-s_{2} c_{m-1}+\cdots+(-1)^{m} s_{m+1} \\
m+1
\end{gathered}
$$

## Invariant polynomials in terms of characteristic function

An invariant polynomial $F=F(K)$ defines the polynomial $G_{F}$ :

$$
G_{F}\left(\lambda_{1}, \ldots, \lambda_{p} ; \mu_{1}, \ldots, \mu_{q}\right)=F\left(\operatorname{diag}\left[\lambda_{1}, \ldots, \lambda_{p} ; \mu_{1}, \ldots, \mu_{q}\right]\right), .
$$

It defines the polynomial $L_{F}$ on coefficients of numerator and denominator of characteristic function

$$
\begin{aligned}
& \quad R_{K}(z)=\operatorname{Ber}(1+z K)=\frac{1+a_{1} z+a_{2} z^{2}+\cdots+a_{p} z^{p}}{1+b_{1} z+b_{2} z^{2}+\cdots+b_{q} z^{q}}=\frac{P(z)}{Q(z)} \\
& L_{F}(P(z), Q(z))=L_{F}\left(a_{1}, \ldots, a_{p}, b_{1}, \ldots, b_{q}\right)=G_{F}\left(\lambda_{1}, \ldots, \lambda_{p} ; \mu_{1}, \ldots, \mu_{q}\right), \\
& a_{1}=\lambda_{1}+\cdots+\lambda_{p}, \ldots, a_{p}=\lambda_{1} \cdots \cdot \lambda_{p}, \ldots, \\
& b_{1}=\mu_{1}+\cdots+\mu_{q}, \ldots, b_{q}=\mu_{1} \cdots \cdot \mu_{q} .
\end{aligned}
$$

## Conditions for polynomial $L_{F}$

$F(K)$ is invariant polynomial $\Leftrightarrow S_{p} \times S_{q}$-invariant polynomial $G_{F}\left(\lambda_{1}, \ldots, \lambda_{p} ; \mu_{1}, \ldots, \mu_{q}\right)$ obeys BS condition $\Leftrightarrow$ the polynomial $L_{F}=L_{F}(P(z), Q(z))$ depends on ratio of two polynomials, i.e., on rational function:

$$
\begin{gathered}
L_{F}(P(z), Q(z))=L_{F}\left(\frac{P(z)}{Q(z)}\right) \\
L_{F}\left(P_{1}(z), Q_{1}(z)\right)=L_{F}\left(P_{2}(z), Q_{2}(z)\right) \quad \text { if } \quad \frac{P_{1}(z)}{Q_{1}(z)}=\frac{P_{2}(z)}{Q_{2}(z)}
\end{gathered}
$$

This is the condition which stands instead Berezin-Sergeev condition:

$$
\begin{aligned}
& P_{t}(z)=P_{0}(z)(1+t z) \\
& Q_{t}(z)=Q_{0}(z)(1+t z)
\end{aligned}, \Rightarrow \frac{P_{t}(z)}{Q_{t}(z)}=\frac{P_{t^{\prime}}(z)}{Q_{t^{\prime}}(z)}=\frac{P_{0}(z)}{Q_{0}(z)}
$$

## Useful notations

- A space of pairs of (normalised) polynomials

$$
\mathscr{A}=\left\{(P, Q),\left.P(z)\right|_{z=0}=\left.Q(z)\right|_{z=0}=1\right\}
$$

- A space of pairs of (normalised) polynomials of degree $p, q$ $\mathscr{A}_{p, q}=\left\{(P, Q), P=1+a_{1} z+\cdots+a_{p} z^{p}, Q=1+b_{1} z+\cdots+b_{q} z^{q}\right\}$
- The space $A$ of (normalised) fractions $\frac{P(z)}{Q(z)},(P, Q) \in \mathscr{A}$

$$
A=\mathscr{A} / \approx: \quad\left((P, Q) \approx\left(P^{\prime}, Q^{\prime}\right) \text { if } P Q^{\prime}=P^{\prime} Q \text { i.e. } \frac{P(z)}{Q(z)}=\frac{P^{\prime}(z)}{Q^{\prime}(z)}\right.
$$

- The space $A_{p \mid q}$ of (normalised) fractions $\frac{P(z)}{Q(z)}$, $(P, Q) \in \mathscr{A}_{p, q}$,

$$
A_{p \mid q}=\mathscr{A}_{p, q} / \approx: \quad(P, Q) \approx\left(P^{\prime}, Q^{\prime}\right) \text { if } P Q^{\prime}=P^{\prime} Q \text { i.e. } \frac{P(z)}{Q(z)}=\frac{P^{\prime}(z)}{Q^{\prime}(z)}
$$

## Conditions on $L_{F}(P, Q) \Leftrightarrow$ Invariance of $F(K)$

- $F(K)$ is inv. polynomial on $p|q \times p| q$ even matrices
- $G_{F}\left(\lambda_{1}, \ldots, \lambda_{p} ; \mu_{1}, \ldots, \mu_{q}\right)$ is $S_{p} \times S_{q}$-inv. polynomial and
$\left.G_{F}\right|_{\lambda_{i}=\mu_{\alpha}=t}$ does not depend on $t$ (Berezin-Sergeev condition)
- Pol-al $L_{F}(P(z), Q(z))$ on $\mathscr{A}_{p, q}$ is well-defined on $A_{p \mid q}$.

$$
L_{F}(P(z), Q(z))=L_{F}\left(\frac{P(z)}{Q(z)}\right)
$$

These conditions are equivalent.
We say polynomial $L(P(z), Q(z))$ is invariant on $\mathscr{A}_{p, q}$ if it is well-defined on $A_{p \mid q}$.

## Example of invariant polynomial on $\mathscr{L}_{2,2}$. I

$$
\begin{gathered}
F(K)=\operatorname{Tr} K^{2} \text { on } 2|2 \times 2| 2 \text { even matrices. } \\
G_{F}\left(\lambda_{1}, \lambda_{2}, \mu_{1}, \mu_{2}\right)=\lambda_{1}^{2}+\lambda_{2}^{2}-\mu_{1}^{2}-\mu_{2}^{2} . \\
\operatorname{Ber}(1+K z)=\frac{\left(1+\lambda_{1} z\right)\left(1+\lambda_{2} z\right)}{\left(1+\mu_{1} z\right)\left(1+\mu_{2} z\right)}=\frac{1+a_{1} z+a_{2} z^{2}}{1+b_{1} z+b_{2} z^{2}},=1+c_{1} z+c_{2} z^{2}+.
\end{gathered}
$$

$$
\begin{gathered}
L_{F}(P(z), Q(z))=\left(a_{1}^{2}-2 a_{2}\right)-\left(b_{1}^{2}-2 b_{2}\right) \text { polynomial on } \mathscr{A}_{2,2} \\
L_{F}(P, Q)=(\underbrace{(1+d z)(1+t z)}_{P=1+(d+t) z+d t z^{2}}, \underbrace{(1+f z)(1+t z)}_{Q=1+(f+t) z+f t z^{2}})= \\
(d+t)^{2}-2 d t-(f+t)^{2}+2 f t=d^{2}-f^{2}=L_{F}\left(\frac{P}{Q}\right)
\end{gathered}
$$

$L_{F}$ is an invariant polynomial on $\mathscr{A}_{2,2}$, i.e. it is a polynomial well-defined on $A_{2 \mid 2}$.

## Theorem on ring of invariant polynomials

## Equivalent formulations

- Invariant polynomials $F(K)$ depend on $s_{r}=\operatorname{Tr} K^{r}$, or on $c_{r}=\operatorname{Tr} \wedge^{r} K$
- $S_{p} \times S_{q}$ invariant-polynomial $G\left(\lambda_{i}, \mu_{\alpha}\right)$ obeying Berezin-Sergeev condition depends on $s_{r}=\sum_{i} \lambda_{i}^{r}-\sum_{i} \mu_{\alpha}^{r}$.


## Theorem on ring of invariant polynomials

## Equivalent formulations

- Invariant polynomials $F(K)$ depend on $s_{r}=\operatorname{Tr} K^{r}$, or on $c_{r}=\operatorname{Tr} \wedge^{r} K$
- $S_{p} \times S_{q}$ invariant-polynomial $G\left(\lambda_{i}, \mu_{\alpha}\right)$ obeying Berezin-Sergeev condition depends on $s_{r}=\sum_{i} \lambda_{i}^{r}-\sum_{i} \mu_{\alpha}^{r}$.
- An invariant polynomial $L(P, Q)$ on $\mathscr{A}_{p, q}$ (a well-defined function on $\left.A_{p \mid q}\right)$ is a restriction of an invariant polynomial on $\mathscr{A}$ (a well-defined function on $A$ )


## Polynomials on rational functions.

A polynomial $L^{*}\left(c_{1}, c_{2}, \ldots, c_{N}\right)$ defines polynomial function on a space $A$ of (normalised) fractions:

$$
\begin{gather*}
\frac{P(z)}{Q(z)}=\frac{1+a_{1} z+a_{2} z^{2}+\cdots+a_{m} z^{m}}{1+b_{1} z+b_{2} z^{2}+\cdots+b_{n} z^{n}}=1+c_{1} z+c_{2} z^{2}+c_{3} z^{3}+\ldots \\
\text { then } L\left(\frac{P}{Q}\right)=\left.L^{*}\left(c_{1}, c_{2}, \ldots, c_{N}\right)\right|_{c_{i}=c_{i}\left(\frac{P}{Q}\right)},  \tag{*}\\
c_{1}=a_{1}-b_{1}, c_{2}=a_{2}-c_{1} b_{1}-b_{2}, c_{3}=a_{3}-c_{1} b_{2}-c_{2} b_{1}-b_{3}, \ldots
\end{gather*}
$$

Example. $L^{*}=c_{1}^{2}-c_{2}$.
$L\left(\frac{1+a z}{1+b_{1} z+b_{2} z^{2}}\right)=\left(a-b_{1}\right)^{2}-\left(b_{1}^{2}-a b_{1}-b_{2}\right)$ since

$$
\frac{1+a z}{1+b_{1} z+b_{2} z^{2}}=1+\left(a-b_{1}\right) z+\left(b_{1}^{2}-a b_{1}-b_{2}\right) z^{2}+\ldots
$$

$L^{*}\left(c_{1}, c_{2}, \ldots, c_{N}\right)$ is inv. polynomial on $\mathscr{A}$. Its restriction (*) defines inv. polynomial on $\mathscr{A}_{p, q}$, i.e. a function on $A_{p \mid q}$.

## Formulation of Theorem in terms of functions on fractions

Theorem
Any polynomial on $\mathscr{A}_{p, q}$ such that it is well-defined on $A_{p \mid q}$ is a restriction of a polynomial on A .

$$
\begin{gathered}
L(P, Q): \forall\left(P^{\prime}, Q^{\prime}\right) \in \mathscr{A}_{p-1, q-1} \\
L\left(P^{\prime}(1+t z), Q^{\prime}(1+t z)\right) \text { does not depend on } t\left(L=L\left(\frac{P}{Q}\right)\right) \\
\exists L^{*}=L^{*}\left(c_{1}, \ldots, c_{N}\right), \text { such that } L(P, Q)=\left.L^{*}\left(c_{1}, c_{2}, \ldots, c_{N}\right)\right|_{c_{i}=c_{i}\left(\frac{P}{Q}\right)} \\
\frac{P(z)}{Q(z)}=\frac{1+a_{1} z+a_{2} z^{2}+\cdots+a_{p} z^{p}}{1+b_{1} z+b_{2} z^{2}+\cdots+b_{q} z^{q}}=1+c_{1} z+c_{2} z^{2}+c_{3} z^{3}+\ldots
\end{gathered}
$$

## This is an equivalent reformulation

Let $F(K)$ be invariant polynomial on $p|q \times p| q$ even matrices.
Consider a polynomial $L(P, Q)$ on $\mathscr{A}_{p, q}$ defined by

$$
\begin{aligned}
& L(P, Q)=F(K) \text { where } \frac{P(z)}{Q(z)}=\operatorname{Ber}(1+z K), L(P, Q)=L_{F}(P, Q) . \\
& L(P, Q)=\left.L^{*}\left(c_{1}, c_{2}, \ldots, c_{N}\right)\right|_{c_{i}=c_{i}\left(\frac{P}{Q}\right)} \Leftrightarrow F(K)=\left.L^{*}\left(c_{1}, c_{2}, \ldots, c_{N}\right)\right|_{c_{i}=\operatorname{Tr} \wedge^{\prime} K}
\end{aligned}
$$

## Example of invariant polynomial on $\mathscr{A}_{2,2}$.II

$$
\begin{gathered}
F(K)=\operatorname{Tr} K^{2} \text { on } 2|2 \times 2| 2 \text { even matrices. } \\
G_{F}\left(\lambda_{1}, \lambda_{2}, \mu_{1}, \mu_{2}\right)=\lambda_{1}^{2}+\lambda_{2}^{2}-\mu_{1}^{2}-\mu_{2}^{2} \\
\operatorname{Ber}(1+K z)=\frac{\left(1+\lambda_{1} z\right)\left(1+\lambda_{2} z\right)}{\left(1+\mu_{1} z\right)\left(1+\mu_{2} z\right)}=\frac{1+a_{1} z+a_{2} z^{2}}{1+b_{1} z+b_{2} z^{2}},=1+c_{1} z+c_{2} z^{2}+.
\end{gathered}
$$

$$
L_{F}(P(z), Q(z))=\left(a_{1}^{2}-2 a_{2}\right)-\left(b_{1}^{2}-2 b_{2}\right) \text { is well defined on } A_{2,2}
$$

Consider $L^{*}=c_{1}^{2}-2 c_{2} . c_{1}=a_{1}-b_{1}, c_{2}=a_{2}-c_{1} b_{1}-b_{2}$

$$
\begin{gathered}
\left.L^{*}\right|_{c_{i}=c_{i}\left(\frac{P}{Q}\right)}=\left(a_{1}-b_{1}\right)^{2}-2\left(a_{2}-\left(a_{1}-b_{1}\right) b_{1}-b_{2}\right)= \\
a_{1}^{2}-2 a_{2}-b_{1}^{2}+2 b_{2}=L_{F}(P, Q)
\end{gathered}
$$

## Example of invariant polynomial on $\mathscr{A}_{2,2}$.II

$$
\begin{gathered}
F(K)=\operatorname{Tr} K^{2} \text { on } 2|2 \times 2| 2 \text { even matrices. } \\
G_{F}\left(\lambda_{1}, \lambda_{2}, \mu_{1}, \mu_{2}\right)=\lambda_{1}^{2}+\lambda_{2}^{2}-\mu_{1}^{2}-\mu_{2}^{2} . \\
\operatorname{Ber}(1+K z)=\frac{\left(1+\lambda_{1} z\right)\left(1+\lambda_{2} z\right)}{\left(1+\mu_{1} z\right)\left(1+\mu_{2} z\right)}=\frac{1+a_{1} z+a_{2} z^{2}}{1+b_{1} z+b_{2} z^{2}},=1+c_{1} z+c_{2} z^{2}+.
\end{gathered}
$$

$$
L_{F}(P(z), Q(z))=\left(a_{1}^{2}-2 a_{2}\right)-\left(b_{1}^{2}-2 b_{2}\right) \text { is well defined on } A_{2,2}
$$

Consider $L^{*}=c_{1}^{2}-2 c_{2} . c_{1}=a_{1}-b_{1}, c_{2}=a_{2}-c_{1} b_{1}-b_{2}$

$$
\begin{gathered}
\left.L^{*}\right|_{c_{i}=c_{i}\left(\frac{P}{Q}\right)}=\left(a_{1}-b_{1}\right)^{2}-2\left(a_{2}-\left(a_{1}-b_{1}\right) b_{1}-b_{2}\right)= \\
a_{1}^{2}-2 a_{2}-b_{1}^{2}+2 b_{2}=L_{F}(P, Q) \\
\left.\left(c_{1}^{2}-2 c_{2}\right)\right|_{c_{i}=\operatorname{Tr} \wedge^{\prime} K}=\operatorname{Tr}^{2} K-2 \operatorname{Tr} \wedge^{2} K=\operatorname{Tr} K^{2}
\end{gathered}
$$

## Weight of polynomials

$$
\sigma\left(a_{k}\right)=\sigma\left(b_{k}\right)=\sigma\left(c_{k}\right)=k
$$

If $(P, Q) \in \mathscr{A}_{r, s}$ then $L=L(P, Q)=L\left(a_{1}, a_{2}, \ldots, a_{r} ; b_{1}, \ldots, b_{s}\right)$

$$
(P, Q)=\left(1+a_{1} z+a_{2} z^{2}+\cdots+a_{r} z^{r}, 1+b_{1} z+b_{2} z^{2}+\cdots+b_{s} z^{s}\right)
$$

$$
L(P, Q)=a_{1}^{2}-2 a_{2}-b_{1}^{2}+2 b_{2}, \sigma(L)=2
$$

## Key lemma

The theorem follows from the following
Lemma
Let $L(P, Q)$ be an invariant polynomial on $\mathscr{A}_{r, s}$, i.e. it is well-defined on $A_{r \mid s}$. Then there exists an invariant polynomial $L^{\prime}$ on $\mathscr{A}_{r+1, s+1}$, i.e. the polynomial which is well-defined on $A_{r+1 \mid s+1}$ such that $\sigma\left(L^{\prime}\right)=\sigma(L)$ and $L$ is the restriction of $L^{\prime}$ on $\mathscr{A}_{r, s}$ :

$$
\begin{gathered}
(P, Q) \in \mathscr{A}_{r, s}, L(P, Q)=L^{\prime}(P(1+t z), Q(1+t z)) \text { i.e. } \\
\frac{P}{Q} \in A_{r \mid s}, L\left(\frac{P}{Q}\right)=L^{\prime}\left(\frac{P}{Q}\right)
\end{gathered}
$$

## Key lemma

The theorem follows from the following
Lemma
Let $L(P, Q)$ be an invariant polynomial on $\mathscr{A}_{r, s}$, i.e. it is well-defined on $A_{r \mid s}$. Then there exists an invariant polynomial $L^{\prime}$ on $\mathscr{A}_{r+1, s+1}$, i.e. the polynomial which is well-defined on $A_{r+1 \mid s+1}$ such that $\sigma\left(L^{\prime}\right)=\sigma(L)$ and $L$ is the restriction of $L^{\prime}$ on $\mathscr{A}_{r, s}$ :

$$
\begin{gathered}
(P, Q) \in \mathscr{A} r, s, L(P, Q)=L^{\prime}(P(1+t z), Q(1+t z)) \text { i.e. } \\
\frac{P}{Q} \in A_{r \mid s}, L\left(\frac{P}{Q}\right)=L^{\prime}\left(\frac{P}{Q}\right) . \\
L^{\prime} \rightarrow L^{\prime}+\operatorname{Res}(P, Q) F(P, Q)
\end{gathered}
$$

## Proof of the Theorem

Let $L=L(P, Q)$ be an invariant polynomial on $\mathscr{A}_{3,2}$, i.e.
$L=L\left(\frac{P}{Q}\right)$ on $A_{3 \mid 2}$ and $\sigma(L)=15$.
Using lemma consider prolongation of $L$ on polynomial $\tilde{L}$ on $A_{103 \mid 102}$

$$
\begin{gathered}
A_{3 \mid 2} \longrightarrow A_{4 \mid 3} \longrightarrow A_{5 \mid 4} \longrightarrow \ldots \longrightarrow A_{102 \mid 101} \longrightarrow A_{103 \mid 102} \\
\tilde{L}=\tilde{L}\left(\frac{P}{Q}\right)=\tilde{L}\left(a_{1}, a_{2}, \ldots, a_{103} ; b_{1}, \ldots, b_{102}\right)
\end{gathered}
$$

on $A_{103 \mid 102}$ such that $L$ is a restriction of $L^{\prime}$ :

$$
L\left(\frac{P(z)}{Q(z)}\right)=\tilde{L}\left(\frac{P(z) \cdot H(z)}{Q(z) \cdot H(z)}\right)
$$

where $(P, Q) \in \mathscr{A}_{3,2}, H(z)=1+h_{1} z+h_{2} z^{2}+\cdots+h_{100} z^{100}$
$\sigma(L)=\sigma\left(L^{\prime}\right)=15$. Hence $\tilde{L}=\tilde{L}\left(a_{1}, a_{2}, \ldots, a_{15} ; b_{1}, \ldots, b_{15}\right)$.

$$
\left\{\begin{array}{l}
a_{1}=c_{1}+b_{1} \\
a_{2}=c_{2}+c_{1} b_{1}-b_{2} \\
\cdots \\
a_{15}=c_{15}+c_{14} b_{1}+c_{13} b_{2}+\cdots+c_{1} b_{14}-b_{15} \\
\cdots
\end{array}\right.
$$

where

$$
\begin{gathered}
\frac{P(z)}{Q(z)}=\frac{1+a_{1} z+a_{2} z^{2}+\cdots+a_{103} z^{103}}{1+b_{1} z+b_{2} z^{2}+\cdots+b_{102} z^{102}}=1+c_{1} z+c_{2} z^{2}+c_{3} z^{3}+\ldots \\
\tilde{L}=\tilde{L}\left(c_{1}, c_{2}, \ldots, c_{15}, b_{1}, b_{2}, \ldots, b_{15}\right) .
\end{gathered}
$$

If $(P(z), Q(z)) \in \mathscr{A}_{3,2}$ then there exists
$H_{0}(z)=1+\cdots+h_{100} z^{100}$ such that

$$
Q(z) H_{0}(z)=1+o\left(z^{15}\right)
$$

We have

$$
\begin{gathered}
(P, Q) \in \mathscr{A}_{3,2} L(P, Q)=\tilde{L}\left(P H_{0}, Q H_{0}\right)=\tilde{L}\left(P H_{0}, 1+o\left(z^{15}\right)\right)= \\
\left.\tilde{L}\left(c_{1}, c_{2}, \ldots, c_{15}, b_{1}, b_{2}, \ldots, b_{15}\right)\right|_{b_{1}=b_{2}=\cdots=b_{15}=0}=L^{*}\left(c_{1}, c_{2}, \ldots, c_{15}\right) .
\end{gathered}
$$

$L=L\left(\frac{P(z)}{Q(z)}\right), \frac{P(z)}{Q(z)} \in A_{2 \mid 2}$. Consider $\frac{P(z)}{Q(z)} \in A_{3 \mid 3}$.
$\frac{P(z)}{Q(z)}=\frac{1+a_{1} z+a_{2} z^{2}+a_{3} z^{3}}{1+b_{1} z+b_{2} z^{2}+b_{3} z^{3}}=1+\left(\frac{p_{1} z}{1+\mu_{1} z}+\frac{p_{2} z}{1+\mu_{2} z}+\frac{p_{3} z}{1+\mu_{3} z}\right)$
$L^{\prime}\left(\frac{P(z)}{Q(z)}\right)=L^{\prime}\left(1+\left(\frac{p_{1} z}{1+\mu_{1} z}+\frac{p_{2} z}{1+\mu_{2} z}+\frac{p_{3} z}{1+\mu_{3} z}\right)\right)=$
$L\left(1+\left(\frac{p_{1} z}{1+\mu_{1} z}+\frac{p_{2} z}{1+\mu_{2} z}\right)\right)+\{(1,2) \rightarrow(1,3)\}+\{(1,2) \rightarrow(2,3)\}$
$-L\left(1+\left(\frac{p_{1} z}{1+\mu_{1} z}\right)\right)-L\left(1+\left(\frac{p_{2} z}{1+\mu_{2} z}\right)\right)-L\left(1+\left(\frac{p_{3} z}{1+\mu_{3} z}\right)\right)$
$+L(1)$
$L^{\prime}\left(\frac{P(z)}{Q(z)}\right)=L^{\prime}\left(a_{1}, a_{2}, a_{3} ; b_{1}, b_{2}, b_{3}\right)=\frac{A\left(a_{1}, a_{2}, a_{3} ; b_{1}, b_{2}, b_{3}\right)}{B\left(a_{1}, a_{2}, a_{3} ; b_{1}, b_{2}, b_{3}\right)}$
$\frac{A\left(a_{1}, a_{2}, a_{3} ; b_{1}, b_{2}, b_{3}\right)}{B\left(a_{1}, a_{2}, a_{3} ; b_{1}, b_{2}, b_{3}\right)}=L\left(a_{1}, a_{2}, a_{3} ; b_{1}, b_{2}, b_{3}\right)$ if $\operatorname{Res}(P, Q)=0$

$$
\frac{A}{B} \rightarrow \frac{A+G \operatorname{Res}(P, Q)}{B}=L
$$

## Berezinians and rational functions

$L_{\text {Berezinians and invariants on rational functions }}$

THANK YOU

