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Preliminaries

0.1

Solutions to quadratic equations x2 + px + q = 0 are well known (more than
two thousands years...):

x1,2 =
−p±

√
p2 − 4q

2
.
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Every cubic equation x3 + ax2 + bx + c = 0 can be reduced to the form
x3 + px + q = 0 by transformation x → x− a/3.

One can express roots (complex roots) of the equation

x3 + px + q = 0 (1)

through radicals using ansatz:

x = 3
√

u + 3
√

v .

Then
x3 = u + v + 3x 3

√
u 3
√

v .

Hence comparing with (1) we see that 3
√

u + 3
√

v is a root of the equation if

u + v = −q and 3 3
√

u 3
√

v = −p

This is quadratic equation: u, v are roots of quadratic polynomial

w2 + qw − p3

27

and we come to famous Cardano-Tartaglia formula (Tartaglia 1535 year):

x =
3

√
−q

2
+

√
p3

27
+

q2

4
+

3

√
−q

2
−

√
p3

27
+

q2

4
, (2)

Remark This formula is not much use for calculations. E.g. consider
polynomial x3−3x−18.The simplest analysis show that it has unique real root
and this root is equal to 3. On the other hand the application of Cardano-
Tartaglia formula (2) gives

x =
3

√
9 +

√
80 +

3

√
9−

√
80

To prove that r.h.s. of the formula above is equal to 3 you have to use the
fact that equation x3 − 3x− 18 has the solution x = 3. Vicious circle???!

Another problem with formula (2): Consider the polynomial:

x3 − 7x + 6 = (x− 1)(x− 2)(x + 3)
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This polynomial has three real roots x1 = 1, x2 = 2, x3 = −3. On the other
hand applying (2) we see that

x =
3

√
−3 +

10
√

3

9
i +

3

√
−3− 10

√
3

9
i (3)

It is very difficult to believe that this complex expression gives real num-
bers x = 1, 2,−3. In the realm of cubic polynomials complex numbers are
unavoidable. (In the case of quadratic equations if equation have real roots
then they are expressed via real expressions: you do not need to use complex
numbers if equation has real roots.)

These two examples convince us that Cardano–Tartaglia formula is not
usually practical. But nevertheless (2) is the formula, expressing roots through
radicals...

Another very useful ansatz is the following: For the equation x3+px+q =
0 consider x = αx such that a new x obeys equation

x3 − 3x = a (4)

(Note that in the case when p < 0 then α is real )
Now considering ansatz x = es + e−s we see that

x =

{
2 cos

(
1
3
arccos a

)
if , |a

2
| ≤ 1

2 cosh
(

1
3
arccosha

)
if , |a

2
| ≥ 1.

is a root of the equation above.
For fourth order equations one can also find the formula expressing roots

through radicals. Considering substitution x → x − a/4 we reduce quadric
equation to the equation x4 + px2 + qx + r = 0. It can be rewritten in the
way: (

x2 +
p

2

)2

= −qx− r +
p2

4
(5)

Choose u such that it obeys cubic equation:

q2

8u
= u2 + pu +

p2

4
− r

Then: (
x +

p

2
+ u

)2

=

(√
2ux− q√

2u

)
(6)
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Thus we express x via radicals.
What about higher order equation?
In 1824 Abel proved that there is no formula expressing roots of polyno-

mial equation of the order n ≥ 5 in terms of coefficients and a finite number
of arithmetical operations ”+”, ”-”, ”×”, ”:” and n-th roots. But what about
a given polynomial equation of the order n ≥ 5 Abel Theorem states that
roots of the equation x5 + ax4 + bx3 + cx2 + dx + e = 0 cannot be expressed
via coefficients a, b, c, d, e, if we use only radicals and arithmetic operations.
But it has the solutions expressed in radicals if coefficients a, b, c, d, e take
some special values. E.g. consider the case: a = b = c = d = 0, e = 1, Then
it is easy to see 1 that solutions of the equation x5 − 1 = 0 are expressed via
radicals.

Galois gives an answer on this more difficult question.

0.2 Viète Theorem

In this section we consider some links between elementary mathematics and
ideas behind Galois theory. Considerations in this section are extremely
informal. We give exact definitions later..

Consider polynomial

P (x) = xn + an−1x
n−1 + . . . a0 (7)

of the degree n with complex coefficients. We know that it has n complex
roots x1, . . . , xn. It is obvious that

x1 + . . . xn = −an−1 ,

x1x2 + . . . x1xn + x2x3 + · · ·+ x2xn + · · ·+ xn−1xn = an−2 , (8)

x1x2x3 + . . . x1xn−1xn + x2x3x4 + · · ·+ x2xn−1xn + · · ·+ xn−2xn−1xn = an−2 ,

. . .

x1x2 . . . xn−1xn = (−1)nan . (9)

1x5 − 1 = (x− 1)(x4 + x3 + x2 + x + 1 = 0). One root is equal to 1. To find other four
roots consider substitution z = x + 1

x :x4 + x3 + x2 + x + 1 = 0 ⇒ x2 + x + 1 + 1
x + 1

x2 =(
x + 1

x

)2 +
(
x + 1

x

) − 1 = 0 We come to quadratic equation z2 + z − 1 = 0 , z = −1±√5
2 .

x is a root of quadratic equation x + 1
x − z = 0. (Note that in fact roots xk = ei 2πk

5 ),
(k=0,1,2,3,4) In particular cos 72◦ = z1

2 =
√

5−1
4
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This is so called Viète theorem. It follows from factorization:

P (x) = xn + an−1x
n−1 + . . . a0 = (x− x1) . . . (x− xn) . (10)

E.g. for quadratic polynomial x2 + px + q the Viète theorem claims that

x1 + x2 = −p and x1x2 = q , (11)

and for cubic polynomial x3 + ax2 + px + q

x1 + x2 + x3 = −a, x1x2 + x2x3 + x3x1 = p and x1x2x3 = −q . (12)

More sophisticated version of Viète Theorem is:
Every symmetric polynomial Σ(x1, . . . , xn) on roots x1, . . . , xn of a given poly-
nomial P (x) = xn + an−1x

n−1 + . . . a0 can be expressed as polynomial on
coefficients an−1, . . . a0 of the polynomial P (x),

The proof can be done by analysing symmetric polynomials 2

E.g. if x1, x2, x3 are roots of polynomial x3 +ax2 +px+ q then according
to (12) x2

1 + x2
2 + x2

3 = (x1 + x2 + x3)
2 − 2x1x2 − 2x2x3 − 2x3x1 = a2 − 2p,

x3
1 + x2

3 + x3
3 = (x1 + x2 + x3)(x

2
1 + x2

2 + x2
3−x1x2− x2x3−x3x1) + 3x1x2x3 =

(−a) · (a2 − 3p) + 3q

2Make the lexicographic ordering in the space of polynomials. It is like in dictionary:
xp is higher than xq if p > q. Monomial xa1

1 . . . xan
n is higher than monomial xb1

1 . . . xbn
n if

a1 > b1. If a1 = b1 we have to look at the degree of the second variable x2: If a1 = b1

and a2 > b2 then monomial xa1
1 . . . xan

n is higher than monomial xb1
1 . . . xbn

n and so on:
monomial xa1

1 . . . xan
n is higher than monomial xb1

1 . . . xbn
n if there exist k = 1, 2, . . . such

that if a1 = b1, . . . ak−1 = bk−1 but ak > bk.
It is enough to prove the Theorem for polynomial of fixed weight. (Weight of the

monomial xa1
1 . . . xan

n is equal to a1 + · · ·+an. E.g the weight of the symmetric polynomial
x3

1+x3
2+x2

1x2+x2
2x2is equal to 3.) Let P (x1, . . . , xn) be symmetric polynomial of x1, . . . , xn

of the weight L:
P =

∑

j1+···+jn=L

cj1...jnxj1
1 . . . jan

n

Consider the highest monomial cj1...jnxj1
1 . . . xjn

n in the polynomial P . It is easy to see
that j1 ≥ j2 ≥ · · · ≥ jn = 0 because this monomial is highest and P is symmetric.
This monomial can be killed by the monomial proportional to the following monomial on
coefficients ±an−1 = x1 + · · ·+ xn, ±a0 = x1 . . . xn:

aj1−j2
n−1 aj2−j3

n−2 . . . a
jn−1−jn

1 ajn

0

Hence killing highest monomials by monomials on coefficients we express P as polynomial
on coefficients
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Another Example (discriminant of cubic polynomial) Consider ex-
pression D = (x1−x2)

2(x2−x3)
2(x3−x1)

2. (discriminant of cubic polynomial:
it is equal to zero iff any two roots coincide) For simplicity calculate D for
reduced cubic polynomial x3 + px + q. Then x1 + x2 + x3 = 0 and

D =
[
(x1 + x2)

2 − 4x1x2

] [
(x2 + x3)

2 − 4x2x3

] [
(x3 + x1)

2 − 4x3x1

]
= (13)

[
x2

3 − 4x1x2

] [
x2

1 − 4x2x3

] [
x2

2 − 4x3x1

]
=

−63x2
1x

2
2x

2
3 − 4(x3

1x
3
2 + x3

2x
3
3 + x3

3x
3
1) + 16x1x2x3(x

3
1 + x3

2 + x3
3) =

−63q2 − 4 ((−px1 − q)(−px2 − q)− . . . )− 16q ((−px1 − q)− . . . ) =

D = −27q2 − 4p3 . (14)

We see that discriminant D appears up to a factor in Cardano-Tartaglia

formula (2):
√

p3

27
+ q2

4
=

√
27q2+4p3

108
=

√−D

6
√

3

Now consider more properly the properties of symmetric polynomials.
The polynomial Σ(t1, . . . , tn) (or rational function R(t1, . . . , tn) = P (t1,...,tn)

Q(t1,...,tn)
)

is called symmetric if it is invariant under all permutations of (t1, . . . , tn) →
(tσ1 , . . . , , tσn) of variables. ((1, . . . , n) → (σ1, . . . , σn) is a permutation)

Viète Theoreme can be formulated in slightly different way:
The polynomial (rational function) which remains invariant under action

of the group Sn of permutations is polynomial (rational function) of coeffi-
cients.

Example Let x1, x2, x3 be roots of cubic equation f = x3+ax2+bx+c = 0
with rational coefficients. Consider the group S3 of permutations. It contains
6 elements:

e =

(
1 2 3
1 2 3

)
, s =

(
1 2 3
2 3 1

)
, s2 =

(
1 2 3
3 1 2

)
(15)

σ12 =

(
1 2 3
2 1 3

)
, σ13 = s◦σ12 =

(
1 2 3
3 2 1

)
, σ23 = σ12◦s =

(
1 2 3
1 3 2

)

(16)
It acts on roots if x1, x2, x3 of cubic polynomial f = x3 + ax2 + bx + c and

on functions of roots:

e ◦ Σ(x1, x2, x3) = Σ(x1, x2, x3) , s ◦ Σ(x1, x2, x3) = Σ(x2, x3, x1) , (17)

7



s2 ◦ Σ(x1, x2, x3) = Σ(x3, x1, x2) , σ12 ◦ Σ(x1, x2, x3) = Σ(x2, x1, x3) , (18)

σ13 ◦Σ(x1, x2, x3) = Σ(x3, x2, x1) , σ23 ◦Σ(x1, x2, x3) = Σ(x1, x3, x2) , (19)

Consider an arbitrary polynomial Σ(x1, x2, x3) on roots. (E.g. Σ(x1, x2, x3) =
x7

1x
5
2x

2
3 + x9

1x
4
2x3)

Act on this polynomial by the group S3:

Σsymm = Σ + s ◦ Σ + s2 ◦ Σ + σ12 ◦ Σ + σ13 ◦ Σ + σ23 ◦ Σ

i.e.

Σsymm(x1, x2, x3) = Σ(x1, x2, x3) + Σ(x2, x3, x1) + · · ·+ Σ(x1, x3, x2) (20)

Then the polynomial Σsymm(x1, x2, x3) is symmetric polynomial:

∀gi ∈ S3 gi ◦ Σsymm = Σsymm

Hence the value of polynomial Σsymm on the roots is a rational number.
(Prove it!)

Example E.g. Let Σ(t1, t2, t3) = t1 + t2
t3

. Then

Σsymm(x1, x2, x3) = x1+
x2

x3

+x2+
x3

x1

+x3+
x1

x2

+x2+
x1

x3

+x1+
x3

x2

+x3+
x2

x1

=

If x1, x2, x3 are roots of cubic polynomial x3 + ax2 + bx+ c then it is equal to

2(x1+x2+x3)+
x1 + x2

x3

+
x2 + x3

x1

+
x1 + x3

x2

= −2a−a + x3

x3

−a + x1

x1

−a + x2

x2

=

−2a− 3− a

(
1

x1

+
1

x2

+
1

x3

)
= −2a− 3 +

ab

c

We see that in spite of the fact that we cannot solve (do not want to solve)
the equation we can easily express the symmetric combinations of roots via
coefficients of polynomial.

0.3 Trying to generalize Viète Theorem. Toy example
of Galois Theory

Now try to analyze polynomial of roots which are not invariant under all
permutations.
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In general case polynomial Σ(x1, . . . , xn) (where x1, . . . , xn are n roots of
polynomial equation) takes n! different values under the action elements of
permutation group Sn. If polynomial Σ(x1, . . . , xn) is symmetric polynomial
as above then it takes exactly one value. Consider intermediate case, where
polynomial is not symmetric (i.e. is not invariant under all group Sn) but it
is invariant under the action of subgroup H ⊆ Sn

3. We cannot apply in this
case Viète Theorem. But still one can calculate the values of this polynomial
on roots without straightforward calculaltion of the roots.

Demonstrate the main idea on the following example:
Example Consider the polynomial:

w(x1, x2, x3) = x2
1x2 + x2

2x3 + x2
3x1 . (22)

This polynomial is not symmetric polynomial: σ12 ◦ w 6= w. But it is still
invariant under the action of subgroup H = (e, s, s2) ⊆ S3 of cyclic permu-
tations:

s ◦ w(x1, x2, x3) = w(x2, x3, x1) = x2
2x3 + x2

3x1 + x2
1x2 = w(x1, x2, x3)

Under the action of all group S3 it takes two values (|S3| = 6, |H| = 3,
6 : 3 = 2)

w = x2
1x2 + x2

2x3 + x2
3x1 , and w′ = σ12 ◦ w = x2

2x1 + x2
1x3 + x2

3x2

. Consider quadratic polynomial

P(z) = (z − w)(z − w′) = z2 − (w + w′)z + ww′

It is evident that w + w′ and ww′ are invariant under action of the group
S3 of all permutations and hence according to Viète Theorem they can be
expressed rationally through a, b, c, coefficients of the cubic polynomial f !
For example σ12(w + w′) = w′ + w. We come to very important conclusion:

The expression w(x1.x2.x3) = x2
1x2 + x2

2x3 + x2
3x1 for roots of the cubic

equation is a root of a quadratic equation with rational coefficients. We can
calculate it by solving the equation of lower degree.

3i.e. it takes at most m different values where m is an index of subgroup H in the
group Sn:

m =
|Sn|
|H| =

n!
|H| (21)

9



We did this conclusion without solving the cubic equation: we just ex-
amine the symmetry property of the polynomial (22).

These considerations lead to the following statement which can be con-
sidered as a generalization of Viète Theorem

Proposition
Let x1, x2, . . . , xn are roots of polynomial xn+an−1x

n−1+an−2x
n−2+ · · ·+

a1x + a0 = 0. Let Σ(x1, . . . , xn) be a polynomial on roots x1, . . . , xn with
coefficients which are polynomials on coefficients a1, . . . , an−1.

1. If the polynomial Σ(x1, . . . , xn) takes only one value under action
of permutation group Sn Σ is polynomial on coefficients a1, . . . , an−1 (just
standard Viète Theorem:).

2. If the polynomial Σ(x1, . . . , xn) defined above takes two values under
the action of group Sn then it is a root of quadratic equation (with coefficients
which are polynomials of a1, . . . , an−1)

This statement can be considered as a toy example in Galois Theory.
Proof of Proposition Consider subgroup H of permutations which pre-

serve Σ(x1, . . . , xn). One can prove that subgroup H has index 2 (|H| =
|Sn|
2
| = n!

2
) Let g ∈ Sn, g 6∈ H. If H = {h1, h2, h3, . . . , hk}, then Sn =

{h1, h2, h3 . . . , hk, gh1, gh2, gh3, . . . , ghk} Consider Σ′ = g ◦ Σ. Then
of roots. Hence according to the Viète Theorem u, v are polynomials on

a1, . . . , an−1. Respectively Σ, Σ′ are roots of quadratic equation z2−uz+v =
0

1 Ring of polynomials

In this Section we consider the ring of polynomials over field and we see that
this ring has features close to the features of ring of integers. In particularly
for this ring there exists an analogue of Fundamental Theorem of Arithmetics

1.1 Recollection of rings

Definition A ring is a set R equipped with two binary operations ”+”, ”×”
such that {R, +} is abelian group under addition, multiplication is associative
(ab)c = a(bc) and the following relations hold (distribution laws):

a× (b + c) = a× b + a× c, (b + c)× a = b× a + c× a

,

10



Definition An integral domain (R, +,×) is a ring with the following
properties:

• Multiplication × is commutative

• There exists an element e such that for every a ∈ R, e× a = a× e = a

• If ab = 0 then a = 0, or b = 0

Examples Z,Q R, C , Mat[p × p] with standard multiplicatioon and
addition are rings and these rings are integral domains.

The linear space of vectors with standard addition law and vector product
× is ring where multiplication is anticommutative (a× b = −b× a), has not
element e and product of two orthogonal vectors is equal to zero.

The space C([0, 1]) of continuous functions on [0, 1] is ring but it is not
integral domain: Consider functions f, g such that f ≡ 0 for x < 3/4 and
g ≡ 0 for x > 1/4 Then fg = 0 but f 6= 0 and g 6= 0

Another example: Z/nZ-ring of residuals modulo n. It contains elements
{0̄, 1̄, 2̄, . . . , n̄}, ā + b̄ = c̄, where c = a + b modulo n and ā × b̄ = d̄, where
d = ab modulo n.

Definition A ring (R, +×) is a field if it R − {0} is abelian group with
respect to multiplication ×.

E.g. integral domain is a field if every non-zero element has inverse.
Examples. Q,R,C are fields. Z is not a field, Space Mat[p× p] of p× p

matrices is not a field too.
Another important example: Let (R, +,×) be an integral domain. Then

one can consider its field of fractions: pairs f/g with g 6= 0 and indentification
f/g = f ′/g′ if fg′ = f ′g.

In this way one come from Z to Q.

Another very important example:
Proposition A ring Z/nZ is a field iff n is a prime.

Characteristic of field
Let (K, +×) be any field. Consider the elements

an = 1 + 1 + · · ·+ 1︸ ︷︷ ︸
n−times

(23)

11



If for all n an 6= 0 then all an are different. Hence this field possesses Z
and Q. Suppose n is a minimal number such that an = 0 (n > 0). Then
evidently n is a prime. Hence the field possesses a field Fp = Z/pZ.

We come to
Proposition The prime subfield of every field (intersection of all subfields)

is Q or Fp

This motivates
Definition. We say that a field K has a characteristic 0 if its prime

subfield is Q. We say that a field K has a characteristic p if its prime
subfield is Fp.

Geometric interpretaion of the ring Z/NZ. This ring can be interpreted in
terms of regular N -gon on the plane. Namely consider n {A0, A1, . . . , AN−1}
points {A0, A1, . . . , AN−1} on the complex plane which are vertices of the
regular n-gon:

A0 = 1, A1 = εN , A2 = ε2
N , A3 = ε3

N . . . , AN = εN−1
N , where ε = e

2πi
N (24)

and define addition and multiplication as follows

Ap+̃Aq = εk+q
N = Ap + q (modulo N), Ap∗̃Aq = εpq

N = Apq (modulo N)

It is easy to see that we come to the structure of the ring Z/NZ. E.g. if
N = 5 we have hexagon with the vertices

A0 = 1, A1 = e
2πi
6 = e

πi
3 , A2 = e

2πi
3 , A3 = −1, A4 = e

−2πi
3 , A5 = e

−πi
3

A2+̃A3 = A5, A2∗̃A3 = A0,

1.2 Ring of polynomials over field or integral domain

Let K be a ring. Consider the set of polynomials over K, i.e. polynomials

antn + an−1t
n−1 + · · ·+ a1t + a0 (25)

with coefficients (an, an−1, . . . , a1, a0) from ring K.
One can naturally define the operations ” + ” and ” × ” in the set of

polynomials. It is easy to see that the set of polynomials becomes a ring
under these operations. We denote this ring by K[t]. One can easy prove

Proposition A ring K[t] is an integral domain if the ring K is an integral
domain

12



An arbitrary field is integral domain. In what follows we will mainly
consider polynomials with coefficients in a field.

Remark One can consider polynomial (25) as function on K with values
in K or as formal expression defined by coefficients (an, an−1, . . . , a1, a0). Here
we stand on the second point of view considering polynomials as formal
expressions (25). These two approaches can be essentially different. E.g. if
K is finite field then one can construct two polynomials f = antn+an−1t

n−1+
· · ·+a1t+a0 and g = bmtm+mm−1t

m−1+ · · ·+b1t+b0 such that they coincide
as functions from K to K (∀t ∈ K f(t) = g(t)) but do not coincide as formal
polynomials (i.e. they have different coefficients.) E.g. let K = F3 = Z/3Z.
Then polynomials f = t2003 and g = f + t3− t coincide at all t = {0̄, 1̄, 2̄}. It
can be easily generalized. Let p be prime then in the field K = Fp = Z/pZ
= {0̄, 1̄, 2̄, . . . , ¯p− 1} a polynomial

hp(t) = t(t− 1̄)(t− 2̄) . . . (t− ¯p− 1) = tp − t (26)

takes zero values at all t ∈ Fp. For an arbitrary polynomial f ∈ Fp[t]
f(t) ≡ f(t) + tp − t(t).

The situation is different for an infinite field:
Proposition Let two polynomials f(t) = ant

n + an−1t
n−1 + · · ·+ a1t+ a0

and g(t) = bmtm + mm−1t
m−1 + · · · + b1t + b0 coincide in infinite number of

distinct points (distinct elements of the field K). Then these polynomials
coincide as formal polynomials,i.e.

b0 = a0, b1 = a1 . . . , bk = ak, . . .

Exercise Prove this Proposition. (Hint: Consider the difference of two
polynomials. Note that polynomial atn + btn−1 + . . . has no more that n
roots if a 6= 0. Compare with (26).)

Definition We say that the degree of polynomial f ∈ K[t] is equal to
m if f = amtm + · · · + a0 with am 6= 0. The degree of constant non-zero
polynomial (non-zero scalar from K) are equal to zero by definition. For
every polynomial f ∈ K[t] we denote by ∂f the degree of this polynomial.
It is convenient to assign to the polynomial 0 the degree equal to −∞ (See
the exercise below).

Exercise Show that for polynomials f, g ∈ K[t]

∂(f + g) ≤ ∂f + ∂g , ∂(fg) = ∂f + ∂g . (27)

13



Exercise Prove that the set of units (set of invertible elements) in Q[t]
is just Q− 0 .

Later we use the notion of monic polynomial. A polynomial f(t) = ant
n+

an−1t
n−1 + · · ·+ a1t + a0 with coefficients from the integral domain is called

monic polynomial if the highest coefficient an is equal to 1.
Remark The set of monic polynomials of degree n is not a linear space,

It is affine space associated with n− 1-dimensional vector space.

1.3 Highest common factor.

In the same way as in the ring of integers every polynomial in the ring of
polynomials can be divided by another provided that a remainder term is
allowed. (As it was mentioned above we consider a ring K[t] where K is a
field)

Proposition Let f, g ∈ K[t] and g 6= 0. Then there exist unique polyno-
mials h, r such that

f = hg + r , with ∂r < ∂g . (28)

Remark In the field of integers instead (28) for arbitrary integers p, q we
have

p = hq + r , with |r| < |q| . (29)

The degree of polynomial in the ring of polynomials plays the role of the
usual norm in the ring of integers4.

The existence algorithm for (28)is evident. The uniqueness follows from
the (27): If f = hg + r = h′g + r′ then

(h− h′)g = r − r′, .

Indeed suppose h−h′ 6= 0. Then the degree of polynomial in l.h.s. is not less
than degree of polynomial g. On the other hand the degree of polynomial in
r.h.s. is less that degree of polynomial g. Contradiction. Hence h = h′, r = r′.

For two polynomials f, g one can consider their highest common factor
Definition A highest common factor (h.c.f.(f, g)) of polynomials f, g is a

4Note that in the ring of integers, the remainder is not fixed uniquely by the condition
above: 37 = 5×7+2 = 6×7+(−5) The standard norm norm in integers is an archimedian
norm, the norm defined by degree of polynomials is non-archimedian norm.
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polynomial d0 such that it divides f, g and if polynomial d divides f and g
then it divides d0 also.

Here an indefinite article ”a” stands in the appropriate place: highest
common factor of two polynomials is defined uniquely up to multiplication
by a constant (non-zero element of the field K) 5

First prove uniqueness. If d0 and d̃0 are highest common factors of poly-
nomials f, g then by definition d0|d̃0 and vice versa d̃0|d0. Hence it follows
from (28) and (27) that d̃0 = kd0, where k ∈ K.

The existence follows from Euclidean algorithm.
Let f = r0, g = r1 then according (28) apply Euclidean algorithm. We

have the ladder of divisions with decreasing degrees of remainders:

r0 = h1r1 +r2 , ∂r2 < ∂r1

r1 = h2r2 +r3 , ∂r3 < ∂r2

. . . . . . . . . . . .
rn−1 = hnrn +rn+1 , ∂rn+1 < ∂rn

rn = hn+1rn+1 +0 , rn+2 = 0 , ∂rn+2 = −∞

(30)

Climbing up on this ladder it is easy to see that rn+1 is highest common
divisor.

The following technical lemma is very useful:
Lemma If polynomials f, g are coprime then there exist polynomials a, b

such that
af + bg = 1 (31)

Of course the same statement is right in the field of integers:
Lemma′ If integers p, q are coprime then there exist integers a, b such

that
ap + bq = 1 (32)

Example 1 f = x2, g = x − 1, f, g are obviously coprime polynomials and
f − (x + 1)g = 1, a = 1, b = 1− x

Example 2 p = 45, q = 7, p, q are coprime. Obviously

13q − 2p = 1 (33)

Example 3

5The group of unities of the ring of polynomials K[t] (invertible elements of this ring)
is the initial field K. The highest common factor is defined up to the unity.
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p = 225, q = 157, p, q are coprime. It is very easy to check but not
obvious to find that

43q − 30p = 1 (34)

First two examples are very easy. But how to guess an answer in the
third one 6?

A way to find a, b obeying (31) (respectively (32) is to apply Euclidean
algorithm (30) for polynomials 7 f, g. Demonstrate it in the case if algorithm
(30) has only five steps:

f = r0, g = r1

r0 = h1r1 +r2 , ∂r2 < ∂r1

r1 = h2r2 +r3 , ∂r3 < ∂r2

r2 = h3r3 +r4 , ∂r4 < ∂r3

r3 = h4r4 +r5 , ∂r5 < ∂r4

r4 = h5r5 , ∂r6 = −∞

(35)

In the last equation the highest common divisor r5 is equal to one (or
constant ) because polynomials are coprime.

Look on the last steps of the ladder. For f ′ = r3, g
′ = r4 the last but one

step gives a solution to (31):

r3 − h4r4 = r5 = 1 , f ′ − h4g
′ = 1

Using the upper step of the ladder: r2 = h3r3 + r4 we express r4 via r2, r3:

r3 − h4(r2 − h3r3) = 1

We come to the relation (31) for for f ′ = r2, g
′ = r3. Now using the step

r1 = h2r2 + r3 we express r3 via r1, r2 and come to the relation (31) for for
f ′ = r1, g

′ = r2. And so on till end...
Of course the same can be done for ring of integers.
Example Let f = t3−2, g = t2+3t+5. Then dividing t3−2 by t2+3t+5

and then dividing (t2 + 3t + 5) by the remainder we come to

t3 − 2 = (t− 3)(t2 + 3t + 5) + (4t + 13) , (36)

6Note that any solution of (31) (or correspondingly of (32) for ring of integers) produce
all solutions: if a pair (a0, b0) is a solution of (31) then an arbitrary solution is given by
the formula a = a0 + Rg, b = b0 + Rf where R is an arbitrary polynomial. (For the ring
of integers: if (a0, b0) obey is a solution of (31) then an arbitrary solution is given by the
formula a = a0 + Rq, b = b0 + Rp where R is an arbitrary integer.)

7Of course often it can be more effective to find solution to equation (31) by straight-
forward considerations.
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(t2 + 3t + 5) =

(
t

4
− 1

16

)
(4t + 13) +

93

16
, (37)

r0 = t3 − 2, r1 = (t2 + 3t + 5), , r2 = 4t + 13

The relation (37) means that for functions f ′ = (t2 + 3t + 5), g′ =
(4t + 13)

f ′ −
(

t

4
− 1

16

)
g′ =

93

16

Now using (36) express g′ via f = (t3 − 2) and g = (t2 + 3t + 5) we come
to the

(t2 + 3t + 5)−
(

t

4
− 1

16

) [
t3 − 2− (t− 3(t2 + 3t + 5))

]
=

93

16

Opening brackets we come to

(4t2 − 13t + 19)(t2 + 3t + 5)− (4t− 1)(t3 − 2) = 93

1.4 Continuous fractions and Euclidean algorithm

Technically it is easy and beautiful to calculate a solution of the equations (31) and (32)
using continuous fractions.

Demonstrate this on the ring of integers (For ring of polynomials it is almost the same)
E.g. consider numbers p = 225, q = 157 from the example 3:

225 = 1× 157 + 68 , ⇔ 225
157

= 1 +
68
157

;157 = 2× 68 + 21 , ⇔ 225
157

= 1 +
1

2 + 21
68

68 = 3× 21 + 5 , ⇔ 225
157

= 1 +
1

2 + 1
3+ 5

21

;21 = 4× 5 + 1 , ⇔ 225
157

= 1 +
1

2 + 1
3+ 1

4+ 1
5

Now take the last but one approximation of the fraction

x0 =
225
157

= 1 +
1

2 + 1
3+ 1

4+ 1
5

(38)

i.e. remove its last ”deepest” part:

x1 = 1 +
1

2 + 1
3+ 1

4
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Then
x1 = 1 +

1
2 + 1

3+ 1
4

= 1 +
1

2 + 4
13

== 1 +
13
30

=
43
30

and
x1 − x0 =

43
30
− 225

157
=

43× 157− 30× 225
157× 30

=
1

157× 30

We come to solution to the equation (34) 8.
Continuous fractions give us the following : Write continuous fraction for a fraction f

g
then take its last but one approximation,i.e. remove its ”deepest”part, and return to the
usual fraction. We come to the fraction a

b such that ag − bf = ±1.
E.g. f = x2 + x− 1, g = x2 : We have

x0 =
f

g
=

x2 + x− 1
x− 1

= 1 +
x− 1
x2

= 1 +
1
x2

x−1

= 1 +
1

x + 1 + 1
x−1

The first approximation will be

x1 = 1 +
1

x + 1
=

x + 2
x + 1

We see that
(x + 2)x2 − (x + 1)(x2 + x− 1) = 1

1.5 Factorisation of polynomials

The Fundamental Theorem of Arithmetic states that there exists a unique
decomposition of every integer on prime numbers (up to the order of multi-
pliers). This Theorem follows from:

Lemma If p is a prime integer such that p|ab for two integers a, b then
p|a or p|b. The proof of this lemma is based on the lemma (32) (analogue
of (31) for the ring of integers ) for integers: Let ab = mp and p does not
divide a. Then a, p are coprime. If by (32) ax + py = 1 then abx + pby = b.
p divides ab and pb. Hence it divides b also.

In the ring K[t] of polynomials with coefficients in the field K the role of
prime numbers are played by irreducible polynomials.

8If P1
Q1

, P2
Q2

, P3
Q3

, . . . , Pn

Qn
, Pn+1

Qn+1
, . . . is the sequence of continuous fractions approximating

a given number then for every k

Pk

Qk
− Pk+1

Qk+1
=

±1
QkQk+1

(39)
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Definition The polynomial p(t) ∈ K[t] is called reducible if p = fg where
the degrees of polynomials f and g are less than the degree of the polynomial
p.Otherwise the polynomial is called reducible.

(Compare with definition of composite and prime integers)

For example the polynomial t2 + t + 1 is irreducible in Q[t],R[t] and it is
reducible in C[t].

Irreducible polynomials play the role of prime numbers in the ring of
polynomials.

Lemma If p is irreducible polynomial in K[t], and p|fg for two polyno-
mials f, g ∈ K[t], then p|f or p|g. The proof is the same as for integers: Let
fg = hp and p does not divide f . Then polynomials f, p are coprime. If by
(31) fx + py = 1 then fgx + pgy = g. p divides fg and pg. Hence it divides
g also.

From this lemma follows Theorem:
Theorem Every polynomial F ∈ K[t] can be decomposed uniquely by

irreducible polynomials (up to a constant factor and ordering of multipliers)
Proof Suppose F = f1f2 · · · · · fn = g1g2 · · · · · gn where polynomials

(f1, . . . , fn, g1, . . . , gm) are irreducible polynomials of degree greater than 1
(i.e. not constants). Consider polynomial f1. It follows from lemma that
f1 divides at least one of polynomials g1, . . . , gm. Without loss of generality
suppose that f1 divides g1. Both these polynomials are irreducible and they
are not constants. Hence f1 = c1g1 where c1 ∈ K is a constant. Divide F by
f1 and consider f2. Thus we will prove that after reordering of polynomials
g1, . . . , gm we come to f1 = c1g1, f2 = c2g2, . . . , fn = cngn.

1.6 Tests for irreducibility

Gauss Lemma If polynomial f with integer coefficients is irreducible over
Z then it is irreducible over Q.

This is very useful Lemma. Irreducibility over Z is much easier to check
that irreducibility over Q. E.g if f = t3 + at2 + bt + c is a polynomial with
integer coefficients then irreducibility over Z means the absence of the integer
roots. This can be checked easily because integer root divides c.

Note that the absence of integer roots is sufficient but not necessary
condition for irreducibility of monic polynomial if the degree of polynomial
is higher than 3: the polynomial x4 + 4 = (x2 − 2x + 2)(x2 + 2x + 2) is
reducible over Z in spite of the fact that it has no even real roots!
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Proof of the lemma
Let a polynomial f ∈ Z[t] be reducible over Q: f = gh, where

f = Ant
n + An−1t

n−1 + · · ·+ A1t + A0 , An 6= 0 , Ai ∈ Z

g = αntn + αn−1t
n−1 + · · ·+ α1t + α0 , αn 6= 0 , αi ∈ Q

h = βmtm + βm−1t
m−1 + · · ·+ β1t + β0 , αn 6= 0 , βi ∈ Q

Prove that it is reducible over Z too, i.e. one can choose coefficients αi, βj

integers.
Choose N such that multiplying by N we can come to polynomials g′, h′

with integer coefficients:

f ′ = Nf = g′h′, (40)

where

g′, h′ ∈ Z[t] g′ = antn + · · ·+ a0 , h′ = bmtn + · · ·+ b0 , ai, bj ∈ Z (41)

E.g. we can take N equal to the product of all denominators of all fractions
{αn, . . . , α0, βm, . . . , α0}.

Consider minimal (positive integer) N such that (40) is obeyed. Prove
that it is equal to 1, i.e. polynomial f itself is reducible over Z. Suppose
that N 6= 1 and it contains prime factor p. It means that all coefficients of f ′

are divisible on p. If all coefficients of g′ or all coefficients of h′ are divisible
on p then one can chose g′ 7→ g′

p
or h′ 7→ h′

p
and reduce the number N . But

the number N is chosen already to be the minimal. Hence suppose that not
all coefficients of g and not all coefficients of h are divisible on p. Let r be
the smallest number such that ar is not divisible on p and s be the smallest
number such that bs is not divisible on p. Comparing coefficient at tr+s in
the left hand side and right and side of the (40) we see that this coefficient
is equal to

K︸︷︷︸
divisible on p

=
∑

i+j=r+s

aibj = arbs︸︷︷︸
not divisible on p

+

∑
i<r, j>s,i+j=r+s

aibj

︸ ︷︷ ︸
divisible on p

+
∑

i>r, j<s,i+j=r+s

aibj

︸ ︷︷ ︸
divisible on p
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Contradiction.

There are different ways to check irreducibility over Z. In particular very
practical Test is

Eisenstein Test. Let f be a polynomial with integer coefficients, f =
ant

n + an−1t
n−1 + · · · + a1t + a0 and p be a prime number such that the

following conditions are obeyed:
1) p does not divide the higher coefficient an,
2) p divides all other coefficients
3) p2 does not divide the coefficient a0

Then polynomial f is irreducible over Z. Hence according Gauss lemma
it is irreducible over Q.

Proof: Suppose for a contradiction that f = gh where g = brt
r+br−1t

r−1+
· · ·+b1t+b0, h = cst

s +as−1t
s−1 + · · ·+a1t+a0. Then a0 = b0c0. p divides a0

and p2 does not divide a0. W.L.O.G. suppose that p does not divide b0 and p
divides c0. Note that p does not divide the highest coefficient cs. Let k be a
minimal number such that p does not divide ck. Then ak = b0ck +b1ck−1+. . .
is not divisible on p. Contradiction.

Examples
Example. Consider polynomials

f(t) =
t7 − 1

t− 1
= 1 + t + t2 + t3 + t4 + t5 + t6 (42)

This polynomial is irreducible. To see it consider t = u + 1 and apply
Eisenstein test for polynomial f(1 + u) and for p = 7. One can prove in
the similar way that a polynomial f(t) = tp−1

t−1
is irreducible over Q for an

arbitrary prime p.

g(t) =
t6 − 1

t− 1
= 1 + t + t2 + t3 + t4 + t5 (43)

over Q. This polynomial is reducible: t6−1
t−1

= 1 + t + t2 + t3 + t5 = (t3−1)(t3+1)
t−1

= (t2 + t + 1)(t3 + 1).
Emphasize that the Eisenstein criterion is a sufficient but not necessary

condition for a polynomial being irreducible.
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2 Field extension

We say that L : K is a field extension if K is a subfield of L, or if K is
embedded in L by a field monomorphism.

If X is subset in the field L then subfield in L generated by X is inter-
section of all subfields of L which contain X.

If L : K is field extension denote by K(X) subfield of L generated by
K ∪X.

Examples
1. Consider in a field C of complex numbers subfield R of real numbers.

R(i) : R is nothing but C : R. Subfield R(i) = C.
2. Consider in a field R of real numbers subfield Q of rational numbers.

Q(
√

2) : Q is extension of rationals by
√

2. Q(
√

2) = {a + b
√

2, a, b ∈ Q}. It
is a subfield in R which does not coincide with R

We say that extension L : K is isomorphic to extension L̃ : K̃ if there exist
isomorphisms ψ : K ↔ K̃, ϕ : L ↔ L̃ such that ϕ

∣∣
K

= ψ and ι̃ψ = ϕι, where

ι, ι̃ are embedding monomorphims of K and K̃ in L and L̃ respectively.m

2.1 Simple extension

The extension L : K is called simple if there exists α ∈ L such that L = K(α).
E.g. extensions Q(i) : Q, Q(

√
2) : Q is a simple extension.

Another example: extension Q(i,
√

2) : Q is defined by two generators,
but it is a simple extension. To see it consider the complex number

θ = i +
√

2 (44)

It is evident that Q(θ) ⊆ Q(i,
√

2) because θ ∈ Q(i,
√

2). Prove that
Q(i

√
2) ⊆ Q(θ). We see that

1

θ
=

√
2− i

3

Hence

2
√

2 = θ +
3

θ
and 2i = θ− 3

θ
i.e.

√
2 ∈ Q(θ) , i ∈ Q(θ) ,Q(i

√
2) ⊆ Q(θ) .

(45)
Exercise Find a polynomial p(x) ∈ Q[x] such that p(θ) = 0.

22



Remark Later we will see that this is true for a large class of extensions
(See Theorem in the end of this Section about primitive element.)

Definition Simple extension K(α) : K is called simple algebraic ex-
tension if α is algebraic over K. Otherwise simple extension is called a
transcendent extension.

Reminder If L : K is an arbitrary field extension then a number α ∈ L is
called algebraic over K if it is a root of non-trivial (non-zero) polynomial with
coefficients in K. Otherwise it is called transcendent over K. The complex
number is called an algebraic number if it is a root of non-trivial polynomial
(or monic polynomial) over Q. Otherwise it is called transcendental number.

Remark The polynomial is non-trivial if its degree is greater or equal to
0. The polynomial is trivial if all its coefficients are equal to zero, i.e. its
degree is equal to −∞. Monic polynomial is non-trivial. If a number α is a
root of non-trivial polynomial p(t) = ant

n + · · ·+ a0 with an 6= 0 then it is a

root of monic polynomial p(t)
an

)

Now we classify simple extensions. Consider first two basic examples:

Example 1 Consider set of fractions
{

P (t)
Q(t)

}
, where P,Q are arbitrary

polynomials such that Q 6= 0. Two fractions P
Q

, P ′
Q′ are equal iff PQ′ ≡ P ′Q.

One can naturally define addition and multiplication in this set. We come
to the field K(t) which is field of fractions of integer domain; in this case
integer domain is the ring of polynomials K[t].

All elements of the field K(t) are generated by elements of initial field K
and indeterminate t. This is simple extension K(t) : K because indetermi-
nate t is not algebraic over K: (Suppose t is algebraic and P (t) ≡ 0. Then
P is zero polynomial.)

Before considering the next example formulate very important lemma:

Lemma Let p = p(t) be an irreducible polynomial over the field K.
Let Ip = (p) be an ideal generated by the polynomial p in the ring K[t]
of all polynomials over K (It is the set of all polynomials divisible on p:
Ip = (p) = {f : f ∈ K[t], f = ph}. Then the quotient ring K[t]

/
(p) is a

field.

Proof One can easy to define + and × in the factor ring K[t]/(p). To
prove that a ring K[t]/(p) is a field one has to prove that every equivalence
class [f ] ([f ] = [f ′] if f − f ′ = pg) has inverse if f 6= 0. Without loss of
generality suppose that f is coprime with p. (If no, then f = hp + f ′ where
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[f ′] = [f ] and f ′ is coprime with p). Use now the technical lemma (31): there
exist polynomials a, b such that af + bp = 1. Hence

[a][f ] = [1] (46)

Now we are ready to consider the following example:
Example 2 let p be an irreducible non-trivial polynomial over K. Con-

sider according the lemma above the field K[t]
/
(p) This field is an extension

of the field K by the element θ = [p].
E.g. if p = t2 − 2 ∈ Q[t] then Q

/
(p) is isomorphic to Q(

√
2)

These two examples in fact exhaust all the cases of simple extensions:
Theorem 1 Every transcendental simple extension K(α) : K is isomor-

phic to the extension K(t) : K where K(t) is a field of fractions P (t)
Q(t)

of

polynomials over K with indeterminate t. (Please, pay attention that ring
of polynomials is denoted by K[t] and the field of fractions by K(t).)

Proof. Let α be an arbitrary transcendental (non-algebraic) number over

K. Hence for any non-zero polynomial Q, Q(α) 6= 0 and a number P (α)
Q(α)

is well

defined. There is one-one correspondence between all fractions P (t)
Q(t)

(Q(t) 6≡
0) and elements P (α)

Q(α)
. This is required isomorphism. For example consider

an extension Q(π) : Q. Then the map P (t)
Q(t)

→ P (π)
Q(π)

defines isomorphism of
extensions. because transcendent number π cannot be a root of non-trivial
polynomial over rationals.

Before formulating the next Theorem we introduce the notion of minimum
polynomial. Let θ be an algebraic over K, i.e. there exists a non-trivial
polynomial over K such that θ is its root (K(θ) : K is an algebraic extension).

In the set of all non-trivial polynomials over K which have θ as a root
consider a monic polynomial p ∈ K[t] of the smallest degree such that p(θ) =
0. The polynomial p is called the minimum polynomial of θ over K.

If p = tn + an−1t
n−1 + · · ·+ a1t + a0, g = tn + bn−1t

n−1 + · · ·+ b1t + b0 are
two different minimum polynomials then considering a polynomial p − g =
(an−1− bn−1)t

n−1 + · · ·+(a1− b1)t+(a0− b0) one comes to monic polynomial
of smaller degree. If polynomial p is reducible: p = fg then θ is a root of
one of polynomials f or g of smaller degree. Hence minimum polynomial of
algebraic number θ is defined uniquely and it is irreducible polynomial.

Theorem 2
Simple algebraic extensions are produced by the irreducible polynomials.
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Namely, let K(θ) : K be an algebraic extension and p ∈ K[t] its minimum
polynomial. Then the extension K(θ) : K is isomorphic to the quotient of
the ring K[t] by the ideal generated by the irreducible polynomial p:

K(θ) : K is isomorphic to K[t]
/
(p)

Two simple algebraic extensions K(θ1) : K, K(θ2) : K are isomorphic if
θ1, θ2 are roots of the same minimum polynomial.

Roots of irreducible polynomial are on an equal footing.

Remark Note that it is not TRUE that different irreducible polynomials
in general produce different extensions. E.g. polynomials t2−2 and t2−2t−1
produce the same extension.

Example Consider the following four extensions of field of rationals:
a) Q( 3

√
2) : Q

b) Q( 3
√

2e
2πi
3 ) : Q

c) Q[t]/(t3 − 2) : Q
d) Q( 3

√
7) : Q

Extensions a), b), c) are isomorphic, because 3
√

2, 3
√

2e
2πi
3 are roots of the

same polynomial t3 − 2 and this polynomial is irreducible over Q according
to Eisenstein Test.

The extensions Q( 3
√

7) : Q, Q( 3
√

2) : Q are not isomorphic: To prove
it suppose that σ is an isomorphism required. Then σ( 3

√
7)3 = σ(7) = 7.

On the other hand the equation x3 = 7 has not solution in the field 3
√

2.
Contradiction

Counterexample; If p = fg is reducible polynomial over Q[t] then [f ], [g] 6=
0 in K[t]/(p) but [f ] · [g] = [p] = 0. Hence K[t]/(p) is not a field. moreover
it is not an integral domain.

Example Let α be a root of cubic polynomial x3 + x− 1 = 0. One can
easily prove that this polynomial is irreducible. It is easy to see that this
polynomial has only one real root x1 = α and two conjugate complex roots
x2 = β + iγ, x3 = β− iγ, because derivative f ′ = 3x2 +1 is positive function.
All fields Q(x1),Q(x2),Q(x3) are isomorphic to the field Q[x]/(x3 + x− 1).
The elements of the field Q[x]/(x3 +x− 1) can be considered as polynomials
{a + bx + cx2}, where operations have to be factorized by ideal generated by
the polynomial x3 + x− 1. E,g.

(x2 + x)(x2 − x) ≈ x− 2x2 , (47)
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because

[x2 + x][x2 − x] = [x4 − x2] = [x · x3 − x2] = [x(1− x)− x2] = [x− 2x2]

and
1

x
≈ x2 + 1 (48)

These are just relations for roots for the polynomial x3 + x− 1:

(α2 + α)(α2 − α) = α− 2α2 ,
1

α
= α2 + 1

Using methods of the subsection ”Highest common factor” one can express
an arbitrary fraction as polynomial.

2.2 Degree of extension

If L : K is a field extension it is worth considering L as a vector space over
field K. In other words forget about multiplication of arbitrary elements in
L. Consider in L operation addition and substraction for all elements but
restrict multiplication to the case where one of the multipliers belongs to the
subfield K (coefficients field). Thus we consider L as a vector space over K.

We come to very important invariant: degree of an extension which is
equal to the dimension of L considered as vector space over field K:

[L : K] = deg(L : K) = dimLK (49)

Theorem Let K(α) : K be a simple extension. Then [K(α) : K] = ∞
if α is transcendental over K. If α is algebraic over K then [K(α) : K] = n,
where n is a degree of minimum polynomial of α over K.

Proof. Consider ”vectors” e1 = 1, e2 = [t], e3 = [t2],...,en = [tn−1]. It
follows from definition of minimum polynomial that these vectors consist a
basis.

This is very workable theorem. E.g. to prove that degree of extension
Q( 7
√

2) : Q is equal to 7 we prove that polynomial x7−2 is irreducible (one can
do it using Eisenstein Test) hence this polynomial is minimum polynomial
and due to Theorem degree of the extension is equal to 7.

Let K, M, L be fields such that K ⊆ M ⊆ L. One says that K ⊆ M ⊆ L
is a Tower of field extensions.
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Theorem 2(Tower Law) If K ⊆ M ⊆ L is a tower of field extensions
then

[L : K] = [L : M ] · [M : K] (50)

The proof is evident from definition. Let {e}i be a basis of L considered as
a vector space over M (i.e. every element of L can be uniquely expressed as∑

xiei, where coefficients xi ∈ M). Respectively let {f}a be a basis of M
considered as a vector space over K (i.e. every element of M can be uniquely
expressed as

∑
aiei, where coefficients ai ∈ K). Then it can be easily proved

that elements {eifa} consist a basis of L considered as a vector space over
K. This proves (50).

Exercise 1 Prove that there is not any intermediate field in Q( p
√

7) : Q)
which does not coincide with Q or Q( p

√
7) if p is a prime number.

Solution follows immediately from Tower law.
Exercise 2. Prove that polynomial f = x4 + 6x + 2 has no root in the

field Q( 5
√

2).
Solution follows from Tower law: prove that polynomial f is irreducible.

Hence degree of extension Q(α) : Q is equal to 4, where α is a root of f . On
the other hand [Q( 5

√
2) : Q] = 5

2.3 Algebraic extension

Extension L : K is called algebraic if every element of L is algebraic over K.
Simple algebraic extension is finite extension by Theorem from previous

subsection.
Algebraic extension can be generated by finite number of elements, but in

general it is not the case (E.g. the algebraic closure of rationals (see later))

Theorem The field extension L : K is finite iff this extension is algebraic
finitely generated extension, i.e. L : K is algebraic and there exist finitely
many elements α1, . . . , αn such that L = L(α1, . . . , αk).

Proof:
Let [L : K] < ∞. Suppose [L : K] = n and {e1, . . . , en} be a basis of

L considered as a linear space over K. Then L = K(e1, . . . , en). Prove that
every element α ∈ L (and in particularly elements ei ) is algebraic over K.
Consider the set of elements {1, α, . . . , αn}. This set contains n+1 elements.
The dimension of L considered as vector space over K is equal to n. Hence
”vectors” {1, α, . . . , αn} have to be linear dependent (considered as vectors
in vector space L over K). Hence there exists a sequence {γ1, . . . , γn} of
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coefficients belonging to K such that not all coefficients are equal to zero
and γ1 +γ2α+γ3α

2 + · · ·+γn+1α
n = 0. We see that α is a root of non-trivial

polynomial. (If γr be the highest non-zero coefficient: γr 6= 0 and γi = 0 for
i > r then α is a root of non-trivial polynomial γrt

r + · · ·+ γ1t + γ0)
To prove the inverse implication for the extension K(α1, . . . , αn) with

{α1, . . . , αn} algebraic over K consider the ”tower” of field extensions

K ⊆ K(α1) ⊆ K(α1, α2) ⊆ · · · ⊆ K(α1, . . . , αn) = L

Every extension in this tower is trivial or simple algebraic. Hence from
the Tower Law it follows that [L : K] < ∞:

[L : K] = [K(α1, . . . , αn) : K(α1, . . . , αn−1)]·[K(α1, . . . , αn−1) : K(α1, . . . , αn−2)]·

· · · · [K(α1, α2) : K(α1)] · [K(α1 : K] < ∞ ,

because degree of every extension K(α1, . . . , αr) : K(α1, . . . , αr−1)] is finite.
It is just the degree of algebraic number αr over field K(α1, . . . , αr−1)].

Use this Theorem to study the set of algebraic numbers, i.e. complex
numbers which are roots of polynomials with rational coefficients.

Corollary The set of all algebraic numbers is a field.
Proof. Denote this set by A: Q ⊂ A ⊂ C.
One has to prove that for α, β ∈ A, α+β, αβ and α

β
, (β 6= 0) belong to A

also. The extensions Q(α) : Q and Q(α, β) : Q(α) are finite because α and
β are algebraic. From Tower Law it follows that field extension Q(α, β) : Q
is finite too. Hence by Theorem all elements of Q(α, β) and in particular
α + β, αβ and α

β
, (β 6= 0) are algebraic.

The degree of extension A : Q is equal to infinity. Indeed consider for
arbitrary N a polynomial tN −2. This polynomial is irreducible according to
Eisenstein test (Apply Eisenstein test for p = 2). Hence [Q(αN) : Q] = N ,
where αN = N

√
2 is a root of polynomial tN − 2. Q(α) is a subfield of A. It

proves that ∀N [A : Q] ≥ N, hence [A : Q] = ∞.

The following exercise describes very important property of the field of
algebraic numbers:

Exercise Prove that the field of algebraic numbers is algebraically closed.
In other words we have to prove that every polynomial p = A0 + A1t + · · ·+
Ant

n with coefficients in algebraic numbers (Ak ∈ A) has a root which is
algebraic number too.
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Solution follows immediately from Theorem above: Let p = A0 + A1t +
· · ·+Antn where complex numbers Ai are algebraic. Let complex number θ be
a root of this polynomial. Then extension Q(A0, . . . , An, θ) : Q(A0, . . . , An)
is algebraic, hence it is finite. The extension Q(A0, . . . , An) : Q is finite
too, because all A0, . . . , An are algebraic. Hence by Tower law extension
Q(A0, . . . , An, θ) : Q is finite. Hence θ is algebraic over Q

This solution proves the existence of polynomial with rational coefficients.
One can give explicit construction of this polynomial:
explicit construction of polynomial for θ: Let algebraic number Ak (k = 1, 2, . . . , n) are

roots of some polynomials Fk ∈ Q[x]. Let {Aik} is all set of roots of polynomial Fk. Then
take polynomial p = A0 + A1t + · · · + Anxn and put instead coefficient A1 an arbitrary
roots of polynomial F1, put instead coefficients A2 an arbitrary roots of polynomial F2,
put instead coefficient A3 an arbitrary roots of polynomial F3 and so on. Consider a
polynomial:

P =
∏

i0,i2,i3,...,in

(
Ai0

0 + Ai1
1 t + · · ·+ Ain

n xn
)

(51)

where product goes over all roots of polynomials Fk. All coefficients of this polynomial are
symmetric functions on roots. Hence they are rational. On the other hand θ is a root
fo this polynomial because it is a root of polynomial p. We proved that θ is algebraic.
Moreover we constructed polynomial over rationales such that θ is its root.

Remark One can consider analogously the set of algebraic numbers over arbitrary
field K and prove that this set is a field and this field is algebraically closed over K.

2.4 Constructions by ruler and compasses I. Obstacles.

The notion of degrees of extension allows us to formulate very simple but
powerful results which prove non-existence for solutions of very classic prob-
lems of constructing by ruler and compasses.

Note that by ruler and compasses we can ”perform” operations ” + ”,
”− ”, ”× ”, ” : ” and ”

√
”, i.e. solve linear and quadratic equations.

Namely take an arbitrary segment on the plane as a segment of unit
length. Consider coordinate system attached to an arbitrary point (con-
structing two perpendicular lines). We come to Argand plane. One can see
that every complex number z = a + ib such that a, b are rationals or square
roots of rationals can be constructed. Indeed if a, b are integers then to con-
struct a = n one have to take unit segment n times. To construct a = m : n
one has to construct an arbitrary angle 6 ABC with vertex at the point B,
then construct segments BM = q and MN = p on the ray BA and segment
BP = 1 on the ray BC. Then construct line which passes through the point
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N and is parallel to the line MP . Denote by Q the intersection of this line
with ray BC. We have: BM : MN = BP : PQ. Hence PQ = p : q. Now
show how to construct

√
n. Construct segment AKB (all three points on

the one line) such that AK = n,KB = 1. Construct a middle point O of
this segment (AO = n+1

2
) and then construct the circle with centre at the

point O and diameter Ab = n + 1. Construct segment KD such that KD is
perpendicular to AB and the point D is on the circle. It is easy to see that

KD =
√

AK ·KB =
√

n

because 6 DAb = 90◦.
Example Divide a circle on five equal arcs, i.e. construct regular pen-

tagon. It is suffice to construct an angle 72◦. Use the fact that cos 72◦ =
√

5−1
4

(see Homework 1)

Any algorithm of constructing by ruler and compasses contains the fol-
lowing steps:

1) Take an arbitrary point (One can always assume that it is a point with
rational coordinates)

2) Draw the line which passes through given two points.
3) Draw the circle with centre in the given point and a given radius.
4) Take a point which is an intersection of two lines (solution of linear

equation)
5) Take a point which is an intersection of line and circle (solution of

quadratic equation)
6) Take a point which is an intersection of two circles (solution of quadratic

equation)
These considerations lead to the following

Theorem If a complex number α is constructible, i.e. it can be con-
structed by the ruler and compasses, then α is an algebraic number and
degree of extension [Q(α) : Q] is power of 2, [Q(α) : Q] = 2r.

Proof of the Theorem. Let a number α is constructible. Then there
exists an algorithm containing finite number of steps such that applying this
algorithm we come to the number α.

It means that step by step (see above) we construct a sequence of numbers
{α1, α2, α3, α4, . . . , αn−2, αn−1, αn} such that

α1 is a root of linear or quadratic polynomial with rational coefficients.
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α2 is a root of linear or quadratic polynomial with coefficients from the field
Q(α1).
α3 is a root of linear or quadratic polynomial with coefficients from the field
Q(α1, α2).
α4 is a root of linear or quadratic polynomial with coefficients from the field
Q(α1, α2, α3).
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
αn−1 is a root of linear or quadratic polynomial with coefficients from the
field Q(α1, . . . , αn−2).
αn is a root of linear or quadratic polynomial with coefficients from the field
Q(α1, . . . , αn−1).

Consider tower of extensions

Q ⊆ Q(α1) ⊆ Q(α1, α2) ⊆ · · · ⊆ Q(α1, . . . , αn) (52)

We see that the degree of every extension in this tower is equal to one or
two. Hence degree of extension Q(α1, . . . , αn) : Q is equal to power of 2.
Moreover if β be an arbitrary element in Q(α1, . . . , αn) then considering
tower Q ⊆ Q(β) ⊆ Q(α1, . . . , αn) we come to conclusion that degree of the
extension Q(β) : Q is an exponent of 2.

The Theorem states necessary condition for a number α be constructive
by ruler and compasses.

A question arises: is a condition that [Q(α) : Q] = 2r is sufficient? The
answer is: ”No” This condition is not sufficient.

Later we will show that the necessary and sufficient condition of con-
structibility is an existence of the tower (52) where all the extensions have
degree ≤ 2. But nevertheless this Theorem gives very effective proof of non-
existence of constructions.

Example It is impossible by ruler and compasses to trisect the angle
6 ABC = 60◦

Proof Suppose that it is possible. Thus a number α = cos 20◦ is con-
structible. But degree of extension Q(α) : Q is equal to three. Contradic-
tion.

Example Given a segment AB = a it is impossible by ruler and com-
passes to construct to construct a segment CD = b such that b2 = πa2.

Proof. Suppose it is possible. Thus a number π is constructible. But
π is a transcendent number and degree of extension [Q(π) : Q] is equal to
infinity. Contradiction.
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2.5 Splitting field

Definition The field Σ(f) is called a splitting field for a polynomial f ∈ K[t]
over K if K ⊆ Σ and

1) f splits in Σ(f), i.e. f has his all roots in Σ(f) (f = a(t−α1) . . . (t−αn))

2) The field Σ(f) cannot be ”decreased”, i.e. if f splits over N such that
K ⊆ N ⊆ Σ(f) then N = Σ(f).

The second condition is equivalent to the fact that Σ = K(α1, . . . , αn)

For example Q(e
2iπ
5 ) is a splitting field of polynomial f = t5 − 1. Indeed

it contains all the roots x0 = 1, x1 = ε, x2 = ε2, x3 = ε3, x4 = ε4, where
ε = e

2πi
5 of this polynomial. On the other hand if f splits in N ⊆ Σ(f), then

ε ∈ N . Hence Q(ε) ⊆ N . Hence N = Q(ε).

Another example: Splitting field of the polynomial t12− 1 over Q. Roots
of this polynomial are numbers {e 2πik

12 } = {eπik
6 }, k = 0, 1, 2, . . . , 11. One can

prove that Σ(f) = Q(e
iπ
6 ) = Q(i,

√
3), because e

iπ
6 = 1

2
+ i

√
3

2
.

Q( 3
√

2) is not splitting field for polynomial t3 − 2. It contains only one
root of this polynomial. The splitting field Σ(t3 − 2) = Q( 3

√
2.i
√

3).

Note that every polynomial over Q splits over C. But C is very ”large” to
be a splitting field for polynomial. For every polynomial f ∈ Q[t] C contains
a splitting field Σ(f) = Q(α1, . . . αn) where α1, . . . αn are complex roots of
the polynomial.

Example Calculate splitting field of polynomial x6 − 1.
Solution: x6−1 = (x3−1)(x3 +1) = (x−1)(x2 +x+1)(x+1)(x2−x+1).

it is easy to see that all roots are in the field Q(i
√

3). Hence Σ(x6 − 1) =
Q(x1, x2, x3, x4, x5, x6) = Q(i

√
3).

Does splitting field always exists? At what extent is it unique?

Theorem For every polynomial f ∈ K[t] there exists a splitting field. It
is unique up to isomorphism.

Prove first the existence.
If ∂f = 1 then Σ(f) = K.
Suppose that the existence of splitting field is proved already for arbitrary

field K and for arbitrary polynomial of degree ≤ k. . Consider polynomial
f of degree k + 1. Consider its arbitrary irreducible factor p: f = pg, where
p ∈ K[t] is irreducible over K.

32



The degree of p is less or equal to k + 1. Adjoin the root α of the
polynomial p to the field K, i.e. consider the field 9

K(α) = K[t]/(p(t)) = {the field of equivalence classses of polynomials:}

[h] = [h′] iff p|h− h′ , i.e.h− h′ = p · g . (53)

Now we have that polynomial p and polynomial f has at least one root
in the field K(α) (53).

Hence irreducible factor of polynomial f in this field is less or equal to k:

f = (t− α)f ′ = (t− α) · f(t)

t− α

Hence by inductive hypothesis there exists a splitting field Σ(f ′) for a poly-
nomial f ′ considered as polynomial over field K(α). This will be a splitting
field over a field K too.

The uniqueness of splitting field (up to an isomorphism) follows from
Lemma Let ι be an isomorphism of fields K and K ′, f ∈ K[t], Σ(f) be a splitting

field for polynomial f and T be a field such that polynomial f ′ = ι(f) splits over T (i.e.
T contains a splitting field).

Then there exist a monomorphism ι̂ of field Σ(f) into a field T such that ι̂
∣∣
K

= ι:

Σ(f) î−→ T
↑ ↑
K

i←→ K ′
(54)

Corollary If Σ(f) is a splitting field for polynomial f ∈ K[t], ι is isomorphism of
fields K and K ′ and Σ′(f ′) is a splitting field for polynomial f ′ = i(f) ∈ K[t] then Σ(f)
is isomorphic to Σ(f).

Before going to very important notion of normal extension it is instruc-
tive to analyze in detail splitting field for cubic polynomial with rational
coefficients.

2.6 Splitting field for cubic polynomial with rational
coefficients.

Let f = x3 + ax2 + px + c be cubic polynomial with rational coefficients.

9In other words the field K(α) = K[t]/(p(t)) can be viewed as a field of polynomials of
degree less or equal to the r − 1 (where r is a degree of polynomial p. The root α can be
viewed as equivalence class of polynomial t. α = [t].(See (47))
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There are two cases

I) f is irreducible (over Q)
II) f is reducible (over Q).

First consider trivial case II. Polynomial f = x3 +ax2 +px+ c = (x− r)g
has one rational root. Here g = x2 + px + q, r ∈ Q There are two subcases:

IIa) f is reducible and g is irreducible (over Q)
IIb) f is reducible and g is reducible(over Q).

Case IIb: f = (x− r1)(x− r2)(x− r3) all roots are rational and splitting field
Σ(f) is equal to Q itself.
In the case IIb) the degree of splitting field (the degree of field extension
Σ(f) : Q) is equal to 1.
Case IIa: f = (x − r)(x2 + px + q) = (x − r1)(x − α1)(x − α2) one root is

rational two other roots belong to quadratic extension (α1,2 = −p
2
±

√
p
2
2 − q).

Splitting field Σ(f) is equal to Q

(√
p
2
2 − q

)
,

In the case IIa) the degree of splitting field (the degree of field extension
Σ(f) : Q) is equal to 2.

Now return to most interesting case I when polynomial is irreducible over
Q. In this case all three roots x1, x2, x3 of the polynomial are not rational
numbers. It is easy to see that or all three roots are real or one root is real
and other two roots are complex conjugated.

All fields extensions Q(x1) : Q,Q(x2) : Q,Q(x3) : Q are isomorphic but
in general they are different fields. E.g. for polynomial f = x3 − 2, Q(x1) is
subfield of R, Q(x2), Q(x3) are not subfields of R.

Without loss of generality consider Q(x1). There are two possibilities:
x2 belongs to Q(x1) or x2 does not belong to Q(x1).

Note that x2, x3 are roots of quadratic equation with coefficients over
Q(x1). Hence x3 belongs to Q(x1) if and only if x2 belongs to Q(x1). We
come to the following two subcases:

Ia) f is irreducible. x2, x3 ∈ Q(x1), i.e. all roots are rationally expressed
via x1. Splitting field Σ(f) is just Q(x1) = Q(x2) = Q(x3).
The degree of splitting field (the degree of field extension Σ(f) : Q) is equal
to 3.

Ib) f is irreducible. x2, x3 6∈ Q(x1), i.e. roots x2, x3 are not rationally
expressed via x1. Splitting field Σ(f) = Q(x1, x2, x3) 6= Q(x1).
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Q(x1) 6= Q(x2) 6= Q(x3) in spite of the fact that these fields are isomor-
phic.
The degree of splitting field (the degree of field extension Σ(f) : Q) is equal
to 6 = 3× 2.

The example for the case Ia is the ”famous” polynomial x3 − 3x − 1.
It has roots x1 = 2 cos 20◦, x2 = 2 cos 140◦ = −2 cos 40◦ x3 = 2 cos 240◦ =
−2 cos 80◦. It is easy to see (using formula cos 2ϕ = 2 cos2 ϕ− 1) that

x2
2 = 2− x2

1, x2
3 = 2− x2

2

are related with each other by rational transformation
An example for the case Ib) is the polynomial x3 − 2.
How to distinguish between these two subcases when irreducible poly-

nomial has all three roots rational expressable via each other or not? The
answer is following:
discriminant D = d2 = [(x1 − x2)(x2 − x3)(x3 − x1)]

2 of irreducible cubic
polynomial is square of rational if and only if Q(x1) = Q(x2) = Q(x3).

E.g. for irreducible cubic polynomial x3 − 3x − 1 D = −4p3 − 27q2 =
81 = 92, for irreducible polynomial x3 − 2 D = −4p3 − 27q2 = −108.
The fact that discriminant of irreducible polynomial is square of rational
if Q(x1) = Q(x2) = Q(x3) follows immediately from the Tower low. Inverse
implication follows from Galois Fundamental Theorem: see in details the
subsection Galois group for cubic polynomial in section 3. (Alternative
”elementary” proof of inverse implication see in the Appendix A)

Note also that if square root of Discriminant is rational and cubic poly-
nomial is not reducible then at least one root is rational, hence due to Vèta
Theorem all roots are rational.

2.7 Normal extension

Definition The field extension L : K is called normal extension if every
irreducible polynomial f ∈ K[t] which has at least one zero in L splits in L.

In other words extension L : K is normal if for arbitrary irreducible
polynomial f ∈ K[t] the following condition holds:

If this polynomial has at least one root in L then it has all its roots in L:
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One out, all out

Examples

1. The extension Q(
√

5) : Q is a normal extension. Prove it: Let p be
irreducible polynomial which contains one root x1 in this field. The degree of
the extension Q(

√
5) : Q is equal to 2. Hence the degree of the polynomial

p is equal 1 or 2. If it is ”1” nothing to prove. If it is ”2” then p = t2 + bt+ c
the second root of the polynomial have to belong to the field because x1x2 =
c, x1 + x2 = −p.

Note that we can prove analogously that every extension of degree 2 has
to be normal.

2. Extension Q( 3
√

2) : Q is not normal extension. It contains one and
only one root of polynomial t3 − 2. (Other roots are not real numbers.)

Theorem A finite extension N : K is normal extension if and only if N
is a splitting field for some polynomial with coefficients in K.

Proof of the Theorem
First prove that N is splitting field for a polynomial.
Let N : K be a finite normal extension. Then by the theorem on finite

extensions (see subsection Algebraic extension) N is finitely generated al-
gebraical extension: N = K(α1, . . . , an) where all elements of N including
α1, . . . an are algebraic over K.

Consider polynomials g1, g2, . . . , gn such that g1 is the minimum polyno-
mial over K of the element α1, g2 is the minimum polynomial over K of the
element α2, g3 is the minimum polynomial over K of the element α3... gn is
the minimum polynomial over K of the element αn.

Consider polynomial F = g1 · g2·. . . ·gn. N is a normal extension, hence
all polynomials {g1, g2, . . . , gn} have all their roots in N because they have
at least one root in N (gk(αk) = 0). Hence polynomial F splits over N . On
other hand if F splits over N ′ such that K ⊆ N ′ ⊆ N then αk ∈ N ;, hence
N ′ = N . This proves that N is splitting field for polynomial F .

Now we give the sketch of proof of inverse implication 10.
The proof of the fact that for arbitrary polynomial f ∈ K[t] the extension Σ(f) : K

is a normal extension is founded on the following. Let g be polynomial irreducible over K

10This is not necessary for exam.
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with a root α ∈ Σ(f). Consider isomorphic fields K(α), K(β) and construct step by step
splitting fields Σ(f), Σ′(f) over K(α) and K(β) respectively. The roots {x1, x2, . . . , xn} of
polynomial f will be adjoined to the field K(α) and the roots of the same polynomial but
in the different order {xi1 , xi2 , . . . , xin

} will be adjoined to the field K(β). Hence if α is
rationally expressed via roots of f , i.e. α belongs to the splitting field then β is rationally
expressed via roots also, i.e. β belongs to splitting field too.

We want to emphasize the fact that Theorem states that splitting field of
a given polynomial contains all roots or no roots of arbitrary polynomial. For
example let x1, x2, x3 be roots of cubic polynomial f ∈ Q[x], θ = x1−x2 and
R be minimum polynomial of θ. Polynomial R has N roots θ = θ1, θ2, . . . , θN .
(In general N = ∂R could be equal 1 (if all roots of f are rational), 2 (if only
one root of f is rational), 3 (e.g. for equation x3 − 3x − 1) and 6 (e.g. for
f = x3 − 2) (see previous subsection)

The Theorem states that not only θ but all other roots of R belong to
Σ(f) too.

This Theorem is very important in applications.

Example 1 Consider extension Q(ε) : Q where ε = e
2πi
p where p is

arbitrary prime number. The easiest way to see that this extension is normal
it is to use Theorem. Q(ε) is a splitting field of polynomial tp − 1. (Roots
of the polynomial tp − 1 are {1, ε, ε2, ε3, ε4, . . . , εp−1}) Hence it follows form
Theorem that an extension Q(ε) : Q is normal extension.

Example 2 We considered above extension Q( 3
√

2) : Q which was not
normal extension. On the other hand an extension Q( 3

√
2, i
√

3) : Q is normal
extension. One can easy check that this extension is a splitting field of the
polynomial t3 − 2. (Show it!)

2.8 Separable polynomials

Definition The polynomial is called separable if it has no multiple zeros in
the splitting field.
The element θ ∈ L is called separable over subfield K if minimum polynomial
of θ is separable over K.
An algebraic extension L : K is called separable if every element in L is
separable over K.

Consider arbitrary irreducible polynomial p = tn + an−1t
n−1 + · · ·+ a1t +

a0 over field K. Suppose that it is not separable. Consider its derivative,
polynomial Dp = ntn−1 +(n− 1)an−1t

n−2 + · · ·+ a1. Polynomials p,Dp have
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trivial highest common factor because p is irreducible and degree of Dp is
less that degree of p. Hence Dp ≡ 0. This is possible only if characteristic of
the field K is not equal to 0. We come to

Theorem Every irreducible polynomial over field of characteristic 0 is
separable.

Note that if L is separable over K then L is separable over arbitrary
intermediate subfield M because minimum polynomial of every element over
M divides minimum polynomial of this element over K.

2.9 Theorem on primitive element

In this subsection we consider finite separable extension, i.e. extensions by
separable elements. These extensions are in fact simple extensions.

Theorem If L : K is finite separable extension of the field K then it is
simple extension, i.e. there exists θ such that L = K(θ)

An element θ is called primitive element of the extension.
The Theorem follows from Lemma
Lemma If K(α, β) is algebraic extension and β is separable then there

exists θ ∈ K(α, β) such that K(θ) = K(α, β)
Indeed if L : K is finite extension then L = K(β1, . . . , βn) where all

βi are algebraic over K. Applying lemma to the tower of extensions K ⊆
K(β1, β2) ⊆ · · · ⊆ L we come to a primite of the extension L : K.

If K is field of characteristic 0 then it follows from the Theorem of the
previous subsection the following working case of the Theorem:

Theorem′ Every finite extension of the field of characteristic 0 is simple
algebraic extension.

We give here the proof of the lemma in the case if K is infinite field.
(E.g. for field of characteristic zero) Let f, g be minimum polynomials of
α, β respectively. Consider a field such that K ⊆ K(α, β) ⊂ Σ where all
roots of polynomials f, g are present. (E.g. Σ = Σ(gf)). Let {αi}, {βk} be
roots of polynomials f, g Suppose that α = α1, β = β1.

Now consider
θ = α + cβ , (55)

where c is an arbitrary coefficient from field K which obey the following
condition:

c 6= α1 − αi

βm − β1

,m 6= 1 , and i is arbitrary (56)
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We can do it because g is separable polynomial βm 6= βi if m 6= i and K is
infinite field. Hence one can always choose c obeying condition above. Note
also that in particularly c 6= 0)

Consider polynomials g(x), f̃(x) = f(θ − cx). These polynomials are
polynomials over the field K(θ). It is easy to see using (56) that these
polynomials have one and only one general root β = β1. Hence their highest
common divisor is equal to (x − β1). On the other hand general common
divisor is polynomial in K(θ)[t]. Hence β ∈ K(θ) and obviously α = θ +
cβ ∈ K(θ). Hence K(α, β) ⊆ K(θ). On the other hand according to (55)
K(θ) ⊆ K(α, β). Hence K(α, β) = K(θ).

Consider two examples.
Example 1 Find primitive element of field extension Q(i,

√
2) : Q. We

did it by ”bare hands” (see subsection ”Simple extensions”) and proved that
i and

√
2 are rational functions of θ =

√
2 + i (see (45)), i.e. Q(i +

√
2) =

Q(i,
√

2). Repeat these calculations using technique which was used above in
the proof of the lemma above. Consider polynomials g = x2 + 1, f = x2 − 2.
Σ(fg) = Q(

√
2, i). It is easy to see that polynomials g = x2 + 1 and f̃ =

f(θ− x) = (
√

2 + i− x)2− 2 have one and only one general root. It is x = i.
Hence x = i has to be the root of f̃ − g (x − i is common divisor of f̃ , g).
f̃ − g = (θ− x)2 − 2− x2 − 1 = θ2 − 2θx− 3. Hence x = i = 3−θ2

2θ
. It is easy

to see that we come to (45).

Another more serious example
Example 2 Consider polynomial f = x3 − 2 over Q. Its splitting field

Σ(x3 − 2) = Q(x1, x2, x3) , x1 =
3
√

2 , x2 =
3
√

2e
2πi
3 , x3 =

3
√

2e
−2πi

3 . (57)

x1 =
3
√

2 , x2,3 =
3
√

2e
±2πi

3 =
3
√

2

(
−1

2
± i

√
3

2

)
,

Σ(x3 − 2) = Q(x1, x2, x3) = Q(
3
√

2, i
√

3) .

(Q(x1, x2, x3) = Q( 3
√

2, i
√

3) because roots can be rationally expressed via
3
√

2, i
√

3 and on the other hand number 3
√

2, i
√

3 can be rationally expressed
via roots: 3

√
2 = x1, i

√
3 = x2+x3

x1
)

Find primitive element of this extension, i.e. θ such that Q(θ) = Σ(x3 −
2) = Q( 3

√
2, i
√

3).
θ = x2 − x3 = i

√
3

3
√

2 .
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One can easy to prove that it is primitive: θ2 = −3 3
√

4 = − 6
3√2

. Hence
3
√

2 = − 6
θ2 and i

√
3 = − θ3

6
, i.e.

x1 = − 6

θ2
, x2,3 = − 6

θ2

(
−1

2
± θ3

12

)
=

3

θ2
± θ

2
(58)

We have θ6 = −108, i.e. θ is a root of the polynomial t6 + 108 = 0. It
is easy to see that this is the minimum polynomial of θ, i.e. degree of the
extension is equal to 6. Indeed consider two towers: Q ⊆ Q(i

√
3) ⊆ Q(θ)

and Q ⊆ Q( 3
√

2) ⊆ Q(θ). From the first tower it follows that 2 divides
[Q(θ) : Q]. From the second Tower it follows that 3 divides [Q(θ) : Q].
Hence 6 divides [Q(θ) : Q]. On the other hand θ is a root of polynomial
t6 + 108. Hence [Q(θ) : Q] = 6 and t6 + 108 is its minimum polynomial.

One can see that θ is primitive this mimicking the proof of the lemma using relations
(55), (56), i.e. using general method: Polynomials x3 − 2, (θ + x)2 − 2 have one and only
one general root. This is x3: x3

3 − 2 = 0, (θ + x3)3 − 2 = x3
2 − 2 = 0 (Compare with

previous section). Hence their highest common divisor is equal to x− x3 = x− 3
√

2e
−2πi

3 .
On the other hand it belongs to the field Q(θ): it is x − f(θ), where f(θ) is element in
Q(θ). Thus x2 and x3 belong to Q(θ) also.

Calculate explicitly f(θ) by calculating highest common divisor. Applying Euclidian
algorithm (see (30), (35)) we will see that highest common divisor is x + θ

2 − 3
θ2 . Hence

x +
θ

2
− 3

θ2
= x− x3 , (59)

x3 =
3
θ2
− θ

2
. (60)

Now it is easy to express x2 = θ + x3 and x1 = −x2 − x3 in terms of θ:

x1 =
θ4

18
, x2,3 =

θ

2
± 3

θ2
=

θ

2
± θ4

36
, (61)

because θ6 = −108. (Compare with (58)) We express roots x1, x2, x3 as rational functions
of primitive element θ.
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3 Galois group. Galois correspondence be-

tween intermediate groups and subgroups

of Galois group. Fundamental Theorem of

Galois Theory

Let L : K be a field extension. A group of automorphisms of field L which
are identical on K is called Galois group of field extension. We denote this
group by Γ(L : K).

Remark In the case K = Q every automorphism is automatically Q-
aitomorphism. So in this case Galois group L : Q is nothing but group of all
automorphisms of L.

Very simple examples:
Exercise 1 Calculate Galois group of C : R. Answer: {id, σ}, where

σ(a+ bi) = a− bi, a, b ∈ R, i.e. σ(z) = z̄ is complex conjugation for complex
numbers z.

Indeed it is easy to check that {id, σ} is a group of R-automorphism:
σ2 = id and:

z1z2 = z̄1z̄2, (az1 + bz2) = az̄1 + bz̄2, for every a, b ∈ R (62)

On the other hand if ϕ is an arbitrary R-automorphism, i.e. automorphism
which is identical on R and ϕ(i) = x, then ϕ(i2) = ϕ(−1) = −1. x2 = −1.
Hence ϕ(i) = x = ±i and ϕ(a + bi) = a ± bi. Thus ϕ is equal to id or to
σ. We proved that Galois group Γ(C : R) = {id, σ} possesses two elements:
identical transformation and complex conjugation.

Exercise 2 Calculate Galois group of Q(
√

2) : Q
(answer: {id, σ}, where σ(a + b

√
2) = a − b

√
2, a, b ∈ Q) This can be

proved in the similar way as above (Do it!)
Exercise 3 Calculate Galois group of Q( 3

√
2) : Q

(answer: {id}, because an equation x3 − 2 = 0 has unique root in R: If
σ(x) = y, then x = y because y3 − 2 = σ(x3 − 2) = 0)

Exercise 3 Calculate Galois group of Q( 3
√

2e
2πi
3 ) : Q

(answer: {id}, because an extension Q( 3
√

2e
2πi
3 ) : Q is isomorphic to the

extension Q( 3
√

2) : Q considered in the previous example.
Exercise∗ 4. Calculate Galois group of R : Q.
Surprisingly the answer is {id}: in the other words there is no any auto-

morphisms of R except an identical one!
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3.1 Galois group of polynomials

Let f ∈ K[t] be polynomial over field K and L = Σ(f) be its splitting
field. Then L : K will be a normal field extension. (See the Theorem in
subsection ”Normal extension”).

Let {x1, . . . , xn} be roots of the polynomial f . Consider Galois group of
field extension Σ(f) : K. Sometimes we call Galois group Γ(Σ(f) : K) as a
Galois group of polynomial f and we denote it shortly by Γ(f).

In the case if f is polynomial with rational coefficients, f ∈ Q[t] then
Galois group of polynomial Γ(f) is Galois group of field extension Σ(f) : Q.
It is just group of automorphisms of splitting field Σ(f), because as it was
mentioned above every automorphism is Q-automorphism. and L = Σ(f)
its splitting field.

Now a simple but important statement
There is one-one correspondence between elements of Galois group and

subgroup of group of permutations of roots of polynomial.
Let f ∈ K[t] be a polynomial, and x1, x2, . . . , xn be roots of this polyno-

mial in splitting field Σ(f). Consider a group Sn of permutations of all roots.
It is evident that |Sn| = n!. It is easy to see that every Galois automorphism
defines permutation of the roots. Indeed let f = tn +an−1t

n−1 + · · ·+a1t+a0

be a polynomial over K and σ ∈ Γ(f), be Galois automorphism of Σ(f), i.e.
σ is automorphism of Σ(f) which is identical on K. Consider an arbitrary
root xi of polynomial f . Suppose σ(xi) = y. Prove that y is a root of f too
(may be the same may be another), i.e. y = xj. Indeed for every root xi of
the polynomial f

0 = f(xi) = xn
i + an−1x

n−1
i + · · ·+ a1xi + a0 . (63)

Apply K- automorphism σ to the left hand side and right hand side of this
expression. We come to

0 = σ(f(xi)) = σ(xn
i + an−1x

n−1
i + · · ·+ a1xi + a0)

= yn + an−1y
n−1 + · · ·+ a1y + a0 = 0 . (64)

Hence y is also a root of the polynomial f .
(The same is the special case of polynomials with coefficients in Q ev-

ery automorphism of splitting field Σ(f) over Q does not change rational
coefficients of polynomials. Hence it transforms a root to a root.)
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On the other hand if g is Galois transformation of the splitting field Σ(f)
which is identical on roots: g(xi) = xi, then this transformation is identical on
whole splitting field since every element of splitting field is rational function
of elements of field K and roots x1, . . . , xn

We see that There is monomorphism of Galois group in the group
of permutations of roots

We can identify

Galois group of polynomial with a subgroup of group of permu-
tations of roots,

i.e. every Galois automorphism of Σ(f)permutes roots of the polynomial
f . E.g. the Galois group Γ(f) of a polynomial f over Q is the Galois group
of the extension Σ : Q, where Σ is a splitting field of f over Q. One can take
Σ as the subfield of C generated by the roots of the polynomial f . Every
Q-isomorphism (in fact every automorphism, because every automorphism
is automatically Q-automorphism) does not change f and transforms zero
of f into a zero of f . Distinct elements of Γ(f) induce distinct permuta-
tions. Hence there is a group monomorphism of Γ(f) into the group of all
permutations of the zeros of f .

It is natural to ask a question: Is it right that every permutation of roots
is necessarily generated by some Galois transformation. NO!!!

Consider examples.
Example (naive example) Consider polynomial f = x3−3x−18 It is re-

ducible cubic polynomial, It has roots x1 = 3, x2,3 = 3±i
√

15
2

. It is evident that

a splitting field is equal to Q(i
√

15) and Galois automorphism is generated
by transformation i

√
15 → −i

√
15 (Every number z ∈ Σ(f = x3 − 3x− 18)

= Q(i
√

15), z = p + iq
√

15 → p− iq
√

15). Hence Galois automorphism per-
mutes roots x2, x3. But Galois automorphism cannot move the root x1 = 3
because Galois automorphism is identical on rational numbers.

Example Consider polynomial f = x4 − 5x2 + 6. It is easy to see that
f = (x2 − 2)(x2 − 3). Hence roots are equal to x1,2 = ±√2, x3,4 = ±√3.
Hence Σ(f) = Q(

√
2,
√

3). Group of permutations of roots has 4! = 24
elements but Galois group possesses 4 elements: {1, τ, σ, τσ}, where τ(

√
2) =

−√2, τ(
√

3) =
√

3, σ(
√

2) =
√

2, σ(
√

3) = −√3. (See in details in (149)and
3-rd example in the subsection 3.8)

More interesting example:
Example Consider ”glorious” polynomial x3 − 3x − 1. Its roots are

x1 = 2 cos 20◦, x2 = −2 cos 40◦, x2 = −2 cos 80◦. Here the situation is more
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interesting: All roots are irrational, because polynomial x3 − 3x − 1 is irre-
ducible. But if Galois transformation transforms x1 to x2 then x2 has to be
transformed to x3. Indeed cos 40◦ = 2 cos2 20◦ − 1, cos 80◦ = 2 cos2 40◦ − 1.
Hence

x2 = 2− x2
1. if σ(x1) = x2, then (65)

σ(x2) = σ(2− x2
1) = 2− σ(x1)σ(x1) = 2− x2

2 = x2
3. (66)

More formally Q(x1) = Q(x2) = Q(x3). Every root is primitive element
of field extension. Hence roots are rationally expressed via each other. Galois
group is cyclic group containing three elements: id, σ, σ2, where σ(x1) =
x2, σ(x2) = x3, σ(x3) = x1.

11

Example Polynomial xp − 1.
First consider the case if p is prime. Splitting field of this polynomial is

Q(ε) where ε = e
2πi
p All roots of polynomial are {1, ε, ε2, ε3, . . . , εp−1}. Galois

automorphisms σk (k = 1, 2, 3, . . . ) are defined by condition

σk(ε) = εk, (k = 1, 2, . . . , p− 1) (67)

Indeed this condition defines transformation of every root. Galois group
contains p − 1 elements σ1, . . . , σp−1. It is just the degree of the extension
Σ(xp − 1) : Q. (xp − 1 = (x− 1)xp−1

x−1
. Polynomial xp−1

x−1
= 1 + x + x2 + x3 +

· · ·+xp−1 is irreducible polynomial of degree p−1) For equation xp−1 Galois
group is subgroup of p− 1 elements in the group of permutations. (Group of
all permutations of roots contains p! elements.)

You ask a question: where you used a fact that p is prime? In the case
if p is not prime then the automorphism (67) is not well-defined. E.g. for

p = 6 roots are 1, ε, ε2, ε3, ε4, ε5 where ε = e
iπ
3 . It is easy to see that not all

automorphisms σ3(ε) = ε3 are well defined. Indeed ε3 = −1 ∈ Q ⇒ ε ∈ Q.

Contradiction. There is no automorphism which maps first root e
iπ
3 to the

third.
Later we will see that order of Galois group is just the degree of splitting

field (|Γ(f)| = [Σ(f) : Q]). In the case if p is not prime then degree of splitting
field is not equal to p − 1. E.g. [Σ(x6 − 1) : Q] = 2, [Σ(x8 − 1) : Q] = 4

because all roots are powers of e
πi
4 . (See more detail about [Σ(xN − 1) : Q]

in Appendix...)

11May be you are sick and tired by this polynomial. Is there another cubic polynomial
which behaves in the similar way. Of course! Consider for example minimum polynomial
of cos 2π

7 (See your coursework!)
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For the case p = 5 Galois group is cyclic group with four elements (see
for the details the next subsection). In fact this is true for every prime p:
Galois group of polynomial tp − 1 is cyclic group {1, τ, τ 2, . . . , τ p−2} of the
order p− 1. E.g. consider p = 7, 11

a) p = 7. Γ(t7 − 1) = Γ(Q(ε) : Q) where ε = e
2πi
7

Γ(t7 − 1) = {σ1, σ2, σ3, σ4, σ5, σ6}
where

σk(ε) = εk(k = 1, 2, 3, 4, 5, 6)

with multiplication law:

σpσq = σn, n = pq ( mod 7)

because ε7 = 1 and

σpσq(ε) = σq(ε
p) = (σq(ε))

p = (εq)p = εpq

Consider τ = σ3. One can see that it is generator:

1 = σ1, τ = σ3, τ
2 = (σ3)

2 = σ2, τ
3 = (σ3)

3 = σ6, τ
4 = (σ3)

4 = σ4, τ
5 = (σ3)

5 = σ5

(68)
We see that Galois group is cyclic group {1, τ, τ 2, τ 3, τ 4, τ 5} with τ(ε) = ε3.

b) p = 11. Γ(t11 − 1) = Γ(Q(ε) : Q) where ε = e
2πi
11

Γ(t11 − 1) = {σ1, σ2, σ3, σ4, . . . , σ11}
where

σk(ε) = εk, (k = 1, 2, 3, . . . , 10)

with multiplication law:

σpσq = σn, n = pq( mod 11)

because ε11 = 1 and
Consider τ = σ2 : τ(ε) = ε2. Then

1 = σ1, τ = σ2, τ
2 = (σ2)

2 = σ4, τ
3 = (σ2)

3 = σ8, τ
4 = (σ2)

4 = σ5, τ
5 = (σ2)

5 = σ10

τ 6 = (σ2)
6 = σ9, τ

7 = (σ2)
7 = σ7, τ

8 = (σ2)
8 = σ3, τ

9 = (σ2)
7 = σ6, τ10 = 1

We see that Galois group is cyclic group {1, τ, τ 2, τ 3, τ 4, τ 5, . . . , τ 9} with
τ(ε) = ε2
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3.2 Galois group for polynomial x5 − 1 = 0. Why we
need to study intermediate fields

Return to the example of solution of the equation x5 − 1 = 0. We already
know that solutions of this equation form pentagon on the complex plane:

x0 = 1, x1 = ε, x2 = ε2, x3 = ε3 =
1

ε2
, x2 = ε4 =

1

ε
, (69)

where
ε = e

2πi
5 = cos 72◦ + i sin 72◦ (70)

We calculate Galois group of this polynomial and answer the following
question: Is it possible to solve this equation in radicals? Our best wish is to
solve this equation in quadratic radicals. This is equivalent to the fact that
regular pentagon can be constructed with ruler and compasses. (The fact of
constructing regular pentagon is well-known 2000 years. Later we elaborate
a method to understand how to deal with a problem of constructing regular
N − gon with a ruler and compasses.)

The splitting field is Σ(x5− 1) = Q(e
2πi
5 ) : Q. The Galois group contains

four elements:
σk : σk(ε) = εk, k = 1, 2, 3, 4 (71)

Here σ1 is identity. Every σk defines some permutation in S5. Denote σ2 = τ
where τ is a permutation of roots {ε, ε2, ε3, ε4} induced by ε → ε2:

τ 2 = σ4, τ
3 = σ3, τ

4 = σ1 = id (72)

τ =

(
ε ε2 ε3 ε4

ε2 ε4 ε ε3

)
(73)

and correspondingly:

τ 2 =

(
ε ε2 ε3 ε4

ε4 ε3 ε2 ε

)
, τ 3 =

(
ε ε2 ε3 ε4

ε3 ε ε4 ε2

)
(74)

Galois group Γ(Q(ε) : Q) is a cyclic group {1, τ, τ 2, τ 3}. This group con-
tains only one proper subgroup, (i.e. subgroup which does not coincide with
all group and the group formed with one identity element). It is subgroup
H = {1, τ 2}.
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Consider arbitrary element α ∈ Q:

α = a + bε + cε2 + dε3 + eε4

It is easy to see that τ 2(α) = α if and only if b = e, c = d because τ 2(ε) = ε4,
τ 2(ε2) = ε3, τ 2(ε3) = ε2, τ 2(ε4) = ε, i.e. element a remains fixed under
transformation of subgroup H if it is equal to α = a + b(ε + ε4) + c(ε2 + ε3).
Note that (ε2 + ε3) = (ε + ε4)2 − 2. Hence we come to conclusion:

The elements of the field Q(ε) which remain fixed under action of Galois
subgroup H form intermediate subfield

M = Q(ε + ε4) = Q

(
ε +

1

ε

)
= Q(sin 18◦) (75)

(In the next subsection we will study it more properly and will denote it by
H†)

Now solve the equation x5−1
x−1

= x4 + x3 + x2 + x + 1 = 0 in radicals.
Consider ansatz:

z = x +
1

x
(76)

Then x5−1
x−1

= x4 + x3 + x2 + x + 1 = x2
(
x2 + 1

x2 + x + 1
x

+ 1
)

and

x2 +
1

x2
+ x +

1

x
+ 1 =

(
x +

1

x

)2

+

(
x +

1

x

)
− 1 ⇒ z2 + z − 1 = 0 . (77)

We come to quadratic equation. Its solution is z1,2 = −1±√5
2

, (z1 = 2 cos 72◦, z2 =
2 cos 144◦

Then we solve another quadratic equation produced by (76):

z = x +
1

x
⇒ x2 − zx + 1 = 0, x1,2 =

z ±√z2 − 4

2
(78)

Coefficients of this equation are not rational numbers (z is not rational). But
we already calculated it. You see that sequence of equations (77) and (78)
give as solution of equation x5 − 1 = 0 in radicals. Moreover we see that we
use only quadratic radicals 12.

Now express these ”pedestrians considerations” on the formal language:

12in other words it means that we can construct these numbers by ruler and compasses
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The fact that we can solve the equation x5 − 1 = 0 in two steps solving
quadratic equations just corresponds to the fact that intermediate field M =
Q(ε + ε4) in (75) has degree 2. Thus by Tower law [Q(ε) : M ] = 2. It means
that elements of M (and in particularly ε+ 1

ε
= 2 sin 18◦ is a root of quadratic

equation with rational coefficients) and elements of Q(ε) (in particularly ε
itself) is a root of quadratic equation with coefficients in M .

It is just expressed by equations (76) and (77).
We see that the fact that the Q(ε) : Q extension of degree 4 possesses in-

termediate field M which is quadratic extension is crucial for solving equation
x5 − 1 in quadratic radicals.

We really need to study intermediate fields. And they are related with
subgroups...

3.3 Correspondence between intermediate fields and
subgroups of Galois group.

We define here maps ∗ and,† between the set F of intermediate fields of a
field extension L : K and the set G of subgroups of Galois group Γ(L : K).

If M is intermediate field: K ⊆ M ⊆ L then subgroup M∗ is equal to
Γ(L : M). M∗ is subgroup of all automorphisms from Γ which are identical
not only on the field K but on the field M too.

If H is subgroup of Γ = Γ(L : K) then H† is subfield of elements which
remain fixed under an action of automorphisms from subgroup H. This
subfield contains the field K.

Consider examples:
1. First of all trivial examples. Let Γ = Γ(L : K). Then it is evident

that L∗ = id contains only identical transformation, K∗ = Γ by definition.
It is easy to see that to trivial subgroup corresponds all field L: {e}∗ = L.
On the other hand consider subfield Γ†. K ⊂ Γ† by definition. But in
general case K 6= Γ†. E.g. consider a ”bad” example: K = Q, L = Q( 3

√
2).

Then Galois group Γ contains only identical transformation because the field
Q( 3
√

2) contains only one root of polynomial x3 − 2. Then Γ† = L. (The
reason why this example is ”bad” it is that this extension is not normal.)

The following properties of maps ∗,† can be easily checked:
1) If subfield M1 ⊆ M2, then M∗

2 ≤ M∗
1 and If subgroup H1 ≤ H2, (H1, H2

aqre subgroups of Galois groups) then H∗
2 ⊆ H∗

1

One can say that maps ∗,† are inversing the order
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Now return again to the example of polynomial xp− 1, where p is prime.
In the end of the subsection ”Galois group of polynomial” we obtained that
that Galois group contains exactly p−1 automorphims σ1, . . . , σp−1 (see (67)).

Consider cases, p = 5, p = 7
Example(p = 5) This example was considered indeed in the previous

subsection by bare hands. We can repeat it again: The Galois group (71)
contains only one proper subgroup H and H† = M is just intermediate field
which is quadratic extension. In the next subsection we will learn that there
are no any other intermediate subfields because there is one-one correspon-
dence between subgroups and subfields for finite normal extensions.

Example (p = 7). In this case Galois group Γ = {1, τ, τ 2, τ 3, τ 4, τ 5}
contains four subgroups: H1 = Γ, H2 = {1, τ 2, τ 4}, H3 = {1, τ 3}, H6 = {1}.

H†
1 = Q—only rational numbers remain fixed under action of all trans-

formations.
H†

6 is evidently all the field Q(e
2πi
7 ). What about H†

2, H
†
3. Note that

τ 3(ε) = ε6 = 1
ε

(see calculations in (68) ) Hence ε + 1
ε

= 2 cos 2πi
7

belongs to

H3. one can show that H†
3 = Q(cos 2π

7
).

3.4 Fundamental Theorem of Galois Theory. Formu-
lation

Let L : K be finite, normal, separable extension. Then
1) Order of Galois group is equal to degree of the field extension:

|Γ(L : K)| = [L : K] . (79)

2) The maps ∗, † are mutual inverse and establish an order reversing one-
one correspondence between the set F of intermediate fields of extension
L : K and the set G of subgroups of the Galois group Γ(L : K):

M1 ⊆ M2 ⇒ M∗
1 ≥ M∗

2 , (80)

H1 ≥ H2 ⇒ H†
1 ⊆ H†

2 (81)

† ◦ ∗ = id , i.e. , (M∗)† = M for arbitrary intermediate field (82)

∗ ◦ † = id , i.e. , (H†)
∗

= H for arbitrary subgroup H of Galois group (83)

3) For every intermediate field M the degree of extension L : M is equal to
the order of subgroup M∗. Respectively degree of extension M : K is equal
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to the index of subgroup M∗ in Galois group Γ(L : K):

[L : M ] = |M∗| , (84)

[M : K] =
|Γ(L : K)|
|M∗| (85)

4) An intermediate field is normal extension of K if and only if M∗ is normal
subgroup 13 in the Galois group Γ(L : K). Note that finite extension is normal
extension iff it is spliting field for polynomial. Hence we can reformulate this
point as:

intermediate field M is a splitting field for a polynomial over K ⇔ (86)

⇔ M∗ is a normal subgroup in Γ (87)

5) In the case if intermediate field M is normal extension of K then Galois
group of field extension M : K is isomorphic to quotient group Γ(L : K)/M∗

We give the proof of this theorem in the next subsection. Then we will
consider examples. Now only some comments:

Comments to the condition of Theorem: Note that condition that ex-
tension is normal, finite means that it is generated by polynomial. (See the
subsection ”Normal extension”)

1) Comment to the 1-st statement:
This statement is only about the order of the group.
We consider later a construction of all Galois automorphisms via roots

of so called resolution polynomial and prove that number of these automor-
phisms (i.e. order of Galois group) is equal to the degree of resolvent poly-
nomial, i.e. degree of field extension. (See the next subsection ”Calculation
of Galois group using primitive elements”)

The condition to be normal extension is essential: Indeed consider exten-
sion Q( 3

√
2) : Q. Its degree is equal 3 but Galois group contains only one

element.

13subgroup H ≤ G is normal if ∀h ∈ H, ∀g ∈ G, g−1hg ∈ H. In other words H coincide
with all conjugate subgroups gHg−1 and one can consider natural group structure on
factor space G/H: the operation [g1] ◦ [g2] = [g1 ◦ g2], where [g] is equivalence class is
well-defined.
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The condition that extension is finite is essential too14.
The condition of separability is essential too, but we do not discuss it

here.

2) Comment to the 3-st statement:
Note that it is true even if extension M : K is not normal extension: if

subgroup M∗ is not normal, then quotient space Γ/M∗ is not in general a
group, but still its order is related with degree of extension by (84).

3) Comment to the 4-st statement: May be it is main point of Galois
correspondence 15.

Suppose we have to solve polynomial equation. We cannot do it straight-
forwardly. Instead we calculate Galois group of polynomial. Then we find
normal subgroup H in Galois group and corresponding intermediate field
M = H†. The condition that M : K is normal extension means that M is a
splitting field for another polynomial (of less degree). In other words a com-
bination of roots obey the polynomial equation of less degree. Thus we come
to substitution which allows us to solve polynomial equation of less degree.
E.g. in (75) to solve equation 1 + x + x2 + x3 + x4 = 0 we solve equation
z2− z− 1. Roots of former equation define intermediate field Q(ε + 1

ε
). (See

also example 5) in subsection ”Examples,examples,examples...”)

3.5 Proof of Galois Fundamental Theorem

Use Theorem on primitive element. Let θ be a primitive element of extension
L : K and R be a minimum polynomial of θ: R has N roots {θ1, . . . , θN}
(θ = θ1), where N is degree of R. Fields K(θi) are isomorphic (see Theorem
2 in subsection 2.1) on the other hand L = K(θ1) and L is normal extension.
Hence all fields K(θi) coincide.

L = K(θ1) = K(θ2) = · · · = K(θn) (88)

Hence all isomorphisms K(θi) ↔ K(θj) are automorphisms.

14Consider a striking counterexample: Extension R : Q is infinite-dimensional and its
Galois group contains only one element. It sounds very strange: adding new elements we
expand Galois group, but we add non-countable number of elements to Q and mysteriously
come to normal infinite extension with trivial Galois group

15Note that notion of normal group arisen just as a group corresponding to the normal
extension.
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In particularly one can consider automorphisms {τ1, τ2, . . . , τN} defined
by condition

τj(θ1) = θj (89)

These automorphisms belong to Galois group.
On the other hand If τ is automorphism of L which leaves intact el-

ements of K (i.e. τ belongs to Galois group of automorphisms) then it
transforms a root of polynomial R to another root of this polynomial. Hence
we come to the conclusion that Galois automorphisms are automorphisms
{τ1, τ2, . . . , τN} defined by (89).

We proved the formula (79) of Fundamental Theorem. Moreover we de-
scribed explicitly by (89) Galois automorphisms in terms of roots of resolvent
polynomial.

Before proving (80)—(83) we formulate and prove the following
Lemma 1 If M is intermediate field for field extension L : K then
a) L : M is finite if L : K is finite
b) L : M is normal extension if L : K is normal extension
c) L : M is separable extension if L : K is separable extension.
The a) is evident because [L : M ] = [L : K]/[M : K].
Prove b). Let α be a root of polynomial h = tm+Am−1t

m−1+· · ·+A1t+A0

such that h is irreducible polynomial over M (An ∈ M) and α ∈ L. h is the
minimum polynomial of α over M . Prove that all roots of h belong to L.
Consider minimum polynomial f of α over K f = tn+an−1t

m−1+· · ·+a1t+a0.
It is evident that h divides f . Hence all roots of h are roots of f . But roots
of f belong to L because a is a root of f and L : K is a normal extension .

In the same way we can prove c). If h is a minimum polynomial of a ∈ L
over M then it divides the minimum polynomial f of a over K. f has no
repeated roots. Hence h has no repeated roots too .

Lemma 2 Let element a ∈ L remains fixed under all Galois automor-
phisms. Then it belongs to the main field K. In other words Lemma states
that not only K∗ = Γ(L : K) (by definition) but Γ† = K, i.e. K∗† = K and
Γ†∗ = Γ.

Remark Compare this lemma with Viète Theorem from the subsection
0!

Proof of the Lemma. Consider minimum polynomial of a over K. Sup-
pose degree of this polynomial is not equal to one. Hence it has more than
one roots {a1, a2, . . . } (a = a1). Considering automorphisms of the field K
induced by a = α1 → a2 we come to Galois automorphism which changes a.
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Contradiction. Hence degree of minimum polynomial of a is equal to one.
Thus a ∈ K .

Now return to the proof of Galois Fundamental Theorem.
Formulae (80),(81) follow from definition of maps †, ∗. From Lemma

1 follows that for arbitrary intermediate field M , the extension L : M is
separable,finite and normal. Hence from Lemma 2 it follows that Γ(L :
M)† = M . On the other hand Γ(L : M) = M∗. Hence M∗† = M . The
relation (82) is proved.

Consider now arbitrary subgroup H. Let M = H† and H̃ = M∗ = H†∗.
Prove that H = H̃. First by definition H ≤ H̃. These groups both are finite.
So it sufficient to prove that |H| = |H̃|

It follow from Lemma 1 and (79) that

[L : H†] = |H̃| . (90)

On the other hand consider polynomial which is equal to the product of linear
polynomials (x− τ((θ)) where θ is a primitive element of extension L : K
and τ is Galois automorphism belonging to the subgroup H

R(t) =
∏
τ∈H

(x− τ((θ)) (91)

All coefficients of this polynomial are fixed under the action of group H.
Hence they belong to M = H†. We see that polynomial R(t) is a polynomial
of degree |H| over M and primitive element θ is its root. Hence minimum
polynomial of θ over M has degree less or equal to |H|:

[L : M ] ≤ |H| ⇐ |H̃| ≤ |H| . (92)

We have that |H| ≤ |H̃|. Hence it follows from (90) and (92) that |H| =
|H̃|.

Now prove (86).
Suppose H ≤ Γ is a normal subgroup in Γ. Prove that M = H† is a

normal extension of K.
Let g be irreducible polynomial over K and its root α belongs to M .

L : K is a normal extension, so all roots of this polynomial belong to L.
Prove that all roots of this polynomial belong to M , i.e. M : K is a normal
extension. Let β ∈ L be another root of this polynomial. Consider Galois
automorphism τΓ(L : K) such that τ(α) = β. Then for arbitrary h ∈ H
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τ−1◦h◦τ ∈ H because H is a normal subgroup in Γ. Hence (τ−1◦h◦τ)α = α,
because α ∈ M = H†. On the other hand

α = τ−1 ◦ h ◦ τ(α) = τ−1 ◦ h(β) . ⇒ h(β) = β (93)

Hence β ∈ M .
Now prove that M∗ is a normal subgroup in Γ if M : K is a normal

extension.
Consider arbitrary h ∈ H = M∗, g ∈ Γ. We have to prove that transfor-

mation g−1hg does not move elements of M . Consider arbitrary α ∈ M . Let
f be its minimum polynomial over K and β = g(α). β is a root of f too.
(Galois transformation transforms roots to roots). Hence β ∈ M because
M : K is a normal extension. Now apply Galois transformation g−1hg to α:
g−1hg(α) = g−1h(β) = g−1(β) because H does not move elements of M and
β ∈ M . Hence g−1hg(α) = g−1(β) = α,

It remains to prove the statement 5 of Galois fundamental Theorem.
First of all note that under Galois transformation every element in L

transforms to conjugate (i.e. to another root of the same irreducible polyno-
mial).

Hence Galois automorphism maps M onto M if M is normal extension,
i.e. Galois automorphism do not move M taking as whole.

Let H = M∗ be Galois group of L : M . Consider factor group Γ/H and
Galois group of extension M : K. Let [g] be an arbitrary element in the factor
group Γ/H (equivalence class in Γ w.r.t. subgroup H). Consider arbitrary
representative g ∈ [g] and Galois transformation of M by g. Note that if
g′ = g◦h is another representative of the same equivalence class then it defines
the same action on M because h|H = id. Thus we define homomorphism of
Γ/H in Galois group of extension M : K. prove that it is isomorphism. If [g]
defines identity automorphism on M then g ∈ H and [g] = id in Γ/H. Hence
our homomorphism is monomorphism. On the other hand let τ be arbitrary
automorphism of M (identical on K) (τ ∈ Γ(M : K)). Its prolongation τ̃ on
L defines an element in Γ(L : K). Hence our monomorphism is epimorphism.

3.6 Galois group for cubic polynomial, discriminant
and complex roots

Consider arbitrary cubic polynomial with rational coefficients. It has three
complex roots. It is easy to see that or all three roots are real or one root is
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real and two other roots are complex conjugated.
Consider group S3 of all permutations of roots (see subsection 0):

I =

(
x1 x2 x3

x1 x2 x3

)
, s =

(
x1 x2 x3

x2 x3 x1

)
, s2 =

(
x1 x2 x3

x3 x1 x2

)
, (94)

σ12 =

(
x1 x2 x3

x2 x1 x3

)
, σ13 =

(
x1 x2 x3

x3 x2 x1

)
, σ23 =

(
x1 x2 x3

x1 x3 x2

)
, (95)

Galois group is a subgroup of the group of permutations:
Group S3 contains 6 subgroups: trivial subgroup {1}, three subgroups of

permutations {1, σ12}, {1, σ23}, {1, σ13} cyclic subgroup {1, s, s2} and whole
group itself {1, s, s2, σ12, σ13, σ23}. Consider all the cases.

Reducible case. If cubic polynomial f = t3 + at + bt + c, a, b, c,∈ Q
is reducible over Q then it has at least one rational root 16. Denote it
by x1. Dividing a polynomial f on t − x1, x1 ∈ Q we come to quadratic
polynomial which have two rational roots or two irrational roots. So we have
two subcases: f has three rational roots, or f is reducible and splitting field
is quadratic extension.. If all roots are rational (e.g. polynomial t3 − t =
t(t− 1)(t + 1)) then Galois group contains only identical transformation. It
is just the case IIb in the subsection ”Splitting field for cubic polynomials”.
If f is reducible and splitting field is quadratic extension., i.e. one root is
rational and two roots are not rational (E.g. f = t3 − t = t(t2 − 2)) then
Galois group contains two elements. It is {I, σ23} (if x1 ∈ Q and x2, x3 6∈ Q).
It is just the case IIa in the subsection ”Splitting field for cubic polynomials”.

Now consider the most interesting Irreducible case: when f(t) = t3 +
at2 + bt + c is irreducible cubic polynomial, (a, b, c, are rational coefficients).

Let x1, x2, x3 be roots of this polynomial. All these roots are algebraic
irrationals and they are different because irreducible polynomial over ratio-
nales is separable (Or simply because in other case the polynomial f has a
common root with derivative f ′. This contradicts to irreducibility.).

For every root x1, x2, x3 degree of isomorphic extensions Q(x1) : Q or
Q(x2) : Q or Q(x3) : Q is equal to three because f is irreducible polynomial.
Do these extensions coincide? Or in other words: ”Do roots x2, x3 belong
to the extension Q(x1)?”. Or in other words is extension Q(x1) normal
extension?

16Note again that If degree of polynomial is greater than 3 then reducibility over Q does
not mean an existence of the rational root
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Roots x2, x3 are roots of quadratic polynomial with coefficients in the
field Q(x1). Indeed according to Viète Theoremx2 + x3 = a− x1, x2x3 = −c

x1

Here a, b, c are coefficients of the cubic polynomial. If x2 belongs to the
extension Q(x1) then x3 belongs too and degree of the splitting field will
be 3. According to Fundamental Theorem of Galois Theory Galois group
of polynomial contains 3 elements. This is cyclic subgroup {1, s, s2}. It is
exactly the case of ”glorious” polynomial t3 − 3t− 1 (see e.g. (65))

If x2 does not belong to the extension Q(x1) then extension Q(x1) : Q
is not normal, degree of the extension Σ(f) = Q(x1, x2, x3) : Q(x1) is equal
to 2. Hence degree of the splitting field over rationales is equal to 6. Galois
group contains 6 elements. It is just the group of all permutations as in the
example of polynomial t3 − 2 (See the subsection above)

So we see that for irreducible polynomial or degree of extension Σ(f) : Q
is equal to 6 and Galois group is group of all permutations (95), (94) or degree
of extension Σ(f) : Q is equal to 3 and Galois group is cyclic subgroup (94).
How to distinguish between these two cases for irreducible polynomial?

Recall notion of discriminant D = (x1 − x2)
2(x2 − x3)

3(x3 − x1)
2. For

irreducible polynomial discriminant is not equal to zero, because roots are
distinct. Remember that D is rational according to Viète Theorem. (In
the beginning of the course we calcualted discriminant for cubic polynomial
x3 + px + q (see (14))). Consider square root of discriminant

d =
√

D = ±(x1 − x2)(x2 − x3)(x3 − x1) (96)

Consider now the tower of extensions:

Q ⊆ Q(
√

D) ⊂ Σ(f) = Q(x1, x2, x3)

Simple but very important remark: Remember that D is rational according
to Viète Theorem. Hence square root of discriminant is a root of quadratic
polynomial with rational coefficients. Suppose that degree of the exten-
sion Σ : Q is equal to three. Then by Tower Law degree of the extension
Q(
√

D) : Q cannot be equal to 2 and it is equal to 1, i.e. Q(
√

D) = Q.
Hence

√
D is rational. Now suppose that

√
D is rational. Note that trans-

positions σ12, σ13, σ13 (see (95)) change a sign of square root of discriminant
(x1−x2)(x2−x3)(x−x1) → −(x1−x2)(x2−x3)(x−x1) ( D 6= 0 because roots
are distinct). Hence transpositions do not belong to Galois group, be-
cause Galois transformations do not change rationals. Galois group contains
only cyclic permutations {1, s, s2} defined by (94). Cyclic transformations
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preserve (x1 − x2)(x2 − x3)(x − x1). We proved that if degree of splitting
field is equal to 3 then square root of discriminant is rational and we proved
that if discriminant is rational then Galois group is cyclic group containing
three elements {1, s, s2}. On the other hand according to Galois Fundamen-
tal Theorem the condition that Galois group is cyclic implies that degree of
splitting field is equal to three. We come to

Theorem If f = t3+at+bt+c, a, b, c,∈ Q is irreducible cubic polynomial
over rationales then following conditions are equivalent:

a) Splitting field of this polynomial has degree 3 over rationales
b) square root of discriminant is rational number
c) Galois group is cyclic

Remark If square root of discriminant of cubic polynomial is rational
and polynomial is reducible then all roots have to be rational. This follows
from Vièta Theorem.

(We proved that a)⇒b)⇒c)⇒a) )
Note that implication a) → b) is proved without using Galois Theory.

One can prove b) → a) without Galois Theory also (noting that roots x2, x3

of cubic polynomial can be rationally expressed via root x1 and discriminant
(see Appendix A).

It follows from this Theorem that Galois group of irreducible polynomial
is group of all permutations of roots iff square root of discriminant is not
rational.

Example Consider polynomial t3 − 3t − 1. We know already that its
Galois group is cyclic. Check that discriminant is rational: According (14)

D = (x1−x2)
2(x2−x3)

2(x3−x1)
2 = −27q2−4p3 = −27+108 = 81,

√
81 = 9

We see that square root of discriminant is rational.
Example t3 − 2. Check that discriminant is not rational:

D = (x1 − x2)
2(x2 − x3)

2(x3 − x1)
2 = −27q2 − 4p3 = −108,

√−108 = 6∈ Q

Galois group contains 6 elements as we know it already.

Complex roots and Galois group

Cubic polynomial f = t3+t2+bt+c with rational coefficients has one real
root and two complex roots or three real roots. Indeed f → −∞ if t → −∞
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and f →∞ if t →∞. Hence there exists at least one real root. If x = a+ bi
is a complex root then conjugated number x̄ = a− bi is a root too

If irreducible cubic polynomial has only one real root and two complex
roots which are not real, then splitting field has degree 6 over rationales. This
follows from the fact that discriminant is negative. Indeed if x1 = λ ∈ R and
x2,3 = a± bi then

D = (x1 − x2)
2(x2 − x3)

3(x3 − x1)
2 = (λ− a− bi)2(2bi)2(a− bi− λ)2 < 0

Hence
√

D 6∈ Q. According to Theorem above the degree of the splitting field
is equal to 6 and Galois group possesses 6 elements. But one can prove it in
a different way: Consider conjugation automorphism z → z̄, a± bi → a− bi.
The field of all real numbers remains fixed under this automorphism.

Now consider restriction of this automorphism on splitting field Σ(f) =
Q(x1, x2, x3) of cubic polynomial with rational coefficients. It is Galois trans-
formations. If all roots are real then this is identical transformation of the
splitting field. But if all rooots are not real, i.e. two roots are complex con-
jugate and one root is real then conjugation automorphism is transposition
of the second and third root. Hence Galois group possesses transposition.
Hence it possesses all permutation, because polynomial is irreducible and
|Γ| = 3, 6. Hence its order is equal to 6 and degree of extension is equal to 6.

Note that subgroup containing two elements (identity and conjugation au-
tomorphism) is not normal subgroup in the group of all permutations. Hence
by Galois Fundamental Theorem splitting field Σ(f) does not possess any
normal extension of degree 3.

3.7 Examples, and exercises

In this subsection we consider some exercises-examples and give a sketch of
their solutions.

1. Find Galois group for cubic polynomial t3 + pt + 1 where p is a given
integer.

2. Irreducible cubic polynomial with rational coefficients has a complex
root. Prove that its splitting field does not contain a number α = cos 20◦.

3. Find Galois group of quadratic polynomial x4 − 5x2 + 6
4. Find Galois group of the polynomial x4 + 4
5. What can you say about Galois group of the polynomial xN −1? About

Galois group of the field extension Q(cos 2π
N

) (Try to do detailed analysis of
the cases N = 7, 17, 19)
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1) First note that polynomial t3 + pt + 1, p ∈ Z is reducible iff one of
its roots is equal ±1. Hence t3 + pt + 1 is irreducible iff an integer p 6= 2 or
p 6= 0. If p = 2 then t3 + pt + 1 = (t + 1)(t2 − t + 1). Γ(f) = Γ(t2 − t + 1)
contains two elements. If an integer p 6= 2, 0 then Galois group is cyclic iff√

D =
√
−27− 4p3 ∈ Q (see subsection 3.6).

2) If the irreducible polynomial f has complex root then its Galois group
is group of all permutations: |Γ(f)| = 6 (see in detail subsection 3.6). Field
Q(cos 20◦) is normal field because it is splitting field for the polynomial
t3 − 3t − 1. Suppose it is a subfield of Σ(f). Consider Tower of extensions:
Q ⊂ Q(cos 20◦) ⊂ Σ(f). Consider Galois group of the extension Σ(f) :
Q(cos 20◦). According Galois Fundamental Theorem The Galois group of
the extension Σ(f) : Q(cos 20◦) contains [Σ(f) : Q(cos 20◦)] = 6 : 3 = 2
elements and it is has to be normal group. Subgroup containing two elements
it is identity and transposition. This subgroup is not normal subgroup in the
group of all permutations. Contradiction.

3. Polynomial is product of two irreducible quadratic polynomials x4 −
5x2 + 6 = (x2 − 2)(x2 − 3). Galois transformation maps root of irreducible
quadratic polynomial to another (or to the same) root of this polynomial√

3 7→ ±√3,
√

2 7→ ±√2. Degree of the splitting field is equal to 4 (to see
it use tower law). Any element of splitting field Σ(f) = Q(

√
2,
√

3) can be
expressed in the form a + b

√
2 + c

√
3 + d

√
6. Galois group contains four

elements: {1, τ1, τ2, τ1 ◦ τ2} where τ1 changes
√

2 but it does not change
√

3;
τ2 changes

√
3 and it does not change

√
2: τ1(

√
2) = −√2, τ1(

√
3) =

√
3,

τ2(
√

2) =
√

2, τ2(
√

3) = −√3, τ1 ◦ τ2(
√

2) = −√2, τ1 ◦ τ2(
√

3) = −√3. The
action on arbitrary element is given by the formulae:

τ1(a + b
√

2 + c
√

3 + d
√

6) = a− b
√

2 + c
√

3− d
√

6

τ2(a + b
√

2 + c
√

3 + d
√

6) = a + b
√

2− c
√

3− d
√

6

τ1 ◦ τ2(a + b
√

2 + c
√

3 + d
√

6) = a− b
√

2− c
√

3 + d
√

6

Group is abelian but not-cyclic. It is direct product of two groups.

4) This polynomial is very famous (Marie-Sophie Germain polynomial.)
It is not evident but this polynomial is decomposable over rationals: x4+4 =
(x2 + 2)2− 4x2 = (x2 + 2x + 2)(x2− 2x + 2) Splitting field is just Q(i), roots
are ±(1± i). Galois group contains two elements. {1, σ}: σ(i) = −i.
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5. Splitting field of polynomial xN − 1. First, two words for arbitrary N .
Spliting field of this polynomial is Q(εN) where εN = e

2πi
N . It has N roots

xk = εk
n (k = 0, 1, 2, . . . , N).

Extension Σ(xN − 1) = Q(εN) is normal extension. What can we say
about its degree? Let PN(x) be minimum polynomial of εN This polynomial
divides polynomial xN−1. Denote by ϕ(N) the degree of the polynomial PN .
xN − 1 = (x − 1)(1 + x + x2 + · · · + xN−1). Hence PN divides polynomial

1 + x + x2 + · · · + xN−1 = xN−1
x−1

. We know that in the case where N = p is

prime number then by Eisentein polynomial 1 + x + x2 + · · ·+ xN−1 = xN−1
x−1

is irreducible. Hence PN = 1 + x + x2 + · · ·+ xN−1 and ϕ(N) = N − 1 if N
is prime. In general case ϕ(N) less than or equal to N − 1 17.

Consider e.g. a case N = 2p where p is a prime number. Then

xN − 1 = x2p − 1 = (xp − 1)(xp + 1) =

(x− 1)(x + 1)(xp−1 + xp−2 + · · ·+ x + 1)(xp−1 − xp−2 + · · ·+ x2 − x + 1)

One can see using Eisenstein Test that polynomial 1 − x + x2 − x3 + · · · +
xp−1 = xp+1

x+1
is irreducible (x → −x it transforms to xp−1

x−1
). Hence PN =

xp−1 − xp−2 + · · · − x + 1 and ϕ(2p) = p− 1 for N = 2p with p prime.
For example

P14(x) = x6 − x5 + x4 − x3 + x2 − x + 1, ϕ(14) = 6

Below we consider in detail examples of N = 7, 19, 17. But before two
words about a number αN = cos 2π

N
in general case and for arbitrary prime

p. Let PN be minimum polynomial of εN = e
2πi
N . Consider the tower:

Q ⊆ Q(αN) ⊂ Q(εN)

Degree of the extension Q(εN) : Q(αN) is equal to 2 because ε is a root of
quadratic polynomial over Q(αN) and this polynomial is irreducible (Why?).
Hence degree of the extension Q(αN) : Q is equal to ϕ(N) : 2, where ϕ(N)
is degree of the extension Q(εN) : Q. Galois group of the polynomial xN − 1
is abelian, hence all subgroups are normal. It follows from Fundamental

17One can show that ϕ(N) is number of integers k such that 1 ≤ k ≤ N and which are
coprime with N , i.e. number of invertible elements in the ring Z/nZ. Galois group of
xN − 1 is just multiplication group of the ring Z/nZ
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Theorem of the Galois Theory that extension Q(αN) is normal extension. If
N = p is prime number (greater that 2) then degree of the normal extension
Q(αN) : Q is equal to p−1

2
. Hence minimum polynomial of αN has degree p−1

2
.

It possesses all its roots in the normal extension Q(αN). In particular this
implies that all roots of minimum polynomial are real because Q(αN) ⊂ R.

For example if N = 7 then degree of extension Q(α7) : Q is equal to 3,
this extension is normal and Q(α7) belongs to R. The minimum polynomial
of α7 has degree 3 its all roots are in the normal extension Q(α7) and they
are real.

For this case we can calculate everything by bare hands: E.g. for N = 7:
ε7 is a root of the polynomial 1 + x + x2 + x3 + x4 + x5 + x6 We have:

1 + x + x2 + x3 + x4 + x5 + x6 = 0 ⇒
(

1

x3
+ x3

)
+

(
1

x2
+ x2

)
+

(
1

x
+ x

)
+ 1 =

(
1

x
+ x

)3

− 3

(
1

x
+ x

)
+

(
1

x
+ x

)2

− 2 +

(
1

x
+ x

)
+ 1 = 0

for x = ε7. Hence polynomial z3−2z+z2−1 (z = x+ 1
x
) is a minimum poly-

nomial for the number 2 cos 2π
7

(Compare these calculations with calculations
in subsection 3.2. for polynomial x5 − 1 ). This polynomial has three real
roots. It can be checked straightforwardly: other roots of this polynomial
are ε2 + ε−2 = 2 cos 4π

7
and ε3 + ε−3 = 2 cos 6π

7
. Alternatively it was proved

above using Galois Theory.
One can perform similar straightforward calculations for arbitrary N = p prime

number. Then PN = 1 + x + x2 + · · ·+ xp−1. Dividing polynomial PN on x
p−1
2 we

come to: (
x

p−1
2 + x

1−p
2

)
+

(
x

p−3
2 + x

3−p
2

)
+ · · · = 0 for x = εN

Hence using relation εk
N + ε−k

N = 2 cos 2πk
N we see that

s p−1
2

+ s p−3
2

+ · · · = 0

where we denote by

sk = εk
N + ε−k

N = 2 cos
2πk

n

It is easy to see that sk are polynomials on s1 = αN :

s2 = ε2
N + ε−2

N = (εN + εN )2 − 2 = s2
1 − 2,
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s3 = ε3
N + ε−3

N = (εN + εN )3 − 3 (εN + εN ) = s3
1 − 3s1,

s4 = ε4
N +ε−4

N = (εN + εN )4−4 (εN + εN )3+12 (εN + εN )−6 = s4
1−4s3

1+12s1−6,

Hence we come to polynomial of degree p−1
2 such that 2αN is its root. On the

other hand degree of the extension Q(αN ) : Q is equal to p−1
2 . Hence we come to

minimum polynomial of the number 2αN . One can see that roots of this polynomial
are {2 cos 2πk

p−1} (k = 1, 2, . . . , p−1
2 )

Splitting field of polynomial x7 − 1

Its splitting field Σ(x7 − 1) = Q(ε7), (ε7 = e
2πi
7 ). We know that [Q(ε7) :

Q] = 6, because 7 is prime number and polynomial x7−1
x−1

is irreducible.
According to Fundamental Theorem of Galois Theory (the first point)

the Galois group contains 6 transformations (|Γ(f)| = [Σ(f) : Q]). These
transformations are uniquely defined by the transformation of one of roots,say
ε, because splitting field is just simple extension defined by one of the roots:
Q(ε) = Q(ε2) = · · · = Q(ε6) = Σ(x7 − 1). Transformations ε 7→ εk, k =
1, 2, 3, 4, 5, 6, define Galois transformations of the splitting field. Write their
action on all roots:

identical transformation

1) ε 7→ ε, ε2 7→ ε2, ε3 7→ ε3, ε4 7→ ε4, ε5 7→ ε5, ε6 7→ ε6 (97)

and the following transformations

2) ε 7→ ε2, ε2 7→ ε4, ε3 7→ ε6, ε4 7→ ε, ε5 7→ ε3, ε6 7→ ε5 (98)

3) ε 7→ ε3, ε2 7→ ε6, ε3 7→ ε2, ε4 7→ ε5, ε5 7→ ε, ε6 7→ ε4 (99)

4) ε 7→ ε4, ε2 7→ ε, ε3 7→ ε5, ε4 7→ ε2, ε5 7→ ε6, ε6 7→ ε3 (100)

5) ε 7→ ε5, ε2 7→ ε3, ε3 7→ ε, ε4 7→ ε6, ε5 7→ ε4, ε6 7→ ε2 (101)

6) ε 7→ ε6, ε2 7→ ε5, ε3 7→ ε4, ε4 7→ ε3, ε5 7→ ε2, ε6 7→ ε (102)

One can see that it is cyclic group. Denote by

τ : ε 7→ ε3 (103)

Then we see that

Σ(x7 − 1) = {1, τ, τ 2, τ 3, τ 4, τ 5}, τ 6 = 1 (104)
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where we denote by 1 the identity transformation. (τ 2 : ε 7→ ε2, τ 3 : ε 7→ ε6,
τ 4 : ε 7→ ε4, τ 5 : ε 7→ ε5) This group contain four subgroups

H1 = {1, τ, τ 2, τ 3, τ 4, τ 5}, H2 = {1, τ 2, τ 4}, H3 = {1, τ 3}, H6 = {1} (105)

(we denote by subindex the index of the subgroup)
The corresponding subfields are:

H†
1 = Q, H†

2 = Q(θ2), H
†
3 = Q(θ3), H†

6 = Q(ε) (106)

In details
H†

1 it is subfield of elements which are remained fixed under all transformations from
the Galois group Γ = H1. It is Q.

H†
2 it is subfield of elements which are remained fixed under all transformations from

the subgroup H2. The element θ2 = ε+τ2ε+τ4ε = ε+ε2+ε4 belongs to H†
2 . H†

2 = Q(θ2),
respectively Q∗(θ) = H2. [Q(ε) : Q(θ2)] = |H2| = 3. [Q(θ2) : Q] = 2.

Remark The attentive reader will note that the fact that Q(θ2) = H†
2 has to be

proved. Q(θ2) ⊆ H†
2 because θ2 ∈ H†

2 . Hence [Q(ε) : Q(θ)] ≥ |H2| = 3 and respectively
[Q(θ2) : Q] ≤ |Γ| : |H2| = 6 : 3 = 2. It remains to prove that [Q(theta2) : Q] > 1, i.e.
θ2 6∈ Q. If θ2 ∈ Q then ε is a root of polynomial θ2 = x4 +x2 +x with rational coefficients
of the degree less that 6. This is in the contradiction with the fact that polynomial x7−1

x−1

is irreducible). Hence [Q(θ2) : Q] > 1. Thus we prove that [Q(θ2) : Q] = 2 18

H†
3 it is subfield of elements which are remained fixed under all transformations from

the subgroup H3. The element θ3 = ε + τ3ε = 2 cos 2π
7 belongs to H†

3 . Q∗(θ3) = H3.
(Indeed this proves that Q(θ3) ⊆ H†

3 , respectively according to FTGT H3 ≤ Q∗(θ3). In the
same way like in the previous example one can check that θ3 6∈ Q: θ3 = ε+ε6 ⇒ εθ3 = ε2+1
⇒ ε is a root of quadratic equation x2−θ3x+1 = 0 over Q(θ). ⇒ [Q(ε) : Q(θ)] = 2 because
θ is real and ε is not real. Hence [Q(θ3) : Q] = 3 and |Q∗(θ3)| = [Q(ε) : Q(θ3)] = 2.
Hence |H3| = |Q∗(θ3)| = 2, i.e. H3 = Q∗(θ3), Q(θ3) = H†

3 .)

H†
6 it is subfield of elements which are remained fixed under identity transformation.

It is Q(ε).

Splitting field of the polynomial x17 − 1. Solution of equation x17 − 1 = 0
Consider polynomial x17 − 1. Its splitting field Σ(x17 − 1) = Q(ε17),

(ε17 = e
2πi
17 ). We know that [Q(ε17) : Q] = 16, because 17 is prime number

and polynomial x17−1
x−1

is irreducible.

18This consideration works for arbitrary prime p. Just for this example one can check
straightforwardly that θ2 is not rational: Calculate explicitly θ2

2 = (ε + ε2 + ε4) and note
that θ2 is a root of quadratic irreducible polynomial. Hence [Q(theta2) : Q] = 2
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The Galois group Γ(x17 − 1) is cyclic group. It contains 16 elements.

They are defined by transformation ε 7→ εk, k = 1, 2, . . . , 16 (ε = e
2πi
17 ).

Galois group is {1, τ, τ 2, . . . , τ 15} where (τ(ε) = ε3).
16 = 2× 2× 2× 2. Hence we have subgroups of orders 1,2,4,8:

Γ = H1 > H2 > H4 > H8 > H16 = {id} (107)

H1 = {1, τ, τ 2, . . . , τ 15}, H2 = {1, τ 2, τ 4, τ 6, τ 8, τ 10, τ 12, τ 14}
H4 = {1, τ 4, τ 8, τ 12}, H8 = {1, τ 8}, H16 = {1}

Corresponding subfileds are

Q ⊂ Q(θ2) ⊂ Q(θ4) ⊂ Q(θ8) ⊂ Q(ε) (108)

where Q(θ2) = H†
2, Q(θ4) = H†

4, Q(θ8) = H†
8

The number of elements in every subgroup is twice more than in the
precedent. Hence by Galois Theorem we have the Tower of iterated quadratic
extensions. Hence ε is a root of quadratic equation with coefficients in Q(θ8).

Respectively θ8 is a root of quadratic equation with coefficients in Q(θ4)
Respectively θ4 is a root of quadratic equation with coefficients in Q(θ2)
And finally θ2 is a root of quadratic equation with coefficients in Q.
Thus we see that ε = e

2πi
17 is iterated quadratic irrationality.

Give a sketch of these calculations
Calculate these equations. First calculate θ2

θ2 = (1 + τ2 + τ4 + · · ·+ τ16)ε = ε + ε9 + ε13 + ε15 + ε16 + ε8 + ε4 + ε2 = (109)

(ε + ε16) + (ε15 + ε2) + (ε13 + ε4) + (ε9 + ε8)

2 cos ϕ + 2 cos 2ϕ + 2 cos 4ϕ + 2 cos 8ϕ

where ϕ = 2π
17 The second root of quadratic equation is θ′2 = τθ2: θ + θ′ and θ · θ′ are

rationals, because they are invariant under the action of all Galois group:

θ′2 = τθ2 = ε3 + ε10 + ε5 + ε11 + ε14 + ε7 + ε12 + ε6 (110)

(ε3 + ε14) + (ε5 + ε12) + (ε6 + ε11) + (ε7 + ε10)

2 cos 3ϕ + 2 cos 5ϕ + 2 cos 6ϕ + 2 cos 7ϕ

The straightforward calculations give:

θ2 + θ′2 = −1, θ2θ
′
2 = −4

We see that θ is a root of quadratic equation

x2 + x− 4 = 0 (111)
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Now find θ4 as a root of quadratic equation with coefficients in Q(θ2) The group H4

is {1, τ4, τ8, τ12}. Hence

θ4 = (1 + τ4 + τ8 + τ12)ε = ε + ε13 + ε16 + ε4 = (112)

2 cos ϕ + 2 cos 4ϕ

and
θ′4 = 2 cos 2ϕ + 2 cos 8ϕ

θ4 is a root of quadratic polynomial

x2 − θ2x− 1 = 0 (113)

with coefficient defined by the quadratic polynomial (111).
The last but one step: to calculate θ8 = 2 cos ϕ as root of quadratic polynomial.
We see that to solve equation x17−1 = 0 in radicals, i.e. to express ε = e

2πi
17 in radicals

we have to solve three quadratic equations. First equation with rational coefficients to
obtain number α, then quadratic equation with coefficients in Q(α), then...

Spliting field of polynomial x19 − 1

Its splitting field Σ(x19 − 1) = Q(ε19), (ε19 = e
2πi
19 ). We know that

[Q(ε19) : Q] = 18, because 19 is prime number and polynomial x19−1
x−1

is
irreducible.

The Galois group contains 18 transformations defined by transformations
ε 7→ εk, k = 1, 2, 3, 4, 5, 6, . . . , 18 It is cyclic group. Denote by

τ : ε 7→ ε2 (114)

Then
Σ(x19 − 1) = {1, τ, τ 2, τ 3, τ 4, τ 5 . . . , τ 17}, τ 18 = 1 (115)

where we denote by 1 the identity transformation.

τ 2 : ε 7→ ε4, τ 3 : ε 7→ ε8, τ 4 : ε 7→ ε16 , τ 5 : ε 7→ ε13, (116)

τ 6 : ε 7→ ε7, τ 7 : ε 7→ ε14, τ 8 : ε 7→ ε9, τ 9 : ε 7→ ε18,

τ 10 : ε 7→ ε17, τ 11 : ε 7→ ε15, τ 12 : ε 7→ ε11, τ 13 : ε 7→ ε3, τ 14 : ε 7→ ε6,

τ 15 : ε 7→ ε12, τ 16 : ε 7→ ε5, τ 17 : ε 7→ ε10, τ 18 : ε 7→ ε

This group contain six subgroups

H1 = {1, τ, τ 2, τ 3, τ 4, τ 5, . . . , τ 17}, H2 = {1, τ 2, τ 4, τ 6, τ 8, τ 10, τ 12, τ 14, τ 16},
(117)
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H3 = {1, τ 3, τ 6, τ 9, τ 12, τ 15}, H6 = {1, τ 6, τ 12}, H9 = {1, τ 9}, H18 = {1}
(118)

(we denote by subindex the index of the subgroup)
According FTGT there are six corresponding subfields. They all are

normal extensions, because these subgroups are normal subgroups. These
subfields are:

H†
1 = Q, H†

2 = Q(θ2), H
†
3 = Q(θ3), H†

6 = Q(θ6), H
†
9 = Q(θ9), H†

18 = Q(ε),
(119)

According to FTGT:

H1 > H2 > H6 > H18

Q ⊂ Q(θ2) ⊂ Q(θ6) ⊂ Q(ε)
(120)

H1 > H3 > H6 > H18

Q ⊂ Q(θ3) ⊂ Q(θ6) ⊂ Q(ε)
(121)

In more detail:
H†

1 it is subfield of elements which are remained fixed under all transformations from
the Galois group Γ = H1. It is Q.

H†
2 it is subfield of elements which are remained fixed under all transformations from

the subgroup H2. The element

θ2 = ε + τ2ε + τ4ε + · · ·+ τ16ε = ε + ε4 + ε16 + ε7 + ε9 + ε17 + ε11 + ε6 + ε5 (122)

belongs to H†
2 . It is a root of quadratic polynomial with rational coefficients. Note that

another root of this quadratic polynomial is θ′2 = τθ2 because elements θ2 + θ′2 and θ2 · θ′2
are invariant under the action of all Galois group and are rationals.

Q(θ2)∗ = H2. [Q(ε) : Q(θ2)] = |H2| = 9. [Q(θ2) : Q] = 2. (the corresponding
quadratic polynomial is irreducible, θ2 6∈ Q, because in other case ε would be a root of
polynomial of degree less than 18. This contradicts to irreducibility of polynomial x19−1

x−1 )

H†
3 it is subfield of elements which are remained fixed under all transformations from

the subgroup H3. The element θ3 = ε + τ3ε + τ6ε + τ9ε + τ12ε + τ15ε belongs to H†
3 .

Q(θ3)∗ = H3. [Q(ε) : Q(θ3)] = |H3| = 6. [Q(θ2) : Q] = 3. θ3 is a root of cubic equation:
According to FTGT [Q(ε) : Q(θ3)] = |H3| = 6, [Q(θ3) : Q] = |Γ| : |H3| = 18 : 6 = 3

H†
6 it is subfield of elements which are remained fixed under all transformations from

the subgroup H6. The element θ6 = ε + τ6ε + τ12ε belongs to H†
6 . Q(θ6)∗ = H3.

[Q(ε) : Q(θ3)] = |H6| = 3. [Q(θ6) : Q] = |Γ| : |H6| = 18 : 3 = 6.
H†

9 it is subfield of elements which are remained fixed under all transformations from
the subgroup H9. The element θ9 = ε + τ9ε = 2 cos 2π

19 belongs to H†
9 . Q(θ9)∗ = H9.

[Q(ε) : Q(θ9)] = |H9| = 2. [Q(θ9) : Q] = 2.
H†

18 it is subfield of elements which are remained fixed under identity transformation.
It is all the field Q(ε).
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4 Construction by Ruler and compass II

In the subsection 2.4 we staudy constructions by ruler and compass. In par-
ticular we showed that if complex number α is constructible then [Q(α);Q] =
2r. This gives necessary conditions. What about inverse implication? Of
course it is not true that if [Q(α) : Q] = 2r then α is constructible. What is
sufficient and necessary condition that α is constructible?

We try to answer on this question in this section using basic ideas of
Galois theory.. In particular we try to answer the following question: Find
all N such that one can divide a circle by ruler and compasses on N equal
arcs, i.e. find all N such that a number εN = e

2πi
N is constructible.

The answer is following.
The prime number p is called Fermat prime number if p− 1 has not odd

divisors, i.e. p− 1 = 2k One can see that if p is Fermat prime number then
k has not odd divisors too, i.e. for Fermat prime number

p = 2k + 1, k = 2n and p = 22n

+ 1 (123)

(Indeed if k has odd divisors then evidently p is not prime) Numbers 22n
+ 1

sometimes are called Fermat numbers. Fermat number 22n
+ 1 is Fermat

prime number if it is prime.
One can see that Fermat numbers p = 22n

+ 1 is Fermat prime if n =
0, 1, 2, 3, 4, p = 3, 5, 17, 257, 65337. But not all Fermat numbers are Fermat
prime numbers.

It turns out that Fermat prime numbers are very important for consider-
ations below.

This section is devoted to analysis and proof of the following statement
which comes from ancient geometry:

Theorem (Gauss) The number N has property:

one can divide a circle by ruler and compasses on N equal arcs.
(124)

if and only if the decomposition of N in prime factors have the following
form:

N = 2kp1 . . . ps , (125)

where all p1, . . . , ps are different Fermat prime numbers.

For example circle can be divided on N equal parts if N = 2, 3, 4, 5, 6, 8,
10, 12, 15, 16, 17, 20, . . . , 30, 32, . . . and circle cannot be divided on N equal
parts if N = 7, 9, 11, 13, 18, 19, 21, 22, . . .
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(30 = 22 · 3 · 5, 3 and 5 are Fermat primes, 9 = 32 it is square of odd
prime, 7 and 11 are not Fermat primes)

We see that 7 is the smallest number such that circle cannot be divided
on the 7 parts with ruler and compasses 19.

Plan of our considerations is following.
To divide circle on N equal arcs by ruler and compasses it is the same

that to express all roots of the polynomial

xN − 1 = 0

only via arithmetic operations and the extraction of square roots. (We will
give exact formulation to this sentence later.)

We will formulate and prove Lemma and Theorem claiming that roots of
a polynomial are expressed ”via arithmetic operations and the extraction of
square roots” if and only if the Galois group of polynomial contains 2p ele-
ments. And finally we will calculate the order of Galois group for polynomial
xN − 1 and show that it is equal to 2p if and only if N has expansion (125).

4.1 Iterated quadratic irrationalities

Take some interval [AB] = 1. Then we can construct arbitrary rationals p/q,
solve quadratic equations with rational coefficients, solve quadratic equations
with coefficients which are roots of quadratic equations and so on... (We did
it already in the subsection §2.4.)

Roughly speaking iterated quadratic irrationality it is the number which
can be expressed via rational numbers by arithmetic operations and square
roots.

Definition.
A complex number α ∈ C is called quadratic irrationality if it is a root

of quadratic polynomial with rational coefficients.
A complex number α ∈ C is called iterated quadratic irrationality if it is

a rational number or if it is a root of quadratic polynomial with coefficients
which are iterated quadratic irrationalities.

This recursive definition seems to be vicious circle. In fact it states fol-
lowing: a number α is an iterated quadratic irrationality if it is a root of
quadratic polynomial pn whose coefficients are defined in the following way:

19May be it is the reason why 50 pence coin has 7 edges?..
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one can consider the sequence {p1(x), p2(x), . . . , pn(x)} of quadratic polyno-
mials such that quadratic polynomial p1(x) has rational coefficients, coeffi-
cients of quadratic polynomial p2 are rational functions of roots of polynomial
p1, coefficients of quadratic polynomial p3 are rational functions of roots of
polynomials p2 and p1, coefficients of quadratic polynomial p4 are rational
functions of roots of polynomials p1, p2 and p3 and so on... till we arrive
finally to quadratic polynomial pn such that coefficients of this quadratic
polynomial pn are rational functions of roots of polynomials p1, p2, . . . , pn−1

For example consider polynomials p2(t) = t2 + x1t + x2 where coefficients
x1, x2 are roots of polynomial p1(t) = t2 − 5t− 1. Then roots of polynomial
p2(t) are iterated quadratic irrationalities.

Another example: the number

α0 =

√
2 +

√
3 +

√
5 +

√
7 , is a root of polynomial (t− α1)

2 − 7 (126)

where the number

α1 =

√
2 +

√
3 +

√
5 is a root of polynomial t2 − 2− α2 , (127)

where the number

α2 =

√
3 +

√
5 is a root of polynomial t2 − 3− α3 , (128)

where the number

α3 =
√

5 is a root of polynomial t2 − 5 , (129)

We see that α3 is iterated quadratic irrationality, because it is quadratic ir-
rationalitity. Hence α2 is iterated quadratic irrationality, hence α1 is iterated
quadratic irrationality, hence α0 is iterated quadratic irrationality.

The notion of iterated quadratic irrationality can be naturally formalized
in the following way.

Definition. The complex number α ∈ C is called iterated quadratic
irrationality if there exists a field M ⊂ C containing α such that extension
M : Q can be represented by iterated quadratic extensions, i.e. it can be
considered as a Tower of quadratic extensions of Q, i.e. there exist fields
{M = M1, M2, . . . , Mn} such that

Q ⊂ Mn ⊂ Mn−1 ⊂ · · · ⊂ M1 = M 3 α (130)
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and all extensions Mk : Mk−1, Mn : Q are quadratic.

For example the quadratic irrationality α0 =

√
2 +

√
3 +

√
5 +

√
7 be-

longs (126) to field Q(α0) and we have a following tower of quadratic exten-
sions of Q:

Q ⊆ Q(
√

5) ⊆ Q(

√
3 +

√
5) ⊆ Q(

√
2 +

√
3 +

√
5) (131)

⊆ Q(

√
2 +

√
3 +

√
5,
√

7) = Q(

√
2 +

√
3 +

√
5 +

√
7) (132)

Another very important example. Consider the number

ε17 = e
2πi
17

We analysed this number in the fifth example in the last subsection of the
previous section. In particular we obtained in (107) that there is a tower
of intermediate fields which are iterated quadratic extensions. This means
that number ε17 = e

2πi
17 is iterated quadratic irrationality, i.e. circle can be

divided on 17 equal arcs by ruler and compasses (It is the problem which
was solved by Gauß)

Now simple but very important lemma:
Lemma If number α is an iterated quadratic irrationality then the degree

of extension Q(α) : Q is equal to 2r.
The proof is obvious: Suppose α is algebraic irrationality and α ∈ M .

Hence by Tower law the degree of extension [Q(α) : Q] divides the degree
of extension [M : Q]. Hence it follows from Tower Law that [Q(α) : Q] is a
degree of 2 too.

Remark Pay attention that the fact that degree of an extension Q(θ) : Q
is equal to 2k does not follow that θ is iterated quadratic irrationality.

Even this very simple lemma can be used for answering on questions
which was posed by Ancient Greeks.

Theorem The following conditions are equivalent
a) The number α is constructible in finite number of steps by ruler and

compasses
b) The number α is an iterated quadratic irrationality
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c) The splitting field of minimum polynomial of number α is extension of
rationals of degree 2k for some k

Pay attention that the fact that degree of an extension Q(θ) : Q is equal
to 2k does not follow that θ is iterated quadratic irrationality. The condition
that the degree of the minimum polynomial of the number α is equal 2k does
not imply that degree of the splitting field will be power of 2 also

From this theorem follows
The condition that the degree of extension Q(α) : Q is a power of 2 is

necessary condition for number α to be constructed.
This fact was already proved in the subsection §2.4.
Now we prove more: Theorem defines us sufficient condition for on-

structibility. In particular Theorem tells that the condition [Q(α) : Q] = 2r is
suffucient condition if Q(α) is a splitting field of polynomial, i.e. if Q(α) : Q

is normal extension. (This happens for α = εN = e
2πi
N where extension is

normal extension and εN is constructible if and only if [Q(vareN) : Q] = 2r,
see in detail next subsection.)

The implication a ⇒ b) follows from the fact that performing every step
in constructing by ruler and compasses we remain in the same field or we pass
to the field of degree of extension 2, all constructions by ruler and compasses:
intersection of two lines, intersections of line and circle, intersections of two
circles lead to linear or quadratic equations. Hence by definition α is iterated
irrationality if α can be constructed in finite number of steps by ruler and
compasses.

The implication b ⇒ a) follows from the definition of iterated irrational-
ities and from the fact that linear and quadratic equations can be solved by
ruler and compasses.

the implication b ⇒ c) can be proved by induction.
Let α be iterated quadratic irrationality and p be minimum polynomial of α

[Q(α) : Q] = 2k and there are fields {Mr}, r = 1, . . . , k such that Mr = Q(θr)
where θr are iterated quadratic irrationalities.

Q = M1 ⊂ M2 ⊂ · · · ⊂ Mk = Q(α)

and [Mr+1 : Mr] = 2. Consider all roots of this polynomial α1 = α, α2, . . . , αn,
where n = 2k and normal closure of the last but one field Nr = M̄r. By induction
hypothesis this field has degree power of 2. Consider Tower of fields

Mk−1 ⊂ Q(α1) ⊆ Q(α1, α2) ⊆ Q(α1, α2, α3) · · · ⊆ Σ(p) (133)
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All field extensions Q(αi) : Nr are isomorphic. Hence their degree is equal to 2 or
to 1. Hence in the Tower above all degrees of extension are 1 or 2. Hence degree
of splitting field of polynomial p is equal to power of 2.

It remains to prove the last implication c) ⇒ b)
The proof is founded on the following lemma

Lemma. If group G contains 2n elements then it contains the series {Gn, Gn−1, . . . , G2, G1}
of subgroups such that

{e} = Gn < Gn−1 < · · · < G2 < G1 < G0 = G , (134)

where all subgroups Gn+1 have an index 2 in Gn, i.e. order of an every subgroup
Gk is equal to 2n−k.

Note that all subgroups Gn are normal in Gn+1, because the subgroup of index
2 is always normal. It is evident: if x 6∈ H then xx ∈ H.

The proof of this lemma see in Appendix 2.
Let f be minimum polynomial of complex number α and Galois Γ group of

splitting field Σ = Σ(f) of polynomial f contains 2n elements. According to
Lemma consider the series of subgroups

{e} = Γn < Γn−1 < · · · < Γ2 < Γ1 < Γ0 = G , (135)

of Galois subgroup and the subfields of {Σr} corresponding to subgroups {Γr}.

Σr = Γ†r = {a ∈ Σ: ∀g ∈ Γr g(a) = a}, Γr = Σ∗r

According to Fundamental Theorem of Galois Theory

Q = Σ0 < Σ1 < · · · < Σn−2 < Σn−1 < Σn = Σ(f) . (136)

Please, pay attention on the reversing of the order in the formula (136) com-
paring with formula (178).

The normal extensions Σr : Σr−1 have degree 2 because Σr : Σr−1 = |Γr|/|Γr−1| =
2 (see formula (84), (85).) It means that

every element of field Σr is a root of quadratic polynomial with
coefficients in field Σr. Thus we come to tower of quadratic extensions: All
elements of field Σ(f) are quadratic irrationalities.

From this Proposition and Lemma it follows solutions of classical prob-
lems posed by Greeks (see also subsection §2.4):

For example consider the number α = 3
√

2. [Q( 3
√

2) : Q] = 3. We come
to
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Corollary The cube cannot be duplicated using ruler and compasses
constructions.

Considering equation x3 − 3x − 1. x = cos 20◦ and the polynomial is
irreducible. Hence [Q(cos 20◦) : Q] = 3. we come to

Corollary The angle 60◦ cannot be trisected using ruler and compasses.
In other words one cannot divide circle on 9 equal parts.

Consider number π. It is transcendental. [Q(π) : Q] = ∞
Corollary The circle cannot be squared by ruler and compasses.

Consider the numbers cos 2π
7

, sin 2π
7

, e
2πi
7 = cos 2π

7
+i sin 2π

7
They are roots

of third order and six order irreducible polynomials.
So these numbers are not iterated quadratic irrationalities.
Corollary One cannot divide the circle on 7 equal arcs by ruler and

compasses

Can we construct the angle 2π
257

by ruler and compasses:

Yes, we can. Indeed consider the number α = e
2πi
257 . Its minimum polyno-

mial is x257−1
x−1

because p = 257 is prime number. Q(α) is a splitting field and
degree of field extension is equal 256 = 28.

4.2 Galois group of equation xN−1. Regular N-polygon

Apply Theorem for finding all N such that circle can be divided on equal N
arcs.

We can divide circle on N equal arcs if and only if the number

εN = e
2πi
N

is iterated irrationality. The field Q(εN) is splitting field of the number εN .
Hence it follows from the Theorem that

We can divide circle on N equal arcs if and only if if and only if the
degree of extension Q(εN) : Q is equal to the power of 2.

How to find all wonderful N?
Firs consider the case if N = p is prime number. Then degree of the

splitting field of polynomial xp − 1 is equal to p− 1. The condition

p− 1 = 2k
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means that k is a power of 2 too: in other case if k possesses odd divisor
(k = (2q + 1)r) then p = 2k + 1 possesses divisor 2r + 1.

So we see that in the case if N = p is prime number then circle can be
divided on N equal parts if and only if N is Fermat number: N = 22k

+ 1
What happens in general case?

Recalling of Euler function ϕ(N) For integer N denote by ϕ(N) the number
of all positive integers from the set {1, 2, 3, . . . , n− 1} which are coprime with N .

One can see that
ϕ(N) =

∏

k

pnk−1
k (pk − 1) , (137)

where
N =

∏

k

pnk
k (138)

is an expansion of N by primes.
For example if N = 135 = 33 · 5 then ϕ(N) = 9 · 2 · 4 = 72
Note that ϕ(N) is equal to the number of invertible elements (units) in the ring

Z/nZ, or the number of automorphisms of the ring Z/nZ. Another nice property
of Euler function is that if a is coprime with N then aϕ(N)−1− 1 is divisible on N .
See also appendix 1,

Theorem The order of Galois group of polynomial fN , i.e. the order of mini-
mum polynomial of the complex number εN = e

2πi
N

is equal to ϕ(N) (139)

From this Theorem follows Gauss Theorem (124).
|ΓN | is just the degree of minimum polynomial for εN . If N = p this a is simple

statement ϕ(p) = p− 1. Using Eisenstein Test it is easy to see that polynomial

xp−1 + xp−2 + · · ·+ 1 =
xp − 1
x− 1

(140)

is irreducible polynomial. (Consider substitition x = u + 1). The same argument
works for N = pk, (ϕ(N) = pk(pk − 1)). It is easy to see that again εpk is a root
of polynomial

xpk−1(p−1) + xpk−1(p−2) + · · ·+ 1 =
xpk − 1
xp − 1

(141)

In the case if N = 2p life is still not so hard: ϕ(N) = p and polynomial

xp−1−xp−2+xp−3−xp−3+· · ·+1 =
x2p − 1

(x− 1)(x + 1)(xp−1 + xp−2 + · · ·+ 1)
. (142)
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For example minimum polynomial for ε10 = e
πi
5 is equal to

x4 − x3 − x2 + x− 1

In general case situation is more tricky. The explicit expression for minimum
polynomial see in Appendix 1.

5 Solutions of equations in radicals and solu-

ble groups. Insoluble quintic.

Definition A group G is called soluble if it contains a finite series of subgroups:

{e} = G0 ≤ G1 ≤ G2 ≤ · · · ≤ Γn = G

such that 1) ∀i < n Gi is normal subgroup in Gi+1 (not necessarily in Gi+k for
k ≥ 2)

2) Factor-group Gi+1/Gqi is abelian.
Theorem The polynomial equation f(x) = 0 (f ∈ Q[x]) is soluble in radicals

if and only if Galois group of polynomial f is soluble.
Using this Theorem consider the example of non-soluble quintic.

Proposition Group S5 of permutations of 5 numbers is non-soluble.
Galois group of quintic is subgroup of S5. Try to find polynomial such that its

Galois group is exactly S5.

Remark For the case of cubic equation S3 and all its subgroups are soluble. It
is an easy exercise to find polynomials with Galois group equal to given subgroup of
group S3. Indeed Galois group have to be subgroup of S3. The equation x3−2 has
Galois group of order 6 and it is just S3. For polynomial x2− 3x− 1 Galois group
is cyclic subgroup of S3. The polynomial (x − a)(x2 + px + q) where a, p, q ∈ Q
has Galois group S2 (has trivial Galois group) iff x2 + px + q has irrational roots.

Finally we consider an example of not soluble quintic.
Theorem The polynomial x5 − 6x + 3 is not soluble by radicals.
To prove this one proves at first that this polynomial is irrdeucible then show

that Galois group of this polynomial is indeed all group of permutations of 5
elements.
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6 Appendices

6.1 Appendix A. The rational expressions for roots of
cubic polynomial

In this appendix we show that irreducible cubic polynomial has roots wich are rationally
expressable via each other i.e. Q(x1) = Q(x2) = Q(x3) if and only if the discriminant D:

D = d2, d = (x1 − x2)(x2 − x3)(x3 − x1)

is square of rational It follows from Viète Theorem that

D = d2 = (x1 − x2)2(x2 − x3)2(x3 − x1)2

is rational expression. (In the case if f = x3 +px+q d2 = −27q2−4p3) (See the beginning
of the notes.)

It is easy to see that in the case Ia) square root of discriminant has to be rational.
Indeed in the case Ia) the degree of extension Q(x1, x2, x3) : Q is equal to 3 because
Q(x1, x2, x3) = Q(x1). The field Q(d) belongs to the field Q(x1, x2, x3). Hence by Tower
law the degree of extension Q(d) : Q can be equal 3 or 1. On the other hand d2 = D
is rational. Hence the degree of the extension Q(d) : Q can be 2 or 1. We come to the
conclusion that the degree of the extension Q(d) : Q is equal to 1. Hence d is rational.

The inverse statement is right too, i.e. in the case Ib) square root of discriminant
has to be not rational. Or in other words if square root of discriminant of irreducible
cubic is rational then then [Q(x1, x2, x3)] : Q] = 3. We do it by ”bare hands” doing
straightforward calculations. Later when we will learn Galois theory we will see a very
clear proof of this statement. Show first that in the field Q(d) roots of irreducible cubic
polynomial are rationally expressed via each other. Do it. Without loss of generality
suppose that f = x3 + px + q, i.e. x1 + x2 + x3 = 0 Denote by u = x1 one of the roots
and by x = x2 another root of cubic polynomial. Then we have

x1x2 + x1x3 + x2x3 = p ⇒ x2 + xu + u2 + p = 0
d = (x1 − x2)(x2 − x3)(x3 − x1) =

√
−4p3 − 27q2 ⇒

2x3 + 3ux2 − 3u2x + d− 2u3 = 0
(143)

x is a root of cubic and quadratic equations. Multiply first equation on 2x+u and substract
the second equation. We come to

x =
d− 3u3 − pu

6u2 + 2p
(144)

(Denominator is not equal zero, because polynomial is irreducible and [Q(u) : Q] = 3.)
In other words all roots belong to the extension Q(x1, d).
In the case if d is rational then it follows from the formula above that
x2, x3 ∈ Q(x1) so the splitting field Σ(f) = Q(x1, x2, x3) = Q(x1). It is just the case

Ia.
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If d is irrational then it is easy to see that [Q(x1, x2, x3) : Q] = 6. Indeed d ∈ Σ(f) =
Q(x1, x2, x3). On the other hand the extension Q(d) : Q has the order 2. Hence by Tower
Law order of the extension Q(x1, x2, x3) : Q cannot be equal to 3. It is equal to 6. It is
just the case Ib.

We proved the following Proposition:

Proposition Let f be irreducible cubic polynomial over Q.
Then the degree of splitting field is equal to 3 if square root of discriminant is rational.

Otherwise it is equal to 6.
Exercise Find dependance of degree of the extension Σ(f) : Q for polynomial f =

x3 − 3x− q, where q is such rational number that f is irreducible 20

Solution It follows from considerations above that [Σ(f) : Q] = 3 iff D = −4p3−27q2 =
108− 27q2 is square of rational: D = d2, d ∈ Q. (We suppose that q obeys the condition
that f is irreducible) Solve in rationals the equation

27q2 + d2 = 108, where d = r
s ∈ Q (145)

One solution q = 1, d = (x1 − x2)(x2 − x3)(x3 − x1) = ±9 gives famous cubic
x3 − 3x− 121. Use Diophantine method: Take a line crossing the point q = 1, d =
±9: d = 9+k(q−1) or q = −9+k(q−1). it is easy to see that (q, d) ∈ Q iff k, w ∈ Q.
Substitute in equation: 27q2 +d2−108 = 27q2 +81+18k(q−1)+k2(q−1)2 = 108.
27(q2 − 1) + 18k(q − 1) + k2(q − 1)2 = 0. Dividing on q − 1 we come to

q =
k2 − 18k − 27

27 + k2
, d =

243− 9k2 − 54k
k2 + 27

(146)

We come to plenty examples of cubic polynomials such that square root of dis-
criminant is rational. E.g. take k = 1 we come to the polynomial

q = − 7
11

, d =
45
11

.

Cubic equation

x3 − 3x− 11
7

(147)

has the same intriguing property that x3−3x−1: its roots are rationally expressed
via each other.

20in other words the equation q = x3 − 4x has no solutions in rationales. One can see
that sufficient condition is that for q = m

n the integer n be free from cubes, i.e. for every
prime number lthe number l3 does not divide n.

21You see that in fact the following identity is proved: (x1 − x2)(x2 − x3)(x3 − x1) =
8(cos 20◦ + cos 40◦)(cos 40◦ + cos 80◦)(cos 20◦ + cos 80◦) = 9
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6.2 Appendix B. Calculation of Galois group using
primitive extension.

Let L : K be finite normal separable extension. We already formulated theorem that this
extension is a splitting field for some polynomial f (see subsection ”Normal extensions”)
(f can be reducible too: e.g. Q(

√
2,
√

5) is a splitting field for a polynomial (t2−2)(t2−3)).
One can calculate Galois group considering primitive element of field extension. For

example let L : Q be finite normal extension of Q, L = Σ(f) = Q(x1, . . . , xn) where
x1, . . . , xn are (complex) roots of f . (One can consider Σ(f) as subfield of C).

Let θ be a primitive element of splitting field (see the Theorem about splitting element
in the section 2):

Σ(f) = Q(x1, . . . , xn) = Q(θ)

Denote by R minimum polynomial of θ. We call this polynomial resolvent polynomial
of polynomial f

Let θ1, θ2. . . . , θN be roots of resolvent polynomial. Denote by θ = θ1. Extension
Q(θ) = Σ(p) is normal extension. Hence all roots θi of irreducible polynomial R(x) belong
to Q(θ1). Thus all extensions Q(θi) are equal to extension Q(θ):

Σ(f) = Q(θ1) = · · · = Q(θN ) (148)

Every transformation θ → θi defines automorphism ϕi of the field Σ(f) = Q(θ). Vice
versa every automorphism ϕ is uniquely defined by its value on θ and this value is equal
to θi: ϕ(θ) = θi.

Every automorphism ϕi generates the permutation of roots. (But not every permuta-
tion of roots defines automorphism.)

One can see that N ≥ n and N |n! in the case if f is irreducible polynomial. Indeed N
is the number of elements in the subgroup Γ of the group of permutation Sn. Hence |Γ|
divides |Sn| = n!. We see in particularly that the degree N of resolvent polynomial is less
or equal n!.

Let R be minimum polynomial of a primitive element of the extension
Σ(f), (resolvent polynomial of polynomial f) Then Galois group of polynomial
f contains N = degR elements. The Galois group is a group of automorphisms
{ϕi} where automorphism ϕi is uniquely defined by the condition τi(θ1) = θi,
where θi are roots of resolvent polynomial R

Consider examples.
Example 1 Consider again polynomial x4 − 5x2 + 6 (See example in the subsection

3.1) Its roots are x1,2 = ±√3, x3,4 = ±√2. We noted that Galois group contains four
elements {id, τ, σ, τ ◦ σ} where:

τ(a + b
√

2 + c
√

3 + d
√

6) = a− b
√

2 + c
√

3− d
√

6
σ(a + b

√
2 + c

√
3 + d

√
6) = a + b

√
2− c

√
3− d

√
6

τ ◦ σ(a + b
√

2 + c
√

3 + d
√

6) = a− b
√

2− c
√

3− d
√

6
(149)

for every element α = a + b
√

2 + c
√

3 + d
√

6 ∈ Σ(f), a, b, c, d ∈ Q.
Calculate this Galois group using primitive element. Splitting field Σ(f) = Q(

√
2,
√

3).
We know already that primitive element of this extension is

√
2+
√

3: Q(
√

2,
√

3) = Q(
√

2+
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√
3). Minimum polynomial of primitive element θ =

√
2 +

√
3 (resolvent polynomial) is

equal to x = t4−10t+1 (if t =
√

2+
√

3), then t2 = 5+2
√

6, (t2−5)2−24 = t4−10t2 +1.
This polynomial is irreducible b ⇒ a [Q(θ) : Q] = 4). Roots of this polynomial are equal
to

θ = θ1 =
√

2 +
√

3, θ2 =
√

2−
√

3, θ3 = −
√

2 +
√

3, θ4 = −
√

2−
√

3, (150)

Galois automorphisms are ϕ1, ϕ2, ϕ3, ϕ4 where

ϕ1 : θ1 → θ1, ϕ1(
√

2 +
√

3) =
√

2 +
√

3, ϕ1 = id
ϕ2 : θ1 → θ2, ϕ2(

√
2 +

√
3) =

√
2−√3, ϕ2 = σ

ϕ3 : θ1 → θ3, ϕ3(
√

2 +
√

3) = −√2 +
√

3, ϕ1 = τ

ϕ4 : θ1 → θ4, ϕ4(
√

2 +
√

3) = −√2−√3, ϕ1 = τ ◦ σ

(151)

Example 2 Cubic polynomial x3 − 2
Consider polynomial f = x3 − 2 over Q. Its splitting field

Σ(x3 − 2) = Q(x1, x2, x3) , x1 = 3
√

2 , x2 = 3
√

2e
2πi
3 , x3 = 3

√
2e

−2πi
3 . (152)

In other words

x1 = 3
√

2 , x2,3 = 3
√

2e
±2πi

3 = 3
√

2

(
−1

2
± i

√
3

2

)
,

Σ(x3 − 2) = Q(x1, x2, x3) = Q( 3
√

2, i
√

3) .

Note that degree of extension Σ(x3−2) : Q is equal to 6. Indeed Σ(x3−2) = Q( 3
√

2, i
√

3).
One can see that polynomial x3 − 2 is irreducible over field Q(i

√
3) (as well as it is

irreducible over Q). Hence by Tower Law [Σ(x3−2) : Q] = [Σ(x3−2) : Q(i
√

3)] · [Q(i
√

3) :
Q] = 6. Another way to see it is to note that the filed Σ(x3 − 2) contains subfield Q( 3

√
2)

of the degree 3 ([Q( 3
√

2) : Q] = 3) and subfield Q(i
√

3) of the degree 2 ([Q(i
√

3) : Q] = 3)
of degree 2. On the other hand the degree of the field Σ(f) over Q( 3

√
2) is equal 2 or 1.

Hence [Σ(f) : Q] = 6. One can see that

θ = x2 − x3 = i
√

3 3
√

2 .

is a primitive element of the extension: Q(i
√

3 3
√

2) = Σ(x3−2). (See also (57),(58), (61)).
Element θ = i 3

√
2
√

3 is a root of polynomial x6 + 108. x6 + 108 is resolvent polynomial
for polynomial x3 − 2. (It is minimum polynomial because [Σ(x3 − 2) : Q] = 6). Roots
are expressed via θ which is a root of a polynomial x6 + 108. This polynomial is resolvent
polynomial for the polynomial x3 − 2. 22

The Resolvent polynomial x6 + 108 has 6 roots:

θk = θe
2π(k−1)

6 , where k = 1, 2, 3, 4, 5, 6

These roots are vertices of hexagon.

22in the case if f = x3−3x−1 then resolvent polynomial R = f , in the case if f = x5−1
then resolvent polynomial is equal to x4 + x3 + x2 + x + 1
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θ = θ1 = i
3
√

2
√

3 , (153)

θ2 = θe
2πi
6 = θe

πi
3 = i

3
√

2
√

3

(
1
2

+ i

√
3

2

)
, (154)

θ3 = θe
4πi
6 = θe

2πi
3 = i

3
√

2
√

3

(
−1

2
+ i

√
3

2

)
, (155)

θ4 = θe
6πi
6 = −θ = −i

3
√

2
√

3 , (156)

θ5 = θe
8πi
6 = θe

−2πi
3 = i

3
√

2
√

3

(
−1

2
− i

√
3

2

)
(157)

θ6 = θe
10πi

6 = θe
−πi
3 = i

3
√

2
√

3

(
1
2
− i

√
3

2

)
(158)

Note that roots of cubic polynomial x3 − 2 are expressed via primitive element in the
following way:

x1 = − 6
θ2

, x2 =
3
θ2

+
θ

2
, x3 =

3
θ2
− θ

2
See (58) Galois group of polynomial x3−2 contains exactly 6 automorphsims ϕ1, ϕ2, ϕ3, ϕ4, ϕ5, ϕ6

where ϕi(θ) = θi . It is just all permutations of roots of polynomial x3− 2: (ϕ1 is identical
transformations.)

Show e.g. that ϕ2 is transposition of two roots and ϕ3 is cyclic permutation:
Consider transformation ϕ2 : θ1 → θ2. Then according to the formula expressing roots

x1, x2, x3 we see that

x1 = − 6
θ2 → − 6

θ2
2

= −6

(θe
πi
3 )2

= 3
√

2e
−2πi

3 = x3,

x3 = 3
θ2 − θ

2 → 3

θ2e
2πi
3
− θe

πi
3

2 = x1

x2 = 3
θ2 + θ

2 → 3

θ2e
2πi
3

+ θe
πi
3

2 = x2

(159)

Hence transformation ϕ2 is transposition of roots x1, x3: x1 → x3, x3 → x1, the root
x2 remains fixed.

Consider transformation ϕ3 : θ1 → θ3. Then according the formula expressing roots
x1, x2, x3 we see that

x1 = − 6
θ2 → − 6

θ2
3

= −6

(θe
2πi
3 )2

= 3
√

2e
2πi
3 = x1e

2πi
3 = x2,

x2 = 3
θ2 + θ

2 → 3

θ2e
4πi
3

+ θe
2πi
3

2 = x2e
2πi
3 = x3

x3 = 3
θ2 − θ

2 → 3

θ2e
4πi
3
− θe

2πi
3

2 = x3e
2πi
3 = x1

(160)

We see that ϕ3 is cyclic permutation of roots. In the same way one can consider other
transformations.
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6.3 Appendix C. Circle functions ΦN(x)

Consider the problem of expanding polynomial xN−1 on irreducible factors. If N is prime
it is evident. In general case of course trivial factor is (x− 1). Note that even in the case
N = p1p2 it is not easy to calculate answer on pedestrians level.

For example if N = 15 = 3 · 5
(x15 − 1) = (x5 − 1)(x10 + x5 + 1) = (x− 1)(1 + x + x2 + x3 + x4)(x10 + x5 + 1)

We are sure that there is irreducible factor x2 + x + 1 How to extract it?
(x15−1) has roots {0̄, 1̄, 2̄, 3̄, 4̄, 5̄, 6̄, 7̄, 8̄, 9̄, 1̄0, 1̄1, 1̄2, 1̄3, 1̄4}, where we denote by k̄ = e

2πik
15

hence we see that polynomial (1 + x + x2 + x3 + x4) has roots {3̄, 6̄, 9̄, 1̄2} and polynomial
(x10 + x5 + 1) has ten roots {1̄, 2̄, 4̄, 5̄, 7̄, 8̄, 1̄0, 1̄1, 1̄3, 1̄4} On the other hand polynomial
x2 + x + 1 has roots {5̄, 1̄0}. Hence the expression

(x10 + x5 + 1)
x2 + x + 1

.

is a polynomial with eight roots {1̄, 2̄, 4̄7̄, 8̄, 1̄1, 1̄3, 1̄4} It is polynomial for number ε15.
One can see that this is minimum polynomial. Now note that its roots are {k̄} where k is
coprime with 15.

Denote by
Phi15(x) the polynomial with roots {1̄, 2̄, 4̄7̄, 8̄, 1̄1, 1̄3, 1̄4} (which correspond to numbers
coprime with 15). Denote in general by ϕN (x) the polynomial with roots {ā1, . . . , āk},
where ai are numbers coprime with N . (We denote by ā the root e

2pia
N ).

One can see that
Φ15(x)Φ3(x)Φ5(x)Φ1(x) = (x15 − 1) (161)

where 1, 3, 5, 15 are divisors of 15.
Indeed Φ15(x) has roots

{1̄, 2̄, 4̄, 7̄, 8̄, 1̄1, 1̄3, 1̄4},
(numbers {1, 2, 4, 7, 8, 11, 13, 14} are coprime with 15)

Φ5(x) has roots
{3̄, 6̄, 9̄, 1̄2},

(numbers {1, 2, 3, 4, 4} are coprime with 5, 3 = 1 · 3, 6 = 2 · 3, 9 = 3 · 3, 12 = 4 · 3),
Φ3(x) has roots

{5̄, 1̄0},
(numbers {1, 2} are coprime with 3) and Φ1(x) has roots

{0̄},
Thus we come to all roots

{0̄, 1̄, 2̄, 3̄, 4̄, 5̄, 6̄, 7̄, 8̄, 9̄, 1̄0, 1̄1, 1̄2, 1̄3, 1̄4},
of polynomial x15 − 1. It is evident that this is right for every N :

∏

d=divisors of N

Φd(x) = xN − 1 (162)
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For example:

Φ1(x)Φ2(x)Φ3(x)Φ5(x)Φ6(x)Φ10(x)Φ15(x)Φ30(x) = x30 − 1

We see that the last formula gives us the proof that polynomial ΦN (x) has rational coef-
ficients, because it can be obtained step by step from formula (162).

Moreover one can prove that polynomials ϕN are irreducible.
Theorem Minimum polynomial of εN = e

2πi
N has degree ϕ(N) (amount of numbers

coprime with N ). It is given by formula (162).
For example calculate some ΦN (x):

Φ1(x) = x− 1Φ2(x) = x + 1, Φ3(x) = x2 + x + 1

Φ4(x) =
x4 − 1

Φ1(x)Φ2(x)
=

x4 − 1
(x− 1)(x + 1)

= x2 + 1

For every N = p2

ΦN (x) =
xp2 − 1
xp − 1

Φ5(x) =
x5 − 1
Φ1(x)

= x4 + x3 + x2 + x + 1 ,

(5 is prime it is easy)

Φ6(x) =
x6 − 1

Φ1(x)Φ2(x)Φ3(x)
= x2 − x + 1

Φ10(x) =
x10 − 1

Φ1(x)Φ2(x)Φ5(x)
= x4 − x3 + x2 − x + 1

For every N = 2p

ΦN =
xp + 1
x + 1

.

Now calculate for N = 3 · 5

Φ15(x) =
x15 − 1

Φ1(x)Φ3(x)Φ5(x)
=

(
x15 − 1

)
Φ1(x)

(Φ1(x)Φ5(x)) (Φ1(x)Φ5(x))
=

(
x15 − 1

)
(x− 1)

(x5 − 1) (x3 − 1)
=

x10 + x5 + 1
x2 + x + 1

= x8 − x7 + x5 − x4 + x3 − x + 1

It is nice identity...
In general if N = p1p2 (p1 6= p2) then

Φp1p2(x) =
(xp1p2 − 1) (x− 1)
(xp1 − 1) (xp2 − 1)

.

Now calculate Φ30(x).
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Φ30(x) =
x30 − 1

Φ1(x)Φ2(x)Φ3(x)Φ5(x)Φ6(x)Φ10(x)Φ15(x)
(163)

Note that according to indetity

Φ1(x)Φ2(x)Φ3(x)Φ5(x)Φ6(x)Φ10(x)Φ15(x) =

(Φ1(x)Φ2(x)Φ3(x)Φ6(x))Φ5(x)Φ10(x)Φ15(x) =

=
(
x6 − 1

)
Φ5(x)Φ10(x)Φ15(x) =

(
x6 − 1

)
[Φ1(x)Φ2(x)Φ5(x)Φ10(x)] [Φ1(x)Φ3(x)Φ5(x)Φ15(x)] Φ1

[Φ1(x)Φ2(x)] [Φ1(x)Φ3(x)] [Φ1(x)Φ5(x)]
=

(
x6 − 1

) (
x10 − 1

) (
x15 − 1

)
(x− 1)

(x2 − 1) (x3 − 1) (x5 − 1)
.

Hence we come to identity

Φ30(x) =

(
x30 − 1

) (
x2 − 1

) (
x3 − 1

) (
x5 − 1

)

(x6 − 1) (x10 − 1) (x15 − 1) (x− 1)
= (164)

(
x30 − 1

)

(x15 − 1)
·

(
x5 − 1

)

(x10 − 1)
·
(
x3 − 1

)

(x6 − 1)
·
(
x2 − 1

)

(x−1)
= (165)

(x15 + 1)(x + 1)
(x5 + 1)(x3 + 1)

= (166)

x10 − x5 + 1
x2 − x + 1

= (167)

= x8 + x7 − x5 − x4 − x3 + x + 1 = Φ15(−x) (168)

Yes do not be surprised! If N is odd then I think it is right that

Φ2N (x) = ΦN (x)

because x2N−1 = Φ2N (x)ΦN (x) · · · = Φ2N (x) (Try to prove by induction). nevertheless:
If N = p1p2p3 and all these primes are distinct then:

ΦN (x) =
(xp1p2p3 − 1) (xp1 − 1) (xp2 − 1) (xp3 − 1)
(xp1p2 − 1) (x1p1p3 − 1) (xp2p3 − 1) (x− 1)

.

One can prove the following improtant properties of circle functions

Proposition
The circlle function ΦN (x) obey the following conditions:

Φ4p+2(x) = Φ2p+1(−x) Φ8p+4(x) = Φ2p+1(−x2) (169)

It is not worthless to consider these functions for N = 1, 2, 3, 4, . . . , ...:

Φ1(x) = x− 1 , Φ2(x) = x + 1 , Φ3(x) = x2 + x + 1 , Φ4(x) = x2 + 1 , (170)
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Φ5(x) = x4 + x3 + x2 + x + 1 , Φ6(x) = x2 − x + 1 , (171)

Φ7(x) = x6 + x5 + x4 + x3 + x2 + x + 1 ,Φ8(x) = x4 + 1 , Φ9(x) = x6 + x3 + 1 , , (172)

Φ10(x) = x4−x3 +x2−x+1 ,Φ11(x) = x10 +x9 +x8 +x7 +x6 +x5 +x4 +x3 +x2 +x+1 , ,
(173)

Φ12(x) = x4 − x2 + 1 , (174)

Φ13(x) = x12 + x11 + x10 + x9 + x8 + x7 + x6 + x5 + x4 + x3 + x2 + x + 1 , , (175)

Φ14(x) = x6−x5 +x4−x3 +x2−x+1 ,Φ15(x) = x8−x7 +x5−x4 +x3−x+1 , , (176)

Write using circle functions expansions:

x30 − 1 = Φ30(x)Φ15(x)Φ10(x)Φ6(x)Φ5(x)Φ3(x)Φ2(x)Φ1(x) =

(x8 + x7 − x5 − x4 − x3 + x + 1)(x8 − x7 + x5 − x4 + x3 − x + 1)×
(x4 − x3 + x2 − x + 1)(x2 − x + 1)(x4 + x3 + x2 + x + 1)(x2 + x + 1)(x + 1)(x− 1) ,

x20 − 1 = Φ20(x)Φ10(x)Φ5(x)Φ4(x)Φ2(x)Φ1(x) =

(x8 − x6 + x4 − x2 + 1)(x4 − x3 + x2 − x + 1)(x4 + x3 + x2 + x + 1)(x2 + 1)(x + 1)(x− 1) ,

x12 − 1 = Φ12(x)Φ6(x)Φ4(x)Φ3(x)Φ2(x)Φ1(x) =

(x4 − x2 + 1)(x2 − x + 1)(x2 + 1)(x2 + x + 1)(x + 1)(x− 1)

x36 − 1 = Φ18(x)Φ12(x)Φ9(x)Φ6(x)Φ3(x)Φ2(x)Φ1(x) =

.......(x4 − x2 + 1)(x6 + x3 + 1)(x2 − x + 1)(x2 + 1)(x2 + x + 1)(x + 1)(x− 1)

x8 − 1 = Φ8(x)Φ4(x)Φ2(x)Φ1(x) =

(x4 + 1)(x2 + 1)(x + 1)(x− 1)

6.4 Appendix D. Every group of order 2k+1 possesses
subgroup of the order 2k

In this Appendix we will prove the lemma
Lemma. If group G contains 2n elements then it contains the series {Gn, Gn−1, . . . , G2, G1}

of subgroups such that

{e} = Gn < Gn−1 < · · · < G2 < G1 < G0 = G , (177)

where all subgroups Gk+1 have an index 2 in Gk, i.e. order of an every subgroup Gk is
equal to 2n−k.

Proof of the lemma
Prove it by induction.
For n = 1 G1 = {e} < G. Suppose lemma is proved for n ≤ k. Consider G such that

|G| = 2k+1.
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Prove first non-triviality of the centre of the group G, i.e. the existence of element
b 6= 1 such that bg = gb for every g ∈ G. Consider for every g the stability subgroup Hg

and the class Og of conjugated elements:

Hg = {h :, hgh−1 = g} Og = {h−1gh , h ∈ G} . ,Og = G/Hg .

Let {g1, g2, . . . .gr} are all representatives of different classes. Then
∑

r

|Ogr
| = 2k+1 .

all |Ogr | are powers of 2 because the number of elements in Ogr is divisor of |G|. The class
Oe contains one element. The sum above is even number. Hence there exists b 6= e such
that class Ob contains odd number of elements. But all classes Og contain powers of 2
number elements because the number of elements in Ogr is divisor of |G|. Hence the odd
number |Ob| is equal to 1, i.e. b commutes with all elements of G.

Now consider cyclic group generated by b. {1, b, b2, . . . , br}. It contains 2s elements,
as subgroup of G. Hence it has an element a = b

r+1
2 . a2 = e and a commutes with all

group. Hence H = {e, a} is a normal subgroup which contains two elements.
Consider factor-group

G̃ = G/H

The group G̃ contains 2k elements. Hence by inductive hypothesis it contains the series
{ G̃n, G̃n−1, . . . , G̃2, G̃1} of subgroups such that

{e} = G̃n < G̃n−1 < · · · < G̃2 < G̃1 < G̃0 = G̃ , (178)

where all subgroups G̃k+1 have an index 2 in G̃k, i.e. order of an every subgroup G̃k is
equal to 2n−k.

Now one can easy reconstruct subgroups Gr in G via groups G̃r and subgroup H. If
{[ai]} are elements of group Gr then elements {ai, aib} consist group Gr obeying (178).
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