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1 Euclidean space

We recall important notions from linear algebra.

1.1 Vector space.

Vector space V on real numbers is a set of vectors with operations ” +
”—addition of vector and ” · ”—multiplication of vector Lon real number
(sometimes called coefficients, scalars). These operations obey the following
axioms

• ∀a,b ∈ V, a + b ∈ V ,

• ∀λ ∈ R,∀a ∈ V, λa ∈ V .

• ∀a,ba + b = b + a (commutativity)

• ∀a,b, c, a + (b + c) = (a + b) + c (associativity)

• ∃ 0 such that ∀a, a + 0 = a

• ∀a there exists a vector −a such that a + (−a) = 0.

• ∀λ ∈ R, λ(a + b) = λa + λb

• ∀λ, µ ∈ R(λ+ µ)a = λa + µa

• (λµ)a = λ(µa)

• 1a = a

It follows from these axioms that in particularly 0 is unique and −a is
uniquely defined by a. (Prove it.)

Remark We denote by 0 real number 0 and vector 0. Sometimes we
have to be careful to distinguish between zero vector 0 and number zero.

Examples of vector spaces. . . Consider now just one non-trivial example:
a space of polynomials of order ≤ 2:

V = {ax2 + bx+ c, a, b, c ∈ R} .

It is easy to see that polynomials are ‘vectors’ with respect to operation of
addition and multiplication on numbers.
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Consider conterexample: a space of polynomials of order 2 such that
leading coefficient is equal to 1:

V = {x2 + bx+ c, a, b, c ∈ R} .

This is not vcto space: why? since the for any two polynomials f, g from thsi
space the polynomials f − g, f + g does not belong to this space.

1.2 Basic example of (n-dimensional) vector space—
Rn

A basic example of vector space (over real numbers) is a space of ordered
n-tuples of real numbers.
R2 is a space of pairs of real numbers. R2 = {(x, y), x, y ∈ R}
R3 is a space of triples of real numbers. R3 = {(x, y, z), x, y, z ∈ R}
R4 is a space of quadruples of real numbers. R4 = {(x, y, z, t), x, y, z, t,∈ R}

and so on...
Rn—is a space of n-typles of real numbers:

Rn = {(x1, x2, . . . , xn), x1, . . . , , xn ∈ R} (1.1)

If x,y ∈ Rn are two vectors, x = (x1, . . . , xn), y = (y1, . . . , yn) then

x + y = (x1 + y1, . . . , xn + yn) .

and multiplication on scalars is defined as

λx = λ · (x1, . . . , xn) = (λx1, . . . , λxn) , (λ ∈ R) .

(λ ∈ R).

Remark Why Rn is n-dimensional vector space? We see it later in the
subsection 1.5

1.3 Affine spaces and vector spaces

Let V be a vector space. A set A whose elements will be called ‘points’ is an
affine space associated with a vector space V if the following rule is defined:
to every point P ∈ A and an arbitrary vector x ∈ V a point Q is assigned:
(P,x) 7→ Q. We denote Q = P + x.

The following properties must be satisfied:
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• For arbitrary two vectors x,y ∈ V and arbitrary point P ∈ A,
P + (x + y) = (P + x) + y.

• For an arbitrary point P ∈ A, P + 0 = P .

For arbitrary two points P,Q ∈ A there exists unique vector y ∈ V
such that P + y = Q.

If P + x = Q we often denote the vector x = Q− P = ~PQ. We say that
vector x = ~PQ starts at the point P and it ends at the point Q.

One can see that if vector x = ~PQ, then ~QP = −x; if P,Q,R are three
arbitrary points then ~PQ+ ~QR = ~PR.

Examples of affine space.
Every vector space can be considered as an affine space in the following

way. We define affine space A as a same set as vector space V , but we
consider vectors of V as points of this affine space. If A = a is an arbitrary
point of the affine space, and b is an arbitrary vector of vector space V , then
A + b is equal to the vector a + b. We assign to two ‘points’ A = a, B = b
the vector x = b− a.

On the other hand if A is an affine space with associated vector space V ,
then choose an arbitrary point O ∈ A and consider the vectors starting at
the at the origin. We come to the vector space V .

One can say that vector space is an affine space with fixed origin.
For example vector space R2 of pairs of real numbers can be considered

as a set of points. If we choose arbitrary two points A = (a1, a2), B = (b1, b2),

then the vector ~AB = B − A = (b1 − a1, b2 − a2).

1.4 Linear dependence of vectors

We often consider linear combinations in vector space:∑
i

λixi = λ1x1 + λ2x2 + · · ·+ λmxm , (1.2)

where λ1, λ2, . . . , λm are coefficients (real numbers), x1,x2, . . . ,xm are vectors
from vector space V . We say that linear combination (1.2) is trivial if all
coefficients λ1, λ2, . . . , λm are equal to zero.

λ1 = λ2 = · · · = λm = 0 .
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We say that linear combination (1.2) is not trivial if at least one of coefficients
λ1, λ2, . . . , λm is not equal to zero:

λ1 6= 0, orλ2 6= 0, or . . . orλm 6= 0 .

Recall definition of linearly dependent and linearly independent vectors:
Definition The vectors {x1,x2, . . . ,xm} in vector space V are linearly

dependent if there exists a non-trivial linear combination of these vectors
such that it is equal to zero.

In other words we say that the vectors {x1,x2, . . . ,xm} in vector space V
are linearly dependent if there exist coefficients µ1, µ2, . . . , µm such that at
least one of these coefficients is not equal to zero and

µ1x1 + µ2x2 + · · ·+ µmxm = 0 . (1.3)

Respectively vectors {x1,x2, . . . ,xm} are linearly independent if they are
not linearly dependent. This means that an arbitrary linear combination of
these vectors which is equal zero is trivial.

In other words vectors {x1,x2,xm} are linearly independent if the condi-
tion

µ1x1 + µ2x2 + · · ·+ µmxm = 0

implies that µ1 = µ2 = · · · = µm = 0.
Very useful and workable
Proposition Vectors {x1,x2, . . . ,xm} in vector space V are linearly

dependent if and only if at least one of these vectors is expressed via linear
combination of other vectors:

xi =
∑
j 6=i

λjxj .

Proof. If the condition (1.4) is obeyed then xi −
∑
j 6=i λjxj = 0. This non-trivial linear

combination is equal to zero. Hence vectors {x1, . . . ,xm} are linearly dependent.
Now suppose that vectors {x1, . . . ,xm} are linearly dependent. This means that there

exist coefficients µ1, µ2, . . . , µm such that at least one of these coefficients is not equal to
zero and the sum (1.3) equals to zero. WLOG suppose that µ1 6= 0. We see that to

x1 = −µ2

µ1
x2 −

µ3

µ1
x3 − · · · −

µm
µ1

xm ,

i.e. vector x1 is expressed as linear combination of vectors {x2,x3, . . . ,xm} .
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1.5 Dimension of vector space. Basis in vector space.

Definition Vector space V has a dimension n if there exist n linearly inde-
pendent vectors in this vector space, and any n+ 1 vectors in V are linearly
dependent.

In the case if in the vector space V for an arbitrary N there exist N linearly indepen-
dent vectors then the space V is infinite-dimensional. An example of infinite-dimensional
vector space is a space V of all polynomials of an arbitrary order. One can see that for an
arbitrary N polynomials

{1, x, x2, x3, . . . , xN}

are linearly idependent. (Try to prove it!). This implies V is infinite-dimensional vector
space.

Basis
Definition Let V be n-dimensional vector space. The ordered set {e1, e2, . . . , en}

of n linearly independent vectors in V is called a basis of the vector space V .

Remark We say ‘a basis’, not ‘the basis’ since there are many bases in
the vector space (see also Homeworks 1.2).

Remark Focus your attention: basis is an ordered set of vectors, not just
a set of vectors1.

Proposition Let {e1, . . . , en} be an arbitrary basis in n-dimensional vec-
tor space V . Then any vector x ∈ V can be expressed as a linear combination
of vectors {e1, . . . , en} in a unique way, i.e. for every vector x ∈ V there
exists an ordered set of coefficients {x1, . . . , an} such that

x = x1e1 + · · ·+ xnen (1.4)

and if

x = a1e1 + · · ·+ anen = b1e1 + · · ·+ bnen , (1.5)

then a1 = b1, a2 = b2, . . . , an = bn. In other words for any vector x ∈ V there
exists an ordered n-tuple (x1, . . . , xn) of coefficients such that x =

∑n
i=1 x

iei
and this n-tuple is unique.

Proof Let x be an arbitrary vector in vector space V . The dimension of
vector space V equals to n. Hence n + 1 vectors (e1, . . . , en,x) are linearly

1See later on orientation of vector spaces, where the ordering of vectors of basis will be
highly important.
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dependent: λ1e1 + · · ·+λnen+λn+1x = 0 and this combination is non-trivial.
If λn+1 = 0 then λ1e1 + · · ·+λnen = 0 and this combination is non-trivial, i.e.
vectors (e1, . . . , en are linearly dependent. Contradiction. Hence λn+1 6= 0,
i.e. vector x can be expressed via vectors (e1, . . . , en): x = x1e1 + . . . xnen
where xi = − λi

λn+1
. We proved that any vector can be expressed via vectors

of basis. Prove now the uniqueness of this expansion. Namely, if (1.5) holds
then (a1−b1)e1+(a2−b2)e2+· · ·+(an−bn)en = 0. Due to linear independence
of basis vectors this means that (a1 − b1) = (a2 − b2) = · · · = (an − bn) = 0,
i.e. a1 = b1, a2 = b2, . . . , an = bn

In other words:
Basis is a set of linearly independent vectors in vector space V

which span (generate) vector space V .
(Recall that we say that vector space V is spanned by vectors {x1, . . . ,xn}

(or vectors vectors {x1, . . . ,xn} span vector space V ) if any vector a ∈ V
can be expresses as a linear combination of vectors {x1, . . . ,xn}.

Definition Coefficients {a1, . . . , an} are called components of the vector
x in the basis {e1, . . . , en} or just shortly components of the vector x.

Remark Basis is a maximal set of linearly independent vectors in a linear
space V .

This leads to definition of a basis in infinite-dimensional space. We have to note that
in infinite-dimensional space more useful becomes the conception of topological basis when
infinite sums are considered.

Canonical basis in Rn

We considered above the basic example of n-dimensional vector space—a
space of ordered n-tuples of real numbers: Rn = {(x1, x2, . . . , xn), xi ∈ R}
(see the subsection 1.2). What is the meaning of letter ‘n’ in the definition
of Rn?

Consider vectors e1, e2, . . . , en ∈ Rn:

e1 = (1, 0, 0 . . . , 0, 0)
e2 = (0, 1, 0 . . . , 0, 0)
. . . . . .

en = (0, 0, 0 . . . , 0, 1)

(1.6)

Then for an arbitrary vector Rn 3 a = (a1, a2, a3, . . . , an)

a = (a1, a2, a3, . . . , an) =
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a1(1, 0, 0 . . . , 0, 0)+a2(0, 1, 0 . . . , 0, 0)+a3(0, 0, 1, 0 . . . , 0, 0)+· · ·+an(0, 1, 0 . . . , 0, 1) =

=
m∑
i=1

aiei = aiei (we will use sometimes condensed notations x = xiei)

Thus we see that for every vector a ∈ Rn we have unique expansion via the
vectors (1.6).

The basis (1.6) is the distinguished basis. Sometimes it is called canonical
basis in Rn. One can find another basis in Rn–just take an arbitrary ordered
set of n linearly independent vectors. (See exercises 7 and 8 in Homework
1).

1.6 Scalar product. Euclidean space

In vector space one have additional structure: scalar product of vectors.
Definition Scalar product in a vector space V is a function B(x,y)

on a pair of vectors which takes real values and satisfies the the following
conditions:

B(x,y) = B(y,x) (symmetricity condition)
B(λx + µx′,y) = λB(x,y) + µB(x′,y) (linearity condition)

B(x,x) ≥ 0 , B(x,x) = 0⇔ x = 0 (positive-definiteness condition)
(1.7)

Definition Euclidean space is a vector space equipped with a scalar product.

One can easy to see that the function B(x,y) is bilinear function, i.e. it
is linear function with respect to the second argument also2. This follows
from previous axioms:

B(x, λy+µy′) =︸︷︷︸
symm.

B(λy+µy′,x) =︸︷︷︸
linear.

λB(y,x)+µB(y′,x) =︸︷︷︸
symm.

λB(x,y)+µB(x,y′) .

A bilinear function B(x,y) on pair of vectors is called sometimes bilinear form on
vector space. Bilinear form B(x,y) which satisfies the symmetricity condition is called
symmetric bilinear form. Scalar product is nothing but symmetric bilinear form on vectors
which is positive-definite: B(x,x) ≥ 0) and is non-degenerate ((x,x) = 0⇒ x = 0.

2Here and later we will denote scalar product B(x,y) just by (x,y). Scalar product
sometimes is called inner product. Sometimes it is called dot product.
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Example We considered the vector space Rn, the space of n-tuples (see
the subsection 1.2). One can consider the vector space Rn as Euclidean space
provided by the scalar product

B(x,y) = x1y1 + · · ·+ xnyn (1.8)

This scalar product sometimes is called canonical scalar product.
Exercise Check that it is indeed scalar product.

Example We consider in 2-dimensional vector space V with basis {e1, e2}
and B(X,Y) such that B(e1, e1) = 3, B(e2, e2) = 5 and B(e1, e2) = 0. Then
for every two vectors X = x1e1 + x2e2 and Y = y1e1 + y2e2 we have that

B(X,Y) = (X,Y) =
(
x1e1 + x2e2, y

1e1 + y2e2

)
=

x1y1(e1, e1) + x1y2(e1, e2) + x2y1(e2, e1) + x2y2(e2, e2) = 3x1y1 + 5x2y2 .

One can see that all axioms are obeyed.
Notations!

Scalar product sometimes is called ”inner” product or ”dot” product.
Later on we will use for scalar product B(x,y) just shorter notation (x,y)
(or 〈x,y〉). Sometimes it is used for scalar product a notation x · y. Usually
this notation is reserved only for the canonical case (1.8).

Counterexample Consider again 2-dimensional vector space V with ba-
sis {e1, e2}.

Show that operation such that (e1, e1) = (e2, e2) = 0 and (e1, e2) = 1 does
not define scalar product. Solution. For every two vectors X = x1e1 + x2e2

and Y = y1e1 + y2e2 we have that

(X,Y) =
(
x1e1 + x2e2, y

1e1 + y2e2

)
= x1y2 + x2y1

hence for vector X = (1,−1) (X,X) = −2 < 0. Positive-definiteness is not
fulfilled.

Another Counterexample Show that operation (X,Y) = x1y1 − x2y2

does not define scalar product. Solution. Take X = (0,−1). Then (X,X) =
−1. The condition of positive-definiteness is not fulfilled. (See also exercises
in Homework 2.)
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1.7 Orthonormal basis in Euclidean space

One can see that for scalar product (1.8) and for the basis {e1, . . . , en} defined
by the relation (1.6) the following relations hold:

(ei, ej) = δij =

{
1 if i = j

0 if i 6= j
(1.9)

Let {e1, e2, . . . , en} be an ordered set of n vectors in n-dimensional Eu-
clidean space which obeys the conditions (1.9). One can see that this ordered
set is a basis 3.

Definition-Proposition The ordered set of vectors {e1, e2, . . . , en} in
n-dimensional Euclidean space which obey the conditions (1.9) is a basis.
This basis is called an orthonormal basis.

One can prove that every (finite-dimensional) Euclidean space possesses
orthonormal basis.

Later by default we consider only orthonormal bases in Euclidean spaces.
Respectively scalar product will be defined by the formula (1.8). Indeed let
{e1, e2, . . . , en} be an orthonormal basis in Euclidean space. Then for an
arbitrary two vectors x,y, such that x =

∑
xiei, y =

∑
yjej we have:

(x,y) =
(∑

xiei,
∑

yjej

)
=

n∑
i,j=1

xiyj(ei, ej) =
n∑

i,j=1

xiyjδij =
n∑
i=1

xiyi

We come to the canonical scalar product (1.8). Later on we usually will
consider scalar product defined by the formula (1.8) i.e. scalar product in
orthonormal basis.

Remark We consider here general definition of scalar product then came
to conclusion that in a special basis, (orthonormal basis), this is nothing but
usual ‘dot’ product (1.8).

Geometrical properties of scalar product: length of the vectors, angle between vectors
The scalar product of vector on itself defines the length of the vector:

Length of the vector x = |x| =
√

(x,x) =
√

(x1)2 + · · ·+ (xn)2 (1.10)

3Indeed prove that conditions (1.9) imply that these n vectors are linear independent.
Suppose that λ1e1 + λ2e2 + · · ·+ λnen = 0. For an arbitrary i multiply the left and right
hand sides of this relation on a vector ei. We come to condition λi = 0. Hence vectors
(e1, e2, . . . , en) are linearly dependent.
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If we consider Euclidean space En as the set of points (affine space) then
the distance between two points x,y is the length of corresponding vector:

distance between points x,y = |x− y| =
√

(y1 − x1)2 + · · ·+ (yn − xn)2

We recall very important formula how scalar (inner) product is related
with the angle between vectors:

(x,y) = x1y1 + x2y2 = |x||y| cosϕ

where ϕ is an angle between vectors x and y in E2.
This formula is valid also in the three-dimensional case and any n-dimensional

case for n ≥ 1. It gives as a tool to calculate angle between two vectors:

(x,y) = x1y1 + x2y2 + · · ·+ xnyn = |x||y| cosϕ (1.11)

In particulary it follows from this formula that

angle between vectors x,y is acute if scalar product (x,y) is positive
angle between vectors x,y is obtuse if scalar product (x,y) is negative
vectors x,y are perpendicular if scalar product (x,y) is equal to zero

(1.12)
Remark Geometrical intuition tells us that cosinus of the angle between two vectors

has to be less or equal to one and it is equal to one if and only if vectors x,y are collinear.
Comparing with (1.11) we come to the inequality:

(x,y)2 =
(
x1y1 + · · ·+ xnyn

)2 ≤ ((x1)2 + · · ·+ (xn)2
) (

(y1)2 + (· · ·+ (yn)2
)

= (x,x)(y,y)
and(x,y)2 = (x,x)(y,y) if vectors are colienar, i.e. xi = λyi

(1.13)
This is famous Cauchy–Buniakovsky–Schwarz inequality, one of most important inequali-
ties in mathematics. (See for more details Homework 2)

1.8 Transition matrices. Orthogonal bases and orthog-
onal matrices

One can consider different bases in vector space.
Let A be n× n matrix with real entries, A = ||aij||, i, j = 1, 2, . . . , n:

A =


a11 a12 . . . a1n

a21 a22 . . . a2n

a31 a32 . . . a3n

. . . . . . . . . . . .
a(n−1) 1 a(n−1)2 . . . a(n−1)n

an 1 an2 . . . ann
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Let {e1, e2, . . . , en} be an arbitrary basis in n-dimensional vector space V .
The basis {e1, e2, . . . , en} can be considered as row of vectors, or 1 × n

matrix with entries–vectors.
Multiplying 1 × n matrix {e1, e2, . . . , en} on matrix A we come to new

row of vectors {e′1, e′2, . . . , e′n} such that

{e′1, e′2, . . . , e′n} = {e1, e2, . . . , en}A = (1.14)

{e′1, e′2, . . . , e′n} = {e1, e2, . . . , en}


a11 a12 . . . a1n

a21 a22 . . . a2n

a31 a32 . . . a3n

. . . . . . . . . . . .
a(n−1) 1 a(n−1)2 . . . a(n−1)n

an 1 an2 . . . ann

 (1.15)

, 

e′1 = a11e1 + a21e2 + a31e3 + · · ·+ a(n−1) 1en−1 + an 1en

e′1 = a12e1 + a22e2 + a32e3 + · · ·+ a(n−1) 2en−1 + an 2en

e′1 = a13e1 + a23e2 + a33e3 + · · ·+ a(n−1) 3en−1 + an 1en

· · · = . . . · · ·+ . . . · · ·+ . . . · · ·+ · · ·+ . . . . . . . . . . . .

e′n = a1ne1 + a2ne2 + a3ne3 + · · ·+ a(n−1)nen−1 + annen

or shortly:

e′i =
n∑
k=1

ekaki . (1.16)

Definition Matrix A which transforms a basis {e1, e2, . . . , en} to the row
of vectors {e′1, e′2, . . . , e′n} (see equation (1.16)) is transition matrix from the
basis {e1, e2, . . . , en} to the row {e′1, e′2, . . . , e′n}.

What is the condition that the row {e′1, e′2, . . . , e′n} is a basis too? The
row, ordered set of vectors, {e′1, e′2, . . . , e′n} is a basis if and only if vectors
(e′1, e

′
2, . . . , e

′
n) are linearly independent. Thus we come to

Proposition 1 Let {e1, e2, . . . , en} be a basis in n-dimensional vector
space V , and let A be an n× n matrix with real entries. Then

{e′1, e′2, . . . , e′n} = {e1, e2, . . . , en}A (1.17)

is a basis if and only if the transition matrix A has rank n, i.e. it is non-
degenerate (invertible) matrix.

Recall that n× matrix A is nondegenerate (invertible) ⇔ detA 6= 0.

11



Remark Recall that the condition that n×n matrix A is non-degenerate
(has rank n) is equivalent to the condition that it is invertible matrix, or to
the condition that detA 6= 0.

Now suppose that {e1, e2, . . . , en} is orthonoromal basis in n-dimensional
Euclidean vector space. What is the condition that the new basis {e′1, e′2, . . . , e′n} =
{e1, e2, . . . , en}A is an orthonormal basis too?

Definition We say that n× n matrix is orthogonal matrix if its product
on transposed matrix is equal to unity matrix:

A
T

A = I . (1.18)

Exercise. Prove that determinant of orthogonal matrix is equal to ±1:

A
T

A = I ⇒ detA = ±1 . (1.19)

Solution ATA = I. Hence det(ATA) = detAT detA = (detA)2 = det I =
1. Hence detA = ±1. We see that in particular orthogonal matrix is non-
degenerate (detA 6= 0). Hence it is a transition matrix from one basis to
another. The following Proposition is valid:

Proposition 2 Let {e1, e2, . . . , en} be an orthonormal basis in n-dimensional
Euclidean vector space. Then the new basis {e′1, e′2, . . . , e′n} = {e1, e2, . . . , en}A
is orthonormal basis if and only if the transition matrix A is orthogonal ma-
trix.

Proof The basis {e′1, e′2, . . . , e′n} is orthonormal means that (e′i, e
′
j) = δij.

We have:

δij = (e′i, e
′
j) =

(
n∑

m=1

emAmi, e
′
j =

n∑
n=1

enAnj

)
=

n∑
m,n=1

AmiAnj(em, en) =

n∑
m,n=1

AmiAnjδmn =
n∑

m=1

AmiAmj =
n∑

m=1

ATimAmj = (ATA)ij , (1.20)

Hence (ATA)ij = δij, i.e. ATA = I.

We know that determinant of orthogonal matrix equals to ±1. It is very useful to
consider the following groups:

• The group O(n)—group of orthogonal n× n matrices:

O(n) = {A : ATA = I} . (1.21)

• The group SO(n) special orthogonal group of n× n matrices:

SO(n) = {A : ATA = I, detA = 1} . (1.22)

12



1.9 Linear operators.

1.9.1 Matrix of linear operator in a given basis

Recall here facts about linear operators in vector space
Let P be a linear operator in vector space V :

P : V → V, P (λx + µy) = λP (x) + µP (y).

Let {e1, . . . , en} be an arbitrary basis in n-dimensional vector space V . Con-
sider the action of operator P on basis vectors: e′i = P (ei):

e′1 = P (e1) = e1p11 + e2p21 + e3p31 + · · ·+ enpn1

e′2 = P (e2) = e1p12 + e2p22 + e3p32 + · · ·+ enpn2

e′3 = P (e3) = e1p13 + e2p23 + e3p31 + · · ·+ enpn3

. . .
e′n = P (en) = e1p1n + e2p2n + e3p3n + · · ·+ enpnn

(1.23)

Definition Let {ei} be a basis. Then the transition matrix ||pik|| defined by
relation (1.23) is called matrix of operator P in the basis {ei}.

e′i = P (ei) =
∑

ekpki .

In the case if linear operator P is non-degenerate (invertible) then vectors
e′1, e

′
2, e
′
3, . . . , e

′
n, form a basis. The matrix P = ||pik|| is the transition matrix

from the basis {ei} to the basis {e′i = P (ei)}.
How matrix of linear operatot changes if we change the basis? Consider

a new basis {f1, . . . , fn} in the linear space V . Let A be transition matrix
from the basis {e1, . . . , en} to the new basis {f1, . . . , fn}:

{f1, . . . , fn} = {e1, . . . , en}A, i.e.fi =
∑
k

ekaki

(see equation (1.16)). Then the action of operator P in the new basis is given
by the formula f ′i = P (fi). According to the formulae (1.9.1) and (1.23) we
have

f ′i = P (fi) = P

(∑
q

eqaqi

)
=
∑
q

aqi

(∑
r

erprq

)
=
∑
q,r

erprqaqi =
∑
r

er(PA)ri =

13



∑
r,k

fk(A
−1)kr(PA)ri =

∑
k

fk(A
−1PA)ki .

We see that in the new basis {fi} a matrix of linear operator is A−1PA:

If {e′1, . . . , e′n} = {e1, . . . , en}P, then {f ′1, . . . , f ′n} = {f1, . . . , fn}A−1PA, ,
(1.24)

whereA is transition matrix from the basis {e1, . . . , en} to the basis {f1, . . . , fn},
Consider the following example.

Example Let P be a linear operator in 2-dimensional vector space V
such that in a basis e1, e2 it is given by the following relation:

P (e) = 2e , P (e2) = e2 .

Then the matrix of operator P in this basis is obviously(
2 0
0 1

)
(1.25)

Now consider another basis, {f1, f2} in the space V :{
f1 = 7e1 + 5e2

f2 = 4e1 + 3e2

, respectively

{
e1 = 3f1 − 5f2

e2 = −4f1 + 7f2
. (1.26)

Calculate matrix of the operator P on this new basis:

P (f1) = P (7e1+5e2) = 14e1+5e2 = 14(3f1−5f2)+5(−4f1+7f2) = 22f1−35f2 ,

P (f2) = P (4e1 +3e2) = 8e1 +3e2 = 8(3f1−5f2)+3(−4f1 +7f2) = 12f1−19f2 .

Hence the matrix of operator P in the basis {f1, f2} is matrix(
22 12
−35 −19

)
. (1.27)

Matrices (1.25) and (1.27) are different matrices which are represented the
same linear operator P in different bases. According to equation (1.26)(

22 12
−35 −19

)
=

(
7 4
5 3

)−1(
2 0
0 1

)(
7 4
5 3

)
=

(
3 −4
−5 7

)(
2 0
0 1

)(
7 4
5 3

)
,

(1.28)

14



1.9.2 Determinant and Trace of linear operator

We recall the definition of determinant and explain what is the trace of linear
operator,

Definition-Proposition Let P be a linear operator in vector space V
and let Pik = ||pik|| be transition matrix of this operator in an arbitrary basis
in V (see construction (1.23).) Then determinant of linear operator P equals
to determinant of transition matrix of this operator.

detP = det (pik)

In the same way we define trace of operator via trace of matrix:

TrP = Tr (||pik||) = p11 + p22 + p33 + · · ·+ pnn . (1.29)

Determinant and trace of operator are well-defined. since due to (1.24) de-
terminant and trace of transition matrice do not change if we change the
basis in spite of the fact that transition matrix changes: P 7→ A−1PA, but

det
(
A−1PA

)
= detA−1 detP detA = (detA)−1 detP detA = detP .

In the example above (see equations (1.25) and (1.27)) we have different
matrices which represent the same but one operator P in different bases.
These matrices are related by equations (1.26) and (1.28) and

detP = det

(
2 0
0 1

)
= 2 · 1 = det

(
22 12
−35 −19

)
= 22 · (−19)− (−35) · 12 = 2

TrP = Tr

(
2 0
0 1

)
= 2 + 1 = Tr

(
22 12
−35 −19

)
= 22− 19 = 3

In the same way one can see that trace is invariant too:

Tr (A−1PA) =
∑
i

(A−1PA)ii =
∑
i,k,p

(
A−1

)
ik
pkp =

∑
i,k,p

Api
(
A−1

)
ik
pkp =

∑
p,k

(
A ·A−1

)
pk
pkp =

∑
p,k

δkppkp =
∑
k

pkk = TrP .

Trace of linear operator is an infinitesimal version of its determinant:

det(1 + tP ) = 1 + tTrP +O(t2) .

This is infinitesimal version for the followiong famous formula which relates trace and det
of linear operator:

det etA = etTrA . (1.30)

where etA =
∑

tnAn

n! . E.g. if A =
(

0 −1
1 0

)
, then etA =

(
cos t − sin t
sin t cos t

)
, det etA = 1 and

etTrA = e0 = 1.
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1.9.3 Orthogonal linear operators

Now we study geometrical meaning of orthogonal linear operators in Eu-
clidean space.

Recall that linear operator P in Euclidean space En is called orthogonal
operator if it preserves scalar product:

(Px, Py) = (x,y), for arbitrary vectors x,y (1.31)

In particular if {ei} is orthonormal basis in Euclidean space then due to
(1.31) the new basis {e′i = P (ei)} is orthonormal too. Thus we see that
matrix of orthogonal operator P in a given orthogonal basis is orthogonal
matrix:

P T · P = I (1.32)

(see (1.18) in subsection 1.7). In particular we see that for orthogonal linear
operator detP = ±1 (compare with (1.19)).

1.10 Orthogonal operators in E2—Rotations and re-
flections

We show that an orthogonal operator ‘rotates the space’ or makes a ‘reflec-
tion’.

LetA be an arothogonal operator acting in Euclidean space E2: (Ax, Ay) =
(x,y). Let {e, f} be an orthonormal basis in 2-dimensional Euclidean space
E2: (e, e) = (f , f) = 1 (i.e. |e| = |f | = 1) and (e, f) = 0–vectors e, f have
unit length and are orthogonal to each other.

Consider a new basis {e′, f ′}, an image of basis e, f under action of A:

e′ = A(e), f ′ = A(f). Let

(
α β
γ δ

)
be matrix of operator A in the basis e, f ,

(see equation (??) and defintion after this equation):

{e′, f ′} = {e, f}A = {e, f}
(
α β
γ δ

)
, i.e. e′ = αe + γf , f ′ = βe + δf

New basis is orthonormal basis also, (e′, e′) = (f ′, f ′) = 1 , (e′, f ′) = 0.
Operator A is orthogonal operator, and its matrix is orthogonal matrix:

ATA =

(
α β
γ δ

)t(
α β
γ δ

)
=

(
α γ
β δ

)(
α β
γ δ

)
=

(
α2 + γ2 αβ + γδ
αβ + γδ β2 + δ2

)
=

(
1 0
0 1

)
.
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Remark With some abuse of notation, (if it is not a reason of confusion)
we sometimes use the same letter for linear operator and the matrix of this
operator in orthonormal basis.

We have α2 + γ2 = 1, αβ + γδ = 0 and β2 + δ2 = 1.
It can be shown easily that the last equation implies that matrix of op-

erator A has the following appearance:

A =

(
cosϕ − sinϕ

sinϕ cosϕ

)
−−−−rotation on anlge ϕ

or

A =

(
cosϕ − sinϕ

sinϕ cosϕ

)
−−−−reflection on anlge ...

Hence one can choose angles ϕ, ψ : 0 ≤ 2π such that α = cosϕ, γ =
sinϕ, β = sinψ, δ = cosψ. The condition αβ + γδ = means that

cosϕ sinψ + sinϕ cosψ = sin(ϕ+ ψ) = 0

Hence sinϕ = − sinψ, cosϕ = cosψ (ϕ + ψ = 0) or sinϕ = sinψ, cosϕ =
− cosψ (ϕ+ ψ = π)

The first case: sinϕ = − sinψ, cosϕ = cosψ,

Aϕ =

(
α β
γ δ

)
=

(
cosϕ − sinϕ
sinϕ cosϕ

)
(detAϕ = 1) (1.33)

The second case: sinϕ = sinψ, cosϕ = − cosψ,

Ãϕ =

(
α β
γ δ

)
=

(
cosϕ sinϕ
sinϕ − cosϕ

)
(det Ãϕ = −1) (1.34)

In the first case matrix of operator Aϕ is defined by the relation (1.33).
In this case the new basis is:

(e′, f ′) = (e, f)Aϕ = (e, f)

(
cosϕ − sinϕ
sinϕ cosϕ

)
,

e′ = Aϕ(e) = cosϕ e + sinϕ f
f ′ = Aϕ(f)− sinϕ e + cosϕ f

(1.35)
For an arbitrary vector x = xe + yf x→ Aϕ(x) = Aϕ(xe + yf) = x′e + y′f ,(

x′

y′

)
=

(
cosϕ − sinϕ
sinϕ cosϕ

)(
x
y

)
=

(
x cosϕ− y sinϕ
sinϕ+ y cosϕ

)
. (1.36)
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Operator Aϕ rotates basis vectors e, f and arbitrary vector x on an
angle ϕ

In the second case a matrix of operator Ãϕ is defined by the relation
(1.34). One can see that

Ãϕ =

(
cosϕ sinϕ
sinϕ − cosϕ

)
=

(
cosϕ − sinϕ
sinϕ cosϕ

)(
1 0
0 −1

)
= AϕR (1.37)

where we denote by R =

(
1 0
0 −1

)
a transition matrix from the basis {e, f}

to the basis {e,−f}—“reflection”l.
We see that in the second case the orthogonal operator Ãϕ is composition

of rotation and reflection: {e, f}Ãϕ=AϕR−→ {ẽ, f̃}:

{e, f} Aϕ−→{e′ = cosϕ e+sinϕl, f , f ′ = − sinϕ e+cosϕ f} R−→{ẽ = e′, f̃ = −f}
(1.38)

We come to proposition

Proposition. Let A be an arbitrary 2 × 2 orthogonal linear transfor-
mation, ATA = 1, and in particularly detA = ±1. (As usual we consider
matrix of orthogonal operator in the orthonormal basis.)

If detA = 1 then there exists an angle ϕ ∈ [0, 2π) such that A = Aϕ is
an operator which rotates basis vectors and any vector (1.33) on the angle ϕ.

If detA = −1 then there exists an angle ϕ ∈ [0, 2π) such that A = Ãϕ is
a composition of rotation and reflection (see (1.38)).

Remark One can show that orthogonal operator Ãϕ is a reflection with respect to
the axis which have the angle ϕ

2 with x-axis.
Consider just examples:

a)ϕ = 0, Ãϕ =
(

cosϕ sinϕ
sinϕ − cosϕ

)
=
(

1 0
0 −1

)
,

(
e
f

)
7→
(

e
−f

)
(reflection with respect to x-axis)

b)ϕ = π, Ãϕ =
(

cosϕ sinϕ
sinϕ − cosϕ

)
=
(
−1 0
0 1

)
,

(
e
f

)
7→
(
−e
f

)
(reflection with respect to y-axis)

b)ϕ =
π

2
, Ãϕ =

(
cosϕ sinϕ
sinϕ − cosϕ

)
=
(

0 1
1 0

)
,

(
e
f

)
7→
(

f
e

)
(reflection with respect to axis y = x (“swapping” of basis vectors))

Try to do it in general case.

18



1.11 Orientation in vector space

You heard words “orientation...”, “”
You heard expressions like: A basis {a,b, c} have the same orientation

as the basis {a′,b′, c′} if they both obey right hand rule or if they both
obey left hand rule. In the other case we say that these bases have opposite
orientation...

Try to give the exact meaning to these words.
Note that in three-dimensional Euclidean space except scalar (inner)

product, one can consider another important operation: vector product. The
conception of orientation is indispensable for defining this operation.

Consider the set of all bases in the given vector space V .
Let (e1, . . . en), (e′1, . . . e

′
n) be two arbitrary bases in the vector space V

and let T be transition matrix which transforms the basis {ei} to the new
basis {e′i}:

{e′1, . . . e′n} = {e1, . . . en}T , (e′i =
n∑
k=1

ektki) (1.39)

(see also (1.15)).
Definition We say that two bases {e1, . . . en} and {e′1, . . . e′n} in V have

the same orientation if the determinant of transition matrix (1.39) from the
first basis to the second one is positive: detT > 0.

We say that the basis {e1, . . . en} has an orientation opposite to the orienta-
tion of the basis {e′1, . . . e′n} (or in other words these two bases have opposite
orientation) if the determinant of transition matrix from the first basis to the
second one is negative: detT < 0.

Remark Transition matrix from basis to basis is non-degenerate, hence
its determinant cannot be equal to zero. It can be or positive or negative.

One can see that orientation establishes the equivalence relation in the set
of all bases. Denote this relation by “∼”: {e1, . . . en} ∼ {e′1, . . . e′n} , if two
bases {e1, . . . en} and {e′1, . . . e′n} have the same orientation, i.e. detT > 0
for transition matrix.

Show that “∼” is an equivalence relation, i.e. this relation is reflexive,
symmetric and transitive.

Check it:
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• it is reflexive, i.e. for every basis {e1, . . . en}

{e1, . . . , en} ∼ {e1, . . . , en} , (1.40)

because in this case transition matrix T = I and detI = 1 > 0.

• it is symmetric, i.e.

If {e1, . . . , en} ∼ {e′1, . . . , e′n} then {e′1, . . . , e′n) ∼ {e1, . . . , en},
because if T is transition matrix from the first basis {e1, . . . , en} to the
second basis {e′1, . . . , e′n}: {e′1, . . . , e′n} = {e1, . . . , en}T ,

then the transition matrix from the second basis {e′1, . . . , e′n} to the first
basis {e1, . . . , en} is the inverse matrix T−1: {e1, . . . , en} = {e′1, . . . , e′n}T−1.
Hence detT−1 = 1

detT
> 0 if detT > 0.

• Is transitive, i.e. if {e1, . . . , en} ∼ {e′1, . . . , e′n} and {e′1, . . . , e′n) ∼
{ẽ1, . . . , ẽn}, then one can see that {e1, . . . , en} ∼ {ẽ1, . . . , ẽn}.
Do it in detail. For convenience call a basis {e1, . . . , en} the ‘I-st’ basis,
call a basis {e′1, . . . , e′n} the ‘II-nd’ basis and call a basis {ẽ1, . . . , ẽn}
the ‘III-rd’ basis. Let T12 be a transition matrix from the I-st basis to
the II-nd basis, T13 be a transition matrix from the I-st basis to the
III-rd basis and T23 be a transition matrix from the II-nd basis to the
III-rd basis:

{e′1, . . . , e′n} = {e1, . . . , en}T12

{ẽ1, . . . , ẽn} = {e1, . . . , en}T13

{ẽ1, . . . , ẽn} = {e′1, . . . , e′n}T23,
(1.41)

Hence {ẽ1, . . . , ẽn} = {e′1, . . . , e′n}T23 =

({e1, . . . , en}T12)T23 = {e1, . . . , en}T12 ◦ T23 = {e1, . . . , en}T13.

We see that T13︸︷︷︸
I-st → III-rd

= T12︸︷︷︸
I-st → II-nd

◦ T23︸︷︷︸
II-nd → II-rd

:

T13 = T12 ◦ T23 ⇒ detT13 = det(T12 ◦ T23) = detT12 · detT23 . (1.42)

Transitivity immediately follows from this relation: if I-st ∼ II and
II-nd ∼ III-rd, then determinants of matrices T12 and T23 are positive.
Hence according to relation (1.42) detT13 is positive too, i.e. I-st ∼
III-rd.
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Since it is equivalence relation the set of all bases is a union if disjoint
equivalence classes. Two bases are in the same equivalence class if and only
if they have the same orientation.

One can see that there are exactly two equivalence classes.

Proposition Let two bases {e1, . . . , en} and {e′1, . . . , e′n} in vector space
V have opposite orientation. Let {ẽ1, . . . , ẽn} be an arbitrary basis in V .
Then the basis {ẽ1, . . . , ẽn} and the first basis {e1, . . . , en} have the same ori-
entation or the basis {ẽ1, . . . , ẽn} and the second basis {e′1, . . . , e′n} have the
same orientation. In other words if {e1, . . . , en}, {e′1, . . . , e′n} and {ẽ1, . . . , ẽn}
are three bases in vector space V such that {e1, . . . , en} 6∼ {e′1, . . . , e′n} then

{ẽ1, . . . , ẽn} ∼ {e1, . . . , en} or {ẽ1, . . . , ẽn} ∼ {e′1, . . . , e′n} . (1.43)

There are two equivalence classes of bases with respect to orientation. An
arbitrary basis belongs to the equivalence class of the basis {e1, e2 . . . , en}, or
it belongs to the to the equivalence class of the basis {e′1, e2 . . . , e

′
n} (in the

case if bases {ẽ′1, . . . , ẽ′n}, {ẽ1, . . . , ẽn} have opposite orientation).
Proof of the statement immediately follows from equations (1.41) and

(1.42). In the same way like in these equations we call a basis {e1, e2 . . . , en}
the ”I-st basis”, a basis {e′1, e′2 . . . , e′n} the ”II-nd basis” and a basis {ẽ1, ẽ2 . . . , ẽn}
the ”III-rd basis”. Determinant of transition matrix T12 is negative since I-
st and II-nd bases have opposite orientation. Then it follows from relation
(1.42) that determinants of transition matrices T13 and T23 have opposite
signs. Hence detT13 > 0, i.e. I-st and III-rd bases have the same orientation,
or detT23 > 0,i.e II-nd and III-rd bases have the same orientation.

Example Let {e1, e2 . . . , en} be an arbitrary basis in n-dimensional vec-
tor space V . Swap the vectors e1, e2. We come to a new basis: {e′1, e′2 . . . , e′n}

e′1 = e2, e
′
2 = e1, all other vectors are the same: e3 = e′3, . . . , en = e′n

(1.44)
We have:

{e′1, e′2, e′3 . . . , e′n} = {e2, e1, e3, . . . , en} = {e1, e2, e3, . . . , en}Tswap , (1.45)

where one can easy see that the determinant for transition matrix Tswap

is equal to −1, i.e. bases {e1, e2 . . . , en} and {e2, e1 . . . , en} have opposite
orientation.
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E.g. write down the transition matrix (1.45) in the case if dimension
of vector space is equal to 5, n = 5. Then we have {e′1, e′2, e′3, e′4, e′5} =
{e2, e1, e3, e4, e5} = {e1, e2, e3, e4, e5}T where

Tswap =


0 1 0 0 0
1 0 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

 (detTswap = −1) . (1.46)

We see that bases {e1, e2 . . . , en} and {e′1, e′2 . . . , e′n} have opposite ori-
entation.

Hence according to Proposition above an arbitrary basis {e′1, . . . e′n} have
the same orientation as the basis {e1, e2 . . . , en}, i.e. belongs to the equiv-
alence class of basis {e1, e2 . . . , en}, or it has the same orientation as the
“swapped” basis {e2, e1 . . . , en}, i.e. it belongs to the equivalence class of
the “swappedd” basis {e2, e1 . . . , en}.

The set of all bases is a union of two disjoint subsets.
Any two bases which belong to the same subset have the same orientation.

Any two bases which belong to different subsets have opposite orientation.
Definition An orientation of a vector space is an equivalence class of

bases in this vector space.
Note that fixing any basis we fix orientation, considering the subset of all

bases which have the same orientation that the given basis.
There are two orientations. Every basis has the same orientation as a

given basis or orientation opposite to the orientation of the given basis.
If we choose an arbitrary basis then all bases which belong to the equiva-

lence class of this basis may be called “left” bases and all the bases which do
not belong to the equivalence class of this basis may be called “right” bases

Definition An oriented vector space is a vector space equipped with ori-
entation.

Consider examples.

Example (Orientation in two-dimensional space). Let {ex, ey} be arbi-
trary two bases in R2 and let a,b be arbitrary two vectors in R2. Consider
an ordered pair {a,b, }. The transition matrix from the basis {ex, ey} to the
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ordered pair {a,b} is T =

(
ax bx
ay by

)
:

{a,b} = {ex, ey}T = {ex, ey}
(
ax bx
ay by

)
,

{
a = axex + ayey

b = bxex + byey

One can see that the ordered pair {a,b} also is a basis, (i.e. these two
vectors are linearly independent in R2) if and only if transition matrix is not
degenerate, i.e. detT 6= 0. The basis {a,b} has the same orientation as the
basis {ex, ey} if detT > 0 and the basis {a,b} has the orientation opposite
to the orientation of the basis {ex, ey} if detT < 0.

Example Let {e, f} be a basis in 2-dimensional vector space. Consider
bases {e,−f}, {f ,−e} and {f , e}.

1) We come to basis {e,−f} reflecting the second basis vector. Transition

matrix from initial basis {e, f} to the basis {e,−f} is T{e,−f} =

(
1 0
0 −1

)
.

Its determinant is −1. Bases {e, f} and {e,−f} have opposite orientation.

2) Transition matrix from initial basis {e, f} to the basis {f ,−e} is

T{f ,−e} =

(
0 −1
1 0

)
. Its determinant is 1. Bases {e, f} and {f ,−e} have

same orientation. We come to basis {f ,−e} rotating the initial basis on the
angle π/2.

3) Transition matrix from initial basis {e, f} to the basis {f , e} is T{f ,e} =(
0 1
1 0

)
. Its determinant is −1. Bases {e, f} and {e,−f} have opposite

orientation.
We come to basis {f , e} reflecting the initial basis.

We see that bases {e, f} and {f ,−e} have the same orientation; i.e. they
belong to the same equivalenceclass. Bases {e,−f} and {f , e} have the same
orientation too, they belong to the another equivalence class. If we say that
bases {e, f} and {f ,−e} are left bases then bases {e,−f} and {f , e} are right
bases.

(There are plenty exercises in the Homework 3.)

Example(Orientation in three-dimensional euclidean space.) Let {ex, ey, ez}
be any basis in E3 and a,b, c are arbitrary three vectors in E3:

a = axex + ayey + azez b = bxex + byey + bzez, c = cxex + cyey + czez .
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Consider ordered triple {a,b, c}. The transition matrix from the basis {ex, ey, ez}

to the ordered triple {a,b, c} is T =

ax bx cx
ay by cy
az bz cz

:

{a,b, c} = {ex, ey, ez}T = {ex, ey, ez}

ax bx cx
ay by cy
az bz cz


One can see that the ordered triple {a,b, c} also is a basis, (i.e. these three
vectors are linearly independent) if and only if transition matrix is not de-
generate detT 6= 0. The basis {a,b, c} has the same orientation as the basis
{ex, ey, ez} if

detT > 0 . (1.47)

The basis {a,b, c} has the orientation opposite to the orientation of the basis
{ex, ey, ez} if

detT < 0 . (1.48)

Remark Note that in the example above we considered in E3 arbitrary
bases not necessarily orthonormal bases.

Relations (1.47),(1.48) define equivalence relations in the set of bases.
Orientation is equivalence class of bases. There are two orientations, every
basis has the same orientation as a given basis or opposite orientation.

If two bases {ei}, {ei′} have the same orientation then they can be transformed
to each other by continuous transformation, i.e. there exists one-parametric family
of bases {ei(t)} such that 0 ≤ t ≤ 1 and {ei(t)}|t=0 = {ei}, {ei(t)}|t=1 = {ei′}.
(All functions ei(t) are continuous) In the case of three-dimensional space the
following statement is true : Let {ei}, {ei′} (i = 1, 2, 3) be two orthonormal bases
in E3 which have the same orientation. Then there exists an axis n such that
basis {ei} transforms to the basis {ei′} under rotation around the axis.(This is
Euler Theorem (see it later).

Exercise Show that bases {e, f ,g} and {f , e,g} have opposite orientation
but bases {e, f ,g} and {f , e,−g} have the same orientation.

Solution. Transformation from basis {e, f ,g} to basis {f , e,g} is “swap-
ping” of vectors ((e, f) 7→ (f , e). This is reflection and this transformation
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changes orientation. One can see it using transition matrix:

T : {f , e,g} = {e, f ,g}T = {e, f ,g}

0 1 0
1 0 0
0 0 1

 . detT = −1

Transformation from basis {e, f ,g} to basis {f , e,−g} is composition of two
transformations: “swapping” of vectors ((e, f) 7→ (f , e) and changing direc-
tion of vector g (g 7→ −g). We have two reflections:

{e, f ,g} reflection−→ {f , e,g} reflection−→ {f , e,−g}

Any reflection changes orientation. Two reflections preserve orinetation. One
may come to this result using transition matrix:

T : {f , e,−g} = {e, f ,g}T = {e, f ,g}

0 1 0
1 0 0
0 0 −1

 . detT = 1. Orientation is not changed.

(1.49)
(See also exercises in Homework 3)

1.11.1 Orientation of linear operator

. Let P be invertible linear operator, i.e. detP 6= 0.
If a linear operator P acting on the space V has positive determinant

then under the action of this operator an arbitrary basis {e1, . . . , en} trans-
forms to the new basis {e′1, . . . , e′n} such that transition matrix from basis
{e1, . . . , en} to the new basis {e′1, . . . , e′n} has positive determinant, i.e. these
bases have the same orientation. Respectively if a linear operator P acting on
the space V has negative determinant then under the action of this operator
an arbitrary basis {e1, . . . , en} transforms to the new basis {e′1, . . . , e′n} such
that transition matrix from basis {e1, . . . , en} to the new basis {e′1, . . . , e′n}
has negative determinant, i.e. these bases have opposite orientation. Thus
we can define does the linear operator P acting in the vector space V change
an orientation or it does not change an orientation of this vector space.

Definition. Non-degenerate (invertible) linear operator P (detP 6= 0)
acting in vector space V preserves an orientation of the vector space V if
detP > 0. It changes the orientation if detP < 0.

If {e1, . . . , en} is an arbitrary basis which transforms to the new basis
{e′1, . . . , e′n} under the action of nvertible operator P : e′i = P (ei) then these
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bases have the same orientation if and only if operator P preserves an orien-
tation, i.e. detP > 0, and these bases have opposite orientation if and only
if the operator P changes an orientation, i.e. detP < 0.

The matrix P = ||pij || is the transition matrix from the basis {e1, . . . , en} to the basis
{e′1, . . . , e′n}. For an arbitrary vector x

∀x =
n∑
i=1

eixi = (e1, e2, . . . , en) ·


x1

x2

. . .
xn



Px = (e1, e2, . . . , en) · P ·


x1

x2

. . .
xn

 =
n∑
i=1

e′ix
i =

n∑
i,k=1

ekpkixi .

If xi are components of vector x at the basis {e1, . . . , en} and x′i are components of
the vector x at the new basis {e′i} then x′i =

∑
i pikx

k.

1.12 Rotations and orthogonal operators preserving
orientation of En (n=2,3)

Orthogonal operators preserving orientation in E2 and E3 are rotations. We
try to explain this. The main result of this section will be the Euler Theorem
about rotation, that every orthogonal operator preserving orientation in E3

is rotation around some axis.
We will give an exact formulation of the Euler Theorem at the end of this

subsection. Now we will formualte just preliminary statement:
The Euler Theorem. (Preliminary statement) An orthogonal operator

in E3 preserving orientationis rotation operator with respect to an axis l on
the angle ϕ. The axis is directed along eigenvector N of the operator P ,
P (N) = N,and angle of rotation is defined by equation

TrP = 1 + 2 cosϕ .

We will come to this statement gradually step by step, and then will
formulate it completely.

Let En be oriented vector space. Recall that oriented vector space means
that it is chosen the equivalence class of bases: all bases in this class have
the same orientation. We call all bases in the equivalence class defining
orientation “left” bases. All “left” bases have the same orientation. To
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define an orientation in vector space V one may consider an arbitrary basis
{e(0)

i } in V and claim that this basis is “left” basis. The basis {e(0)

i } defines

equivalence class of “left” bases: all bases {ei} such that {ei} ∼ {e
(0)

i will be

called “left” bases. We can say that basis {e(0)
i } defines the orientation.

Later on considering oriented vector space we often call all bases defining
the orientation (i.e. belonging to the equivalence class of bases defining
orientation) “left” bases.

Now we define rotation of oriented E2 and oriented E3.
Definition Let E2 be an oriented Euclidean space. We say that linear

operator P rotates this space on an angle “ϕ” if for a given “left” orthonormal
basis {e, f}{

e′ = P (e) = e cosϕ+ f sinϕ

f ′ = P (f) = −e sinϕ+ f cosϕ
i.e. {e′, f ′} = {e, f}

(
cosϕ − sinϕ
sinϕ cosϕ

)
(1.50)

i.e. transition matrix from basis {e, f} to new basis {e′ = P (e), f ′ = P (f)}
is the rotation matrix (1.33) (see also (1.35)).

Remark One can show that the angle of rotation does not depend on
the choice of “left” basis. If we will choose another left basis ẽ, f̃ then the
angle remains the same

Operator P rotates every vector rotates on the angle ϕ.
If we choose a basis with opposite orientation (“right” basis) then the

angle will change: ϕ 7→ −ϕ.

We see from formula (1.50) that the matrix of operator P is orthogonal
matrix such that its determinant equals 1. On the other hand we proved
that all orthogonal 2×2 matrices A such that detA = 1 have the appearance
(1.50) (see the subsection 1.8). Hence in 2-dimensional case we come to the
folowing simple

Proposition Let P be an orthogonal operator in oriented 2-dimensional
Euclidean space. If operator P preserves orientation (detP = 1) then it is a
rotation operator (1.50) on some angle ϕ.

The situation is little bit more tricky in 3-dimensional case.
Let E3 be an Euclidean vector space. (Problem of orientation we will

discuss below.) Let N 6= 0 be an arbitrary non-zero vector in E3. Consider
the line lN, spanned by vector N. This is axis directed along the vector N.
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Choose a unit vector

n = ± N

|N|
(1.51)

Vector n fixes an orientation on lN. Changing n 7→ −n changes an orientation on oppo-
site).

Choose an arbitrary orthonormal basis such that first vector of this basis
is directed along the axis: a basis {n, f ,g}.

Definition We say that a linear operator P rotates the Euclidean space
E3 on the angle ϕ with respect to an axis lN directed along a vector N if the
following conditions are satisfied:

•
P (N) = N

vector N (and all vectors proportional to this vector) are eigenvectors
of operator P with eigenvalue 1, i.e. axis remain intact

• for an orthonormal basis {n, f , g} such that the first vector of this basis
is equal to n, (n is a unit vector, proportional to N){

f ′ = P (f) = f cosϕ+ g sinϕ

g′ = P (f) = −f sinϕ+ g cosϕ
i.e. {f ′,g′} = {f ,g}

(
cosϕ − sinϕ
sinϕ cosϕ

)
.

(1.52)
In other words plane (subspace) orthogonal to axis rotates on the angle
ϕ: linear operator P rotates every vector orthogonal to axis on the angle
ϕ in the plane (subspace) orthogonal to the axis.

Linear operator P transforms the basis {n, , f ,g} to the new basis {n, f ′,g′}
= {n, f cosϕ+g sinϕ,−f sinϕ+g cosϕ}. The matrix of operator P , i.e. the
transition matrix from the basis {n, , f ,g} to the basis {n, f ′,g′} is defined
by the relation:

{n, f ′,g′} = {n, f cosϕ+g sinϕ,−f sinϕ+g cosϕ} = {n, , f ,g}

1 0 0
0 cosϕ − sinϕ
0 sinϕ cosϕ


(1.53)

Recalling definition (1.29) of trace of linear operator we come to the following
relation

TrP = 1 + 2 cosϕ (1.54)
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where ϕ is angle of rotation. Note that Trace of the operator does not depend
on the choice of the basis. This formula express cosine of the angle of rotation
in terms of operator, irrelevant of the choice of the basis.

Remark This formula defines angle of rotation up to a sign.
If we change orientation then ϕ 7→ −ϕ. For non-oriented Euclidean space rotation is

defined up to a sign4

Careful reader maybe already noted that even fixing the orientation of E3 does not fix
the “sign” of the angle: If we change the orientation of the axis (changing n 7→ −n) then
changing the corresponding “left” basis will imply that ϕ 7→ −ϕ. In fact angle ϕ is the
angle of rotation of oriented plane which is orthogonal to the axis of rotation. Orientation
on the plane is defined by orientation in E3 and orientation of the axis which is orthogonal
to this plane. In the case of 3-dimensional space sign of the angle depends not only on
orientation of E3 but on orientation of axis. In what follows we will ignore this. This
means that we define rotation on the angle ±ϕ up to a sign.... Rotation is defined for
operators preserving orientation. The difference between angles of rotations ϕ and −ϕ is
depending not only on orientation of E3 but on orientation of axis too. But we ignore this
difference. Note that cosϕ in the formula is defined up to a sign

Rotation operator eviently is orthogonal operator preserving orientation.
Is it true converse implication? We are ready to formulate the following
remarkable result.

Theorem (the Euler Theorem) Let P be an orthogonal operator preserv-
ing an orientation of Euclidean space E3, i.e. operator P preserves the scalar
product and orientation. Then it is a rotation operator with respect to an axis
l on the angle ϕ. Every vector N directed along the axis does not change, i.e.
the axis is 1-dimensional space of eigenvectors with eigenvalue 1, P (N) = N.
Every vector orthogonal to axis rotates on the angle ϕ in the plane orthogonal
to the axis,

TrP = 1 + 2 cosϕ .

The angle ϕ is defined up to a sign. Changing orientation of the Euclidean
space and of the axis change sign of ϕ.

This Theorem can be restated in the following way: every orthogonal
operator P preserving orientation, (detP 6= 0) has an eigenvector N 6= 0 with
eigenvalue 1. This eigenvector defines the axis of rotation. In an orthonormal
basis {n, f ,g} where n is a unit vector along the axis, the transition matrix
of operator has an appearance (1.53). Angle of rotaion can be defined via
Trace of operator by formula TrP = 1 + 2 cosϕ.

Remark If P is an identity operator, P = I then “ there is no rotation”,
more precisely: any line can be considered as an axis of rotation (every vector

4Does it recall you expressions such as “clockwise”, “anticlock-wise” rotation?
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is eigenvector of identity matrix with eigenvalue 1) and angle of rotation is
equal to zero. If P 6= I then axis of rotation is defiend uniquely.

Proof of the Euler Theorem. The proof of the Euler Theorem has two parts. First and
central part is to prove the existence of the axis. The rest is trivial: we take an arbitrary
orthonormal basis n, f ,g such that n is eigenvector and we come to relation (1.52). We
expose here maybe the most beautiful proof which belongs to Coxeter.

Let P be linear orthogonal operator preserving orientation. Note that for any two
not-zero distinct vectors e, f one can consider orthogonal operator Re,f which changes
orientation and swaps the vectors e, f : it is reflection with respect to the plane spanned
by the vectors e + f and a vector e× f .

Let {e, f ,g} be an arbitrary orthonormal basis in E3 and let e′, f ′,g′ be image of this
basis under operator P

P (e) = e′, P (f) = f ′ P (g) = g′ .

If e = e′ nothing to prove (e is eigenvector with eigenvalue 1). If this is not the case,
apply reflection operator Re,e′ to the initial basis {e, f ,g} we come to the orthonormal
basis {e′, f̃ , g̃}, Then applying reflection operator Rf̃ ,f ′ to this basis we come to the basis
e′, f ′, ˜̃g. The third vector has no choice it has to be equal to g′ since in the case if it
is equal to −g′ orientation is opposite. Hence we see that operator P is the product of
two reflections operators. Consider the line l, intersection of these planes, we come to
eigenvectors with eigenvalue 1.

There are many other proofs, for example:
Another proof: Any non-degenerate 3 × 3 matrix has at least one eigenvector x:

Px = λx, since cubic equation det(P − λI) = 0 has at lest one real root. Since P is
orthogonal operator, then λ = ±1. If λ = 1, then x defines the axis. If λ = −1, Px = −x,
then eigenvector with eigenvalue 1 belongs to the plane orthogonal to x.

Example Consider linear operator P such that for orthonormal basis
{ex, ey, ez}

P (ex) = ey, P (ey) = ex, P (ez) = −ez (1.55)

This is obviously orthogonal operator since it transforms orthogonal ba-
sis to orthogonal one. This operator swaps first two vectors and reflects
the third one. It preserves orientation: matrix of operator in the basis
{ex, ey, ez}, i.e. the transition matrix from the basis {ex, , ey, ez} to the
basis {P (ex), P (ey), P (ez)} is defined by the relation:

{P (ex), P (ey), P (ez)} = {ey, ex,−ez} = {ex, , ey, ez}

0 1 0
1 0 0
0 0 −1


detP = 1. This operator preserves orientation. Hence by Euler Theorem it
is a rotation. Find first axis of rotation. It is easy to see from (1.55) that
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N = λ(ex + ey) is eigenvector with eigenvalue 1:

P (N) = P (ex + ey) = ey + ex = N .

Hence axis of rotation is directed along the vector ex+ey. TrP = 1+2 cosϕ =
0. hence angle of rotation ϕ = ±π

2
.

One can calculate explicitly angle of rotation: Consider orthonormal basis {n, f,g}
adjusted to the axis (n||N). We have that n = ex+ey√

2
since n is proportional to N and it

is unit vector. Choose f = −ex+ey√
2

and g = ez. Then it is easy to see that

{n, f ,g} =
{

ex + ey√
2

,
−ex + ey√

2
,g
}

is orthonormal basis.Using (1.55)one can see that

P (n) = P

(
ex + ey√

2

)
=

ey + ex√
2

= n ,

P (f) = P

(
−ex + ey√

2

)
=
−ey + ex√

2
= −f , P (g) = −g

We see that
{n, f ,g} P−→{n,−f ,−g} .

Comparing with (1.52) and (1.53) we see that the operator P is rotation of E3 on the
angle π with respect to the axis directed along the vector ex + ey.

1.13 Vector product in oriented E3

Now we give a definition of vector product of vectors in 3-dimensional Eu-
clidean space equipped with orientation.

Let E3 be three-dimensional oriented Euclidean space, i.e. Euclidean
space equipped with an equivalence class of bases with the same orientation.
To define the orientation it suffices to consider just one orthonormal basis
{e, f ,g} which is claimed to be left basis. Then the equivalence class of the
left bases is a set of all bases which have the same orientation as the basis
{e, f ,g}.

Definition Vector product L(x,y) = x × y is a function of two vectors
which takes vector values such that the following axioms (conditions) hold

• The vector L(x,y) = x× y is orthogonal to vector x and vector y:

(x× y) ⊥ x , (x× y) ⊥ y (1.56)

In particular it is orthogonal to the the plane spanned by the vectors
x,y (in the case if vectors x,y are linearly independent)
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•
x× y = −y × x, (anticommutativity condition) (1.57)

•

(λx +µy)× z = λ(x× z) +µ(y× z) , (linearity condition) (1.58)

• If vectors x,y are perpendicular each other then the magnitude of the
vector x×y is equal to the area of the rectangle formed by the vectors
x and y:

|x× y| = |x| · | y| , if x ⊥ y , i.e.(x,y) = 0 . (1.59)

• If the ordered triple of the vectors {x,y, z}, where z = x×y is a basis,
then this basis and an orthonormal basis {e, f ,g} defining orientation
of E3 have the same orientation:

{x,y, z} = {e, f ,g}T, where for transition matrix T , detT > 0.
(1.60)

Vector product depends on orientation in Euclidean space.

Comments on conditions (axioms) (1.56)—(1.60):

1. The condition (1.58) of linearity of vector product with respect to
the first argument and the condition (1.57) of anticommutativity imply that
vector product is an operation which is linear with respect to the second
argument too. Show it:

z×(λx+µy) = −(λx+µy)×z = −λ(x×z)−µ(y×z) = λ(z×x)+µ(z×y) .

Hence vector product is bilinear operation. Comparing with scalar prod-
uct we see that vector product is bilinear anticommutative (antisymmetric)
operation which takes vector values, while scalar product is bilinear symmet-
ric operation which takes real values.

2. The condition of anticommutativity immediately implies that vector
product of two colinear (proportional) vectors x,y (y = λx) is equal to zero.
It follows from linearity and anticommuativity conditions. Show it: Indeed

x× y = x× (λx) = λ(x× x) = −λ(x× x) = −x× (λx) = −x× y. (1.61)
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Hence x× y = 0, if y = λx .
3. It is very important to emphasize again that vector product depends

on orientation. According the condition (1.60) if z = x × y and we change
the orientation of Euclidean space, then z → −z since the basis {x,y,−z}
as an orientation opposite to the orientation of the basis {x,y, z}.

You may ask a question: Does this operation (taking the vector product) which obeys
all the conditions (axioms) (1.56)—(1.60) exist? And if it exists is it unique? We will
show that the vector product is well-defined by the axioms (1.56)—(1.60), i.e. there exists
an operation x × y which obeys the axioms (1.56)—(1.60) and these axioms define the
operation uniquely.

We will assume first that there exists an operation L(x,y) = x×y which
obeys all the axioms (1.56)—(1.60). Under this assumption we will construct
explicitly this operation (if it exists!). We will see that the operation that
we constructed indeed obeys all the axioms (1.56)—(1.60).

Let {ex, ey, ez} be an arbitrary left orthonormal basis of oriented Eu-
clidean space E3, i.e. a basis which belongs to the equivalence class of the
basis {e, f ,g} defining orientation of E3. Then it follows from the consider-
ations above for vector product that

ex × ex = 0, ex × ey = ez, ex × ez = −ey
ey × ex = −ez, ey × ey = 0, ey × ez = ex
ez × ex = ey, ez × ey = −ex, ez × ez = 0

(1.62)

E.g. ex×ex = 0, because of (1.57), ex×ey is equal to ez or to −ez according
to (1.59), and according to orientation arguments (1.60) ex × ey = ez.

Now it follows from linearity and (1.62) that for two arbitrary vectors
a = axex + ayey + azez, b = bxex + byey + bzez

a×b = (axex+ayey+azez)×(bxex+byey+bzez) = axbyex×ey+axbzex×ez+

aybxey × ex + aybzey × ez + azbxez × ex + azbyez × ey =

(aybz − azby)ex + (azbx − axbz)ey + (axby − aybx)ez . (1.63)

It is convenient to represent this formula in the following very familiar way:

L(a,b) = a× b = det

ex ey ez
ax ay az
bx by bz

 (1.64)
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We see that the operation L(x,y) = x× y which obeys all the axioms (1.56)—(1.60),
if it exists, has an appearance (1.64), where {ex, ey, ez} is an arbitrary orthonormal basis
(with rightly chosen orientation). On the other hand using the properties of determinant
and the fact that vectors are orthogonal if and only if their scalar product equals to zero
one can easy see that the vector product defined by this formula indeed obeys all the
conditions (1.56)—(1.60).

Thus we proved that the vector product is well-defined by the axioms (1.56)—(1.60)
and it is given by the formula (1.64) in an arbitrary orthonormal basis (with rightly chosen
orientation).

Remark In the formula above we have chosen an arbitrary orthonormal
basis which belongs to the equivalence class of bases defining the orientation.
What will happen if we choose instead the basis {ex, ey, ez} an arbitrary
orthonormal basis {f1, f2, f3}. We see that such that answer does not change
if both bases {ex, ey, ez} and {f1, f2, f3} have the same orientation, Formulae
(1.62) are valid for an arbitrary orthonormal basis which have the same
orientation as the orthonormal basis {ex, ey, ez}.— In oriented Euclidean
space E3 we may take an arbitrary basis from the equivalence class of bases
defining orientation. On the other hand if we will consider the basis with
opposite orientation then according to the axiom (1.60) vector product will
change the sign. (See also the question 6 in Homework 4)

1.13.1 Vector product—area of parallelogram

The following Proposition states that vector product can be considered as
area of parallelogram:

Proposition 2 The modulus of the vector z = x× y is equal to the area
of parallelogram formed by the vectors x and y.:

S(x,y) = S(Π(x,y)) = |x× y| , (1.65)

where we denote by S(x,y) the area of parallelogram Π(x,y) formed by the
vectors x,y.

Proof: Consider the expansion y = y|| + y⊥, where the vector y⊥ is
orthogonal to the vector x and the vector y|| is parallel to to vector x. The
area of the parallelogram formed by vectors x and y is equal to the product of
the length of of the vector x on the height. The height is equal to the length
of the vector y⊥. We have S(x,y) = |x||y⊥|. On the other z = x × y =
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x × (y|| + y⊥) = x × y|| + x × y⊥. But x × y|| = 0, because these vectors
are colinear. Hence z = x× y⊥ and |z| = |x||y⊥| = S(x,y) because vectors
x,y⊥ are orthogonal to each other.

This Proposition is very important to understand the meaning of vector
product. Shortly speaking vector product of two vectors is a vector which is
orthogonal to the plane spanned by these vectors, such that its magnitude is
equal to the area of the parallelogram formed by these vectors. The direction
is defined by orientation.

Remark It is useful sometimes to consider area of parallelogram not as a positive
number but as an real number positive or negative (see the next subsubsection.)

It is not worthless to recall the formula which we know from the school
that area of parallelogram formed by vectors x,y equals to the product of
the base on the height. Hence

|x× y| = |x| · |y|| sin θ| , (1.66)

where θ is an angle between vectors x,y.

Finally I would like again to stress:
Vector product of two vectors is equal to zero if these vectors are colinear

(parallel). Scalar product of two vectors is equal to zero if these vector are
orthogonal.

Exercise†Show that the vector product obeys to the following identity:

((a× b)× c) + ((b× c)× a) + ((c× a)× b) = 0 . (Jacoby identity) (1.67)

This identity is related with the fact that heights of the triangle intersect in the one point.

Exercise† Show that a× (b× c) = b(a, c)− c(a,b).

1.13.2 Area of parallelogram in E2 and determinant of 2 × 2 ma-
trices

.
Let a,b be two vectors in 2-dimensional vector space E2.
One can consider E2 as a plane in 3-dimensional Euclidean space E3. Our

aim is to calculate the area of the parallelogram Π(a,b) formed by vectors
a,b. Let n be a unit vector in E3 which is orthogonal to E2. Then it is
obvious that the vector product a × b is proportional to the normal vector
n to the plane E2:

a× b = A(a,b)n , (1.68)
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and the area of the parallelogram Π(a,b) equals to the modulus of the coef-
ficient A(c,b):

S (Π (a,b)) = |a× b| = |A(a,b)| . (1.69)

The normal unit vector n and coefficient A(a,b) are defined up to a sign: n → −n,
A → −A. On the other hand the vector product a × b is defined up to a sign too:
vector product depends on orientation. The answer for a×b is not changed if we perform
calculations for vector product in an arbitrary basis {e′x, e′y, e′z} which have the same
orientation as the the basis {e, f ,n} and a×b 7→→ −a×b. If we consider an arbitrary basis
{e′x, e′y, e′z} which have the orientation opposite to the orientation of the basis {e, f ,n}
(e.g. the basis {e, f ,−n}) then A(a,b) → −A(a,b). The magnitude A(a,b) is so called
algebraic area of parallelogram. It can positive and negative.

If (a1, a2), (b1, b2) are coordinates of the vectors a,b in the basis {e, f}:
a = a1e + a2f , b = b1e + b2f and according to (1.64)

a× b = det

 e f n
a1 a2 0
b1 b2 0

 = n det

(
ax ay
bx by

)
(1.70)

Thus A(a,b) in equation (1.69) is equal to det

(
ax ay
bx by

)
, and we come to

the following formula for area of parallelogram

S(Π(a,b)) = |a× b| =
∣∣∣∣det

(
ax ay
bx by

)∣∣∣∣ . (1.71)

This is an important formula for relation between determinant of 2×2 matrix,
area of parallelogram and vector product.

One can deduce this relation in other way:
Let E2 be a 2-dimensional Euclidean space. The function A(a,b) defined by the

relation (1.71) obeys the following conditions:

• It is anticommutative:
A(a,b) = −A(a,b) (1.72)

• It is bilinear

A(λa+µb, c) = λA(a, c)+µA(b, c); A(c, λa+µb) = λA(c,a)+µA(c,b) . (1.73)

• and it obeys normalisation condition:

A(e, f) = ±1 (1.74)

for an arbitrary orthonormal basis.
(Compare with conditions (1.56)—(1.60).)
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One can see that these conditions define uniquely A(a,b) and these are the conditions
which define the determinant of the 2× 2 matrix.

1.13.3 Volumes of parallelograms and determinnants of linear op-
erators in E2

Let A be an arbitrary linear operator in E2. One can see that the following
formula holds.

Let a,b be two arbitrary vectors in E2. Let a′,b′ be two vectors such
that

a′ = A(a) , b = A(b′) .

Consider two parallelograms: Parallelogram Π(a,b) formed by vectors a,b,
and the second parallelogram Π(a′,b′) formed by vectors α′.b′. Then one can
deduce from equation (1.71) that

Area of Π(a′,b′) = |detA| · Area of Π(a,b) . (1.75)

This formula relates volumes of parallelograms Π(a,b), Π(a′,b′) with de-
terminant of linear operator which transforms the first parallelogram to the
second one. (See also exercise 9 in Homework 4).

1.13.4 Volume of parallelepiped

The vector product of two vectors is related with area of parallelogram. What
about a volume of parallelepiped formed by three vectors {a,b, c}?

Consider parallelepiped Π(a,b, c) formed by vectors {a,b, c}. The par-
allelogram Π(a,b) formed by vectors b, c can be considered as a base of this
parallelepiped.

Let θ be an angle between height and vector a. It is just the angle between
the vector b× c and the vector a. Then the volume is equal to the length of
the height multiplied on the area of the parallelogram, V = Sh = S|a| cos θ,
i.e. volume is equal to scalar product of the vectors a on the vector product
of vectors b and c:

V ({a,b, c}) = |(a,b× c)| =

∣∣∣∣∣∣
axex + ayey + azez, det

ex ey ez
bx by bz
cx cy cz

∣∣∣∣∣∣
= |(axex + ayey + azez, (bycz − bzcy)ex + (bzcx − bxcz)ey + (bxcy − bycx)ez)| =
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|ax(bycz − bzcy) + ay(bzcx − bxcz) + az(bxcy − bycx)| =

∣∣∣∣∣∣det

ax ay az
bx by bz
cx cy cz

∣∣∣∣∣∣ .
We come to beautiful and useful formula:

volume of Π(a,b, c) = |(a, [b× c])| =

∣∣∣∣∣∣det

ax ay az
bx by bz
cx cy cz

∣∣∣∣∣∣ . (1.76)

Compare this formula for the formula (1.71) for the area of parallelogram.
Remark In these formulae we consider the volume of the parallelepiped as a positive

number. It is why we put the sign of ‘modulus’ in all the formulae above. On the other
hand often it is very useful to consider the volume as a real number (it could be positive
and negative).

Exercise Consider the function F (a,b, c) = (a,b× c).
1. Show that F (a,b, c) = 0 if and only if vectors a,b, c are linear dependent.

2. Show that for an arbitrary vector a, F (a,a, c) = 0.
3. Show that for arbitrary vectors a,b, F (a,b, c) = −F (a,b, c). Can you deduce 3)

from the 2)?

1.13.5 Volumes of parallelepipeds and determinnants of linear op-
erators in E3

Write down an equation for the volumes of parallelepipeds analogous to equa-
tion (1.75) for the the areas of parallelograms. Now instead parallelogram
we consider parallelepiped, and instead linear operator A in E2 we consider
linear operator A in E3.

Let A be an arbitrary linear operator in E3. In the same way as in formula
(1.75) the following formula holds:

Let a,b, c be three arbitrary vectors in E3. Linear operator A transforms
these three vectors to three vectors a′,b′, c′ where

a′ = A(a) , b = A(b′) , c′ = P (c′) .

Consider two parallelepipeds: Parallelepiped Π(a,b c) formed by vectors
a,b, c and the second parallelepiped Π(a′,b′ c′) formed by vectors α′.b′, c′.
Then it follows from (1.76) the following formula and determinant of operator
A:

Volume of Π(a′,b′, c′) = |detA| · Volume of Π(a,b, c) . (1.77)

This formula relates volumes of parallelepipeds Π(a,b, c), Π(a′,b′, c′) with
determinant of linear operator which transforms the first parallelepiped to
the second one. (See also exercise 9 in Homework 4).
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2 Differential forms

2.1 Tangent vectors, curves, velocity vectors on the
curve

Tangent vector is a vector v applied at the given point p ∈ En.
The set of all tangent vectors at the given point p is a vector space. It is

called tangent space of E3 at the point p and it is denoted Tp(En).
One can consider vector field on En, i.e.a function which assigns to every

point p vector v(p) ∈ Tp(En).
It is instructive to study the conception of tangent vectors and vector

fields on the curves and surfaces embedded in En. We begin with curves.
A curve in En with parameter t ∈ (a, b) is a continuous map

C : (a, b)→ En r(t) = (x1(t), . . . , xn(t)), a < t < b (2.1)

For example consider in E2 the curve

C : (0, 2π)→ E2 r(t) = (R cos t, R sin t), 0 ≤ t < 2π .

The image of this curve is the circle of the radius R. It can be defined by
the equation:

x2 + y2 = R2 .

To distinguish between curve and its image we say that curve C in (2.1)
is parameterised curve or path. We will call the image of the curve unpa-
rameterised curve (see for details the next subsection). It is very useful to
think about parameter t as a ”time” and consider parameterised curve like
point moving along a curve. Unparameterised curve is the trajectory of the
moving point. The using of word ”curve” without adjective ”parameterised”
or ”nonparameterised” sometimes is ambiguous.

Vectors tangent to curve—velocity vector

Let r(t) r = r(t) be a curve in En.
Velocity v(t) it is the vector

v(t) =
dr

dt
=
(
ẋ1(t), . . . , . . . ẋn(t)

)
=
(
v1(t), . . . , vn(t)

)
in En. Velocity vector is tangent vector to the curve.

39



Let C : r = r(t) be a curve and r0 = r(t0) any given point on it. Then
the set of all vectors tangent to the curve at the point r0 = r(t0) is one-
dimensional vector space Tr0C. It is linear subspace in vector space Tr0C.
The points of the tangent space Tr0C are the points of tangent line.

In the next section we will return to curves and consider them in more
details.

Remark We consider by default only smooth, regular curves. Curve r(t)
= (x1(t), . . . , xn(t)) is called smooth if all functions xi(t), (i = 1, 2, . . . , n) are
smooth functions (Function is called smooth if it has derivatives of arbitrary

order.) Curve r(t) is called regular if velocity vector v(t) = dr(t)
dt

is not equal
to zero at all t.

2.2 Reparameterisation

One can move along trajectory with different velocities, i.e. one can consider
different parameterisation. E.g. consider

C1 :

{
x(t) = t

y(t) = t2
0 < t < 1 , C2 :

{
x(t) = sin t

y(t) = sin2 t
0 < t <

π

2

Images of these two parameterised curves are the same. In both cases
point moves along a piece of the same parabola but with different velocities.

Definition
Two smooth curves C1 : r1(t) : (a1, b1)→ En and C2 : r2(τ) : (a2, b2)→

En are called equivalent if there exists reparameterisation map:

t(τ) : (a2, b2)→ (a1, b1),

such that
r2(τ) = r1(t(τ)) (2.2)

Reparameterisation t(τ) is diffeomorphism, i.e. function t(τ) has derivatives
of all orders and first derivative t′(τ) is not equal to zero.

E.g. curves in (2.2) are equivalent because a map ϕ(t) = sin t transforms
first curve to the second.

Equivalence class of equivalent parameterised curves is called non-parameterised
curve.
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Equivalent curves have the same image.

It is useful sometimes to distinguish curves in the same equivalence class
which differ by orientation.

Definition Let curves C1, C2 be two equivalent curves. We say that
they have same orientation (parameterisations r1(t and r(τ) have the same
orientation) if reparameterisation t = t(τ) has positive derivative, t′(τ) > 0.
We say that they have opposite orientation (parameterisations r1(t and r(τ)
have the opposite orientation) if reparameterisation t = t(τ) has negative
derivative, t′(τ) < 0.

Changing orientation means changing the direction of ”walking” around
the curve.

Equivalence class of equivalent curves splits on two subclasses with respect
to orientation.

Non-formally: Two curves are equivalent curves (belong to the same
equivalence class) if these parameterised curves ( paths) have the same im-
ages. Two equivalent curves have the same image. They define the same set
of points in En. Different parameters correspond to moving along curve with
different velocity. Two equivalent curves have opposite orientation If two pa-
rameterisations correspond to moving along the curve in different directions
then these parameterisations define opposite orientation.

What happens with velocity vector if we change parameterisation? It
changes its value, but it can change its direction only on opposite (If these
parameterisations have opposite orientation of the curve):

v(τ) =
dr2(τ)

dτ
=
dr(t(τ))

dτ
=
dt(τ)

dτ
· dr(t)

dt

∣∣
t=t(τ)

(2.3)

Or shortly: v(τ)
∣∣
τ

= tτ (τ)v(t)
∣∣
t=t(τ)

We see that velocity vector is multiplied on the coefficient (depending on
the point of the curve), i.e. velocity vectors for different parameterisations
are collinear vectors.
(We call two vectors a,b collinear, if they are proportional each other, i,e, if
a = λb.)

Example Consider following curves in E2:

C1 :

{
x = cos θ

y = sin θ
, 0 < θ < π, C2 :

{
x = u

y =
√

1− u2
,−1 < u < 1,
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{
x = tan t

y =
√

cos 2t
cos t

,−π
4
< t <

π

4
(2.4)

These three parameterised curves,(paths) define the same non-parameterised
curve: the upper piece of the circle: x2 + y2 = 1, y > 0. The reparameterisa-
tion u(θ) = cos θ transforms the second curve to the first one.

The reparameterisation u(θ) = cos θ transforms the second curve to the
first one.

The reparameterisation u(θ) = tan t transforms the second curve to the

third one one:
√

cos 2t
cos t

=

√
cos2 t−sin2 t

cos t
=
√

1− tan2 t.
Curves C1, C2 have opposite orientation because u′(θ) < 0. Curves C2, C3

have the same orientation, because u′(t) > 0. Curves C1 and C2 have opposite
orientations too (Why?).

In the first case point moves with constant pace |v(θ)| = 1 anti clock-wise
”from right to left” from the point A = (1, 0) to the point B = (−1, 0). In the
second case pace is not constant, but vx = 1 is constant. Point moves clock-
wise ”from left to right”, from the point B = (−1, 0) to the point A = (1, 0).
In the third case point also moves clock-wise ”from the left to right”.

There are other examples in the Homeworks.

2.3 0-forms and 1-forms

Most of considerations of this and next subsections can be considered only for E2 or E3.
All examples for differential forms is only for E2, E3.

0-form on En it is just function on En (all functions under consideration
are differentiable)

Now we define 1-forms.
Definition Differential 1-form ω on En is a function on tangent vectors

of En, such that it is linear at each point:

ω(r, λv1 + µv2) = λω(r,v1) + µω(r,v2) . (2.5)

Here v1,v2 are vectors tangent to En at the point r, (v1,v2 ∈ TxE
n) (We

recall that vector tangent at the point r means vector attached at the point
r). We suppose that ω is smooth function on points r.

If X(r) is vector field and ω-1-form then evaluating ω on X(r) we come
to the function w(r,X(r)) on E3.
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Let e1, . . . , en be a basis in En and (x1, . . . , xn) corresponding coordinates:
an arbitrary point with coordinates (x1, . . . , xn) is assigned to the vector
r = x1e1 + x2e2 + . . . xnen starting at the origin.

Translating basis vectors ei (i = 1, . . . , n) from the origin to other points
of En we come to vector field which we also denote ei (i = 1, . . . , n). The
value of vector field ei at the point (x1, . . . , xn) is the vector ei attached at
this point (tangent to this point).

Let ω be an 1-form on En. Consider an arbitrary vector field A(r) =
A(x1, . . . , xn):

A(r) = A1(r)e1 + · · ·+ An(r)en =
n∑
i=1

Ai(r)ei

Then by linearity

ω(r,A(r)) = ω
(
r, A1(r)e1 + · · ·+ An(r)en

)
= A1ω(r, e1) + · · ·+Anω(r, en) .

Consider basic differential forms dx1, dx2, . . . , dxn such that

dxi(ej) = δij =

{
1 if i = j

0 if i 6= j
. (2.6)

Then it is easy to see that

dx1(A) = A1, dx2(A) = A2, ...., i.e.dxi(A) = Ai

Hence

ω(r,A(r)) =
(
ω1(r)dx1 + ω2(r)dx2 + · · ·+ ωn(r)dxn

)
(A(r))

where components ωi(r) = ω(r, ei).
In the same way as an arbitrary vector field on En can be expanded over

the basis {ei} (see (2.3)), an arbitrary differential 1-form ω can be expanded
over the basis forms(2.3)

ω = ω1(x
1, . . . , xn)dx1 + ω2(x

1, . . . , xn)dx2 + · · ·+ ωn(x1, . . . , xn)dxn .

Example Consider in E3 a basis ex, ey, ez and corresponding coordinates
(x, y, z). Then

dx(ex) = 1, dx(ey) = 0, dx(ez) = 0
dy(ex) = 0, dy(ey) = 1, dy(ez) = 0
dz(ex) = 0, dz(ey) = 0, dz(ez) = 1

(2.7)
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The value of a differential 1-form ω = a(x, y, z)dx+ b(x, y, z)dy+ c(x, y, z)dz
on vector field X = A(x, y, z)ex +B(x, y, z)ey + C(x, y, z)ez is equal to

ω(r,X) = a(x, y, z)dx(X) + b(x, y, z)dx(X) + c(x, y, z)dx(X) =

a(x, y, z)A(x, y, z) + b(x, y, z)B(x, y, z) + c(x, y, z)C(x, y, z)

It is very useful (see below ) introduce for basic vectors new notations:

ei 7→
∂

∂xi
for basic vectors ex, ey, ez in E3 ex 7→

∂

∂x
ey 7→

∂

∂y
ez 7→

∂

∂z
.

(2.8)
In these new notations the formula (2.3) looks like

dxi
(

∂

∂xj

)
= δij =

{
1 if i = j

0 if i 6= j
.

and the formula (2.7) looks like

dx
(
∂
∂x

)
= 1, dx

(
∂
∂y

)
= 0, dx

(
∂
∂z

)
= 0

dy
(
∂
∂x

)
= 0, dy

(
∂
∂y

)
= 1, dy

(
∂
∂z

)
= 0

dz
(
∂
∂x

)
= 0, dz

(
∂
∂y

)
= 0, dz

(
∂
∂z

)
= 1

It is very useful to introduce new notation for vectors ex, ey, ez.
In the next subsection we will consider the directional derivative of func-

tion along vector fields. The directional derivative will justify our new nota-
tions (2.8).

2.3.1 Vectors—directional derivatives of functions

Let R be a vector in En tangent to the point r = r0 (attached at a point
r = r0). Define the operation of derivative of an arbitrary (differentiable)
function at the point r0 along the vector R— directional derivative of function
f along the vector R

Definition
Let r(t) be a curve such that

• r(t)
∣∣
t=0

= r0
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• Velocity vector of the curve at the point r0 is equal to R: dr(t)
dt

∣∣
t=0

= R

Then directional derivative of function f with respect to the vector R at the
point r0 ∂Rf

∣∣
r0

is defined by the relation

∂Rf
∣∣
r0

=
d

dt
(f (r(t)))

∣∣
t=0

. (2.9)

Using chain rule one come from this definition to the following important
formula for the directional derivative:

If R =
n∑
i=1

Riei then ∂Rf
∣∣
r0

=
n∑
i=1

Ri ∂

∂xi
f(x1, . . . , xn)

∣∣
r=r0

(2.10)

It follows form this formula that
One can assign to every vector R =

∑n
i=1R

iei the operation ∂R = R1 ∂
∂x1 +

R2 ∂
∂x2 + · · ·+Rn ∂

∂xn
of taking directional derivative:

R =
n∑
i=1

Riei 7→ ∂R =
n∑
i=1

Ri ∂

∂xi
(2.11)

Thus we come to notations (2.8). The symbols ∂x, ∂y, ∂z correspond to partial
derivative with respect to coordinate x or y or z . Later we see that these new
notations are very illuminating when we deal with arbitrary coordinates, such
as polar coordinates or spherical coordinates, The conception of orthonormal
basis is ill-defined in arbitrary coordinates, but one can still consider the
corresponding partial derivatives. Vector fields ex, ey, ez (or in new notation
∂x, ∂y, ∂z) can be considered as a basis5 in the space of all vector fields on
E3 .

An arbitrary vector field (2.3) can be rewritten in the following way:

A(r) = A1(r)e1 + · · ·+ An(r)en = A1(r)
∂

∂x1
+ A2(r)

∂

∂x2
+ · · ·+ An(r)

∂

∂xn
(2.12)

Differential on 0-forms

5Coefficients of expansion are functions, elements of algebra of functions, not numbers
,elements of field. To be more careful, these vector fields are basis of the module of vector
fields on E3
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Now we introduce very important operation: Differential d which acts on
0-forms and transforms them to 1 forms.

Differential
0-forms

d−→ Differential
1-forms

Later we will learn how differential acts on 1-forms transforming them to
2-forms.

Definition Let f = f(x)-be 0-form, i.e. function on En. Then

df =
n∑
i=1

∂f(x1, . . . , xn)

∂xi
dxi . (2.13)

The value of 1-form df on an arbitrary vector field (2.12) is equal to

df(A) =
n∑
i=1

∂f(x1, . . . , xn)

∂xi
dxi(A) =

n∑
i=1

∂f(x1, . . . , xn)

∂xi
Ai = ∂Af (2.14)

We see that value of differential of 0-form f on an arbitrary vector field A
is equal to directional derivative of function f with respect to the vector A.

The formula (2.14) defines df in invariant way without using coordinate expansions.
Later we check straightforwardly the coordinate-invariance of the definition (2.13).

Exercise Check that
dxi(A) = ∂Ax

i (2.15)

Example If f = f(x, y) is a function (0− form) on E2 then

df =
∂f(x, y)

∂x
dx+

∂f(x, y)

∂y
dy

and for an arbitrary vector field A = A = Axex + Ayey = Ax(x, y)∂x +
Ay(x, y)∂y

df(A) =
∂f(x, y)

∂x
dx(A) + Ay(x, y)

∂f(x, y)

∂y
dy(A) =

Ax(x, y)
∂f(x, y)

∂x
+ Ay(x, y)

∂f(x, y)

∂y
= ∂Af .

Example Find the value of 1-form ω = df on the vector field A =
x∂x + y∂y if f = sin(x2 + y2).
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ω(A) = df(A). One can calculate it using formula (2.13) or using formula
(2.14).

Solution (using (2.13)):

ω = df =
∂f

∂x
dx+

∂f

∂y
dy = 2x cos(x2 + y2)dx+ 2y cos(x2 + y2)dy .

ω(A) = 2x cos(x2 + y2)dx(A) + 2y cos(x2 + y2)dy(A) =

2x cos(x2 + y2)Ax + 2y cos(x2 + y2)dAy = 2(x2 + y2) cos(x2 + y2) ,

Another solution (using (2.14))

df(A) = ∂Af = Ax
∂f

∂x
+ Ax

∂f

∂y
= 2(x2 + y2) cos(x2 + y2) .

See other examples in Homeworks.

2.4 Differential 1-form in arbitrary coordinates

Why differential forms? Why so strange notations for vector fields.
If we use the technique of differential forms we in fact do not care about

what coordinates we work in: calculations are the same in arbitrary coordi-
nates.

2.4.1 Calculations in arbitrary coordinates ∗

Consider an arbitrary (local) coordinates u1, . . . , un on En: ui = ui(x1, . . . , xn), i =
1, . . . , n. Show first that

dui =
n∑
k=1

∂ui(x1, . . . , xn)
∂xk

dxk . (2.16)

It is enough to check it on basic fields:

dui
(

∂

∂xm

)
= ∂( ∂

∂xm )u
i =

∂ui(x1, . . . , xn)
xm

=
n∑
k=1

∂ui(x1, . . . , xn)
∂xk

dxk
((

∂

∂xm

))
.

because (see (2.3)):

dxi
(

∂

∂xj

)
= δij =

{
1 if i = j

0 if i 6= j
. (2.17)

(We rewrite the formula (2.3) using new notations ∂i instead ei). In the previous formula
(2.3) we considered cartesian coordinates.
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Show that the formula above is valid in an arbitrary coordinates.
One can see using chain rule that

∂

∂ui
=
∂x1

∂ui
∂

∂x1
+
∂x2

∂ui
∂

∂x2
+ · · ·+ ∂xn

∂ui
∂

∂xn
=

n∑
k=1

∂xk

∂ui
∂

∂xk
(2.18)

Calculate the value of differential form dui on vector field ∂
∂uj using (2.16) and (2.18):

dui
(

∂

∂uj

)
=

n∑
k=1

∂ui(x1, . . . , xn)
∂xk

dxk

(
n∑
r=1

∂xr

∂uj
∂

∂xr

)
= (2.19)

n∑
k,r=1

∂ui(x1, . . . , xn)
∂xk

∂xr(u1, . . . , un)
∂uj

dxk
(

∂

∂xr

)
=

n∑
k,r=1

∂ui(x1, . . . , xn)
∂xk

∂xr(u1, . . . , un)
∂uj

δkr =
n∑
k=1

∂xk

∂uj
∂ui

∂xk
= δji

We come to

dui
(

∂

∂uj

)
= δij =

{
1 if i = j

0 if i 6= j
. (2.20)

We see that formula (2.17) has the same appearance in arbitrary coordinates. In other
words it is invariant with respect to an arbitrary transformation of coordinates.

Exercise Check straightforwardly the invariance of the definition (2.13). In coordi-
nates (u1, . . . , un)

Solution We have to show that the formula (2.13) does not changed under changing
of coordinates ui = ui(x1, . . . , xn).

df =
n∑
i=1

∂f(x1, . . . , xn)
∂xi

dxi =
n∑

i=1,k

∂f(x1, . . . , xn)
∂xi

∂xi

∂uk
duk ==

n∑
i=1

∂f

∂uk
duk ,

because
∑n
i=1

∂f(x1,...,xn)
∂xi

∂xi

∂uk
= ∂f

∂uk

Example
Consider more in detail E2. (For E3 considerations are the same, just calculations little

bit more complicated) Let u, v be an arbitrary coordinates in E2, u = u(x, y), v = v(x, y).

du =
∂u(x, y)
∂x

dx+
∂u(x, y)
∂y

dy, dv =
∂v(x, y)
∂x

dx+
∂v(x, y)
∂y

dy (2.21)

and

∂u =
∂x(u, v)
∂u

∂x +
∂y(u, v)
∂u

∂y, ∂v =
∂x(u, v)
∂v

∂x +
∂y(u, v)
∂v

∂y (2.22)
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(As always sometimes we use notation ∂u instead ∂
∂u , ∂x instead ∂

∂x e.t.c.) Then

du(∂u) = 1, du(∂v) = 0

dv(∂w) = 0, dv(∂v) = 1
(2.23)

This follows from the general formula but it is good exercise to repeat the previous calcu-
lations for this case:

du(∂u) =
(
∂u(x, y)
∂x

dx+
∂u(x, y)
∂y

dy

)(
∂x(u, v)
∂u

∂x +
∂y(u, v)
∂u

∂y

)
=

∂u(x, y)
∂x

∂x(u, v)
∂u

+
∂u(x, y)
∂y

∂y(u, v)
∂u

=
∂x(u, v)
∂u

∂u(x, y)
∂x

+
∂y(u, v)
∂u

∂u(x, y)
∂y

= 1

We just apply chain rule to the function u = u(x, y) = u(x(u, v), y(u, v)):
Analogously

du(∂v) =
(
∂u(x, y)
∂x

dx+
∂u(x, y)
∂y

dy

)(
∂x(u, v)
∂v

∂x +
∂y(u, v)
∂v

∂y

)
∂u(x, y)
∂x

∂x(u, v)
∂v

+
∂u(x, y)
∂y

∂y(u, v)
∂v

=
∂x(u, v)
∂v

∂u(x, y)
∂x

+
∂y(u, v)
∂v

∂u(x, y)
∂y

= 0

The same calculations for dv.

2.4.2 Calculations in polar coordinates

Example (Polar coordinates) Consider polar coordinates in E2:{
x(r, ϕ) = r cosϕ

y(r, ϕ) = r sinϕ
(0 ≤ ϕ < 2π, 0 ≤ r <∞),

Respectively {
r(x, y) =

√
x2 + y2

ϕ = arctan y
x

. (2.24)

We have that for basic 1-forms

dr = rxdx+ rydy =
x√

x2 + y2
dx+

y√
x2 + y2

dy =
xdx+ ydy

r
(2.25)

and

dϕ = ϕxdx+ ϕydy =
−ydx
x2 + y2

+
xdy

x2 + y2
dx =

xdy − ydx
r2

(2.26)
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Respectively
dx = xrdr + xϕdϕ = cosϕdr − r sinϕdϕ

and
dy = yrdr + yϕdϕ = sinϕdr + r cosϕdϕ (2.27)

For basic vector fields

∂r =
∂x

∂r
∂x +

∂y

∂r
∂y = cosϕ∂x + sinϕ∂y =

x∂x + y∂y
r

,

∂ϕ =
∂x

∂ϕ
∂x +

∂y

∂ϕ
∂y = −r sinϕ∂x + r cosϕ∂y = x∂y − y∂x, (2.28)

respectively

∂x =
∂r

∂x
∂r +

∂ϕ

∂x
∂ϕ =

x

r
∂r −

y

r2
∂ϕ

and

∂y =
∂r

∂y
∂r +

∂ϕ

∂y
∂ϕ =

y

r
∂r +

x

r2
∂ϕ (2.29)

Example Calculate the value of forms ω = xdx+ydy and σ = xdy−ydx
on vector fields A = x∂x + y∂y, B = x∂y − y∂x. Perform calculations in
Cartesian and in polar coordinates.

In Cartesian coordinates:

ω(A) = xdx(x∂x+y∂y)+ydy(x∂x+y∂y) = x2+y2, ω(B) = xdx(B)+ydy(B) = 0,

σ(A) = xdy(A)− ydx(A) = 0, σ(B) = xdy(B)− ydx(B) = x2 + y2 .

Now perform calculations in polar coordinates. According to relation (2.25)

ω = xdx+ ydy = rdr, σ = xdy − ydx = r2dϕ

and according to relations (2.28) and (2.29)

A = x∂x + y∂y = r∂r, B = x∂y − y∂x = ∂ϕ

Hence ω(A) = rdr(A) = r2 = x2 + y2, ω(B = rdr(∂ϕ) = 0,

σ(A) = r2dϕ(r∂r) = 0, σ(B) = r2dϕ(∂ϕ) = r2 = x2 + y2 .

Answers coincide.
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Example. Let f = x4 − y4 and vector field A = r∂r. Calculate 1-form
ω = df and ω(A).
We have ω = df = 4x3dx− 4y3dy. One has transforms form from Cartesian
coordinates to polar or vector field from polar coordinates to Cartesian.
In Cartesian coordinates: A = r ∂

∂r
= x ∂

∂x
+ y ∂

∂y
. Hence ω(A) = df(A) =

(4x3dx−4y3dy)

(
x
∂

∂x
+ y

∂

∂y

)
= 4x3dx

(
x
∂

∂x
+ y

∂

∂y

)
−4y3dy

(
x
∂

∂x
+ y

∂

∂y

)
= 4x4−4y4 .

Or using (2.14) , ω(A) = df(A) = ∂Af =

(
x
∂

∂x
+ y

∂

∂y

)
(x4−y4) = 4x4−4y4

In polar coordinates f = x4−y4 = (x2−y2)(x2+y2) = r2(r2 cosϕ−r2 sin2 ϕ) =
r4 cos 2ϕ, ω = df = 4r3 cos 2ϕdr − 2r4 sin 2ϕdϕ, and ω(A) = ω(r∂r) =
4r4 cos 2ϕ since dr(∂r) = 1, dϕ(∂r) = 0. Or using (2.14)

ω(A) = df(A) = ∂Af = r
∂

∂r

(
r4 cosϕ

)
= 4r4 cos 2ϕ .

Example Calculate the value of form ω = xdy−ydx
x2+y2 on the vector field A = ∂ϕ . ∂AF =

r ∂∂r (r4 cos 2ϕ) = 4r4 cos 2ϕ = 4(x4 − y4). Or using 1-forms: We have to transform form
from Cartesian coordinates to polar or vector field from polar to Cartesian.

xdy − ydx
x2 + y2

= dϕ, ω(A) = dϕ(∂ϕ) = 1

or

∂ϕ = x∂y − y∂x, ω(A) =
xdy(x∂y − y∂x)− ydx(x∂y − y∂x)

x2 + y2
= 1 .

2.5 Integration of differential 1-forms over curves

Let ω = ω1(x
1, . . . , xn)dx1 + · · · + ω1(x

1, . . . , xn)dxn =
∑n

i=1 ωidx
i be an

arbitrary 1-form in En

and C : r = r(t), t1 ≤ t ≤ t2 be an arbitrary smooth curve in En.
One can consider the value of one form ω on the velocity vector field

v(t) = dr(t)
dt

of the curve:

ω(v(t)) =
n∑
i=1

ωi
(
x1(t), . . . , xn(t))dxi(v(t)

)
=

n∑
i=1

ωi
(
x1(t), . . . , xn(t)

) dxi(t)
dt
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We define now integral of 1-form ω over the curve C.
Definition The integral of the form ω = ω1(x

1, . . . , xn)dx1+· · ·+ωn(x1, . . . , xn)dxn

over the curve C : r = r(t) t1 ≤ t ≤ t2 is equal to the integral of the func-
tion ω(v(t)) over the interval t1 ≤ t ≤ t2:∫

C

ω =

∫ t2

t1

ω(v(t))dt =

∫ t2

t1

(
n∑
i=1

ωi
(
x1(t), . . . , xn(t)

) dxi(t)
dt

)
dt . (2.30)

Proposition The integral
∫
C
ω does not depend on the choice of coordi-

nates on En. It does not depend (up to a sign) on parameterisation of the
curve: if C : r = r(t) t1 ≤ t ≤ t2 is a curve and t = t(τ) is an arbitrary
reparameterisation, i.e. new curve C ′ : r′(τ) = r(t(τ)) τ1 ≤ τ ≤ τ2, then∫
C
ω = ±

∫ ′
C
ω:∫

C

ω =

∫
C′
ω, if orientaion is not changed, i.e. if t′(τ) > 0

and ∫
C

ω = −
∫
C′
ω, if orientaion is changed, i.e. if t′(τ) < 0

If reparameterisation changes the orientation then starting point of the
curve becomes the ending point and vice versa.

Proof of the Proposition Show that integral does not depend (up to a sign) on the
parameterisation of the curve. Let t(τ) (τ1 ≤ t ≤ τ2) be reparameterisation. We come to
the new curve C ′ : r′(τ) = r(t(τ)). Note that the new velocity vector v′(τ) = dr(t(τ))

dτ =
t′(τ)v(t(τ)). Hence ω(v′(τ)) = w(v(t(τ)))t′(τ). For the new curve C ′∫

C′
ω =

∫ τ2

τ1

ω(v′(τ))dτ =
∫ τ2

τ1

ω(v(t(τ))
dt(τ)
dτ

dτ =
∫ t(τ2)

t(τ1)

ω(v(t))dt

t(τ1) = t1, t(τ2) = t2 if reparameterisation does not change orientation and t(τ1) = t2,
t(τ2) = t1 if reparameterisation changes orientation.

Hence
∫
C′
w =

∫ t2)

t1
ω(v(t))dt =

∫
C
ω if orientation is not changed and

∫
C′
w =∫ t1)

t2
ω(v(t))dt = −

∫ t2)

t1
ω(v(t))dt = −

∫
C
ω is orientation is changed.

Example
Let

ω = a(x, y)dx+ b(x, y)dy
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be 1-form in E2 (x, y–are usual Cartesian coordinates). Let C : r =

r(t)

{
x = x(t)

y = y(t)
, t1 ≤ t ≤ t2 be a curve in E2.

Consider velocity vector field of this curve

v(t) =
dr(t)

dt
=

(
vx(t)
vy(t)

)
=

(
xt(t)
yt(t)

)
= xt∂x + yt∂y (2.31)

(xt = dx(t)
dt

, yt = dy(t)
dt

).
One can consider the value of one form ω on the velocity vector field v(t)

of the curve: ω(v) = a(x(t), y(t))dx(v) + b(x(t), y(t))dy(v) =

a(x(t), y(t))xt(t) + b(x(t), y(t))yt(t) .

The integral of the form ω = a(x, y)dx + b(x, y)dy over the curve C : r =
r(t) t1 ≤ t ≤ t2 is equal to the integral of the function ω(v(t)) over the
interval t1 ≤ t ≤ t2:∫

C

ω =

∫ t2

t1

ω(v(t))dt =

∫ t2

t1

(
a(x(t), y(t))

dx(t)

dt
+ b(x(t), y(t))

dy(t)

dt

)
dt .

(2.32)

Example Consider an integral of the form ω = 3dy+3y2dx over the curve

C : r(t)

{
x = cos t

y = sin t
, 0 ≤ t ≤ π/2. (C is the arc of the circle x2 + y2 = 1

defined by conditions x, y ≥ 0).

Velocity vector v(t) = dr(t)
dt

=

(
vx(t)
vy(t)

)
=

(
xt(t)
yt(t)

)
=

(
− sin t
cos t

)
. The

value of the form on velocity vector is equal to

ω(v(t)) = 3y2(t)vx(t) + 3vy(t) = 3 sin2 t(− sin t) + 3 cos t = 3 cos t− 3 sin3 t

and∫
C

ω =

∫ π
2

0

w(v(t))dt =

∫ π
2

0

(3 cos t−3 sin3 t)dt = 3

(
sin t+ cos t− cos3 t

3

) ∣∣π2
0

Example Now consider the integral of the same form ω over the the curve

C which is the upper half of the circle x2 + y2 = 1: C :

{
x2 + y2 = 1

y ≥ 0
.
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Curve is given as an image. We have the image of the curve not the param-
eterised curve. We have to define a parameterisation ourself.

We consider three different parameterisations of this curve. Sure to cal-
culate the integral it suffices to calculate

∫
C
w in an arbitrary given parame-

terisation r = r(t) of the curve C, then note that for an arbitrary reparame-
terisation t = t(τ), the integral will remain the same or it will change a sign
depending on the reparameterisation t = t(τ) preserves orientation or not.

r1(t) :

{
x = R cos t

y = R sin t
, 0 ≤ t ≤ π , r2(t) :

{
x = R cos Ωt

y = R sin Ωt
, 0 ≤ t ≤ π

Ω
, (Ω > 0)

and

r3(t) :

{
x = t

y =
√
R2 − t2

,−R ≤ t ≤ R, , (2.33)

All these curves are the same image. If Ω = 1 the second curve coincides
with the first one. First and second curve have the same orientation (repa-
rameterisation t 7→ Ωt) The third curve have orientation opposite to first and
second (reparameterisation t 7→ cos t, the derivative d cos t

dt
< 0).

Calculate integrals
∫
C1
ω,
∫
C2
ω,
∫
C3
ω and check straightforwardly that

these integrals coincide if orientation is the same or they have different signs
if orientation is opposite.∫

C1

ω =

∫ π

0

(xyt − yxt)dt =

∫ π

0

(R2 cos2 t+R2 sin2 t)dt = πR2

∫
C2

ω =

∫ π
Ω

0

(xyt − yxt)dt =

∫ π

0

(R2Ω cos2 Ωt+R2Ω sin2 Ωt)dt = πR2 .

These answers coincide: both parameterisation have the same orientation.
For the third parameterisation:∫

C3

ω =

∫ R

0

(xyt − yxt)dt =

∫ R

0

(
t

(
−t√
R2 − t2

)
−
√
R2 − t2

)
dt =

−R2

∫ R

0

dt√
R2 − t2

= −R2

∫ 1

0

du√
1− u2

= −πR2

We see that the sign is changed.
Finally consider the integral of the form ω = xdy − ydx over the semicircle in polar

coordinates instead Cartesian coordinates, We have that in polar coordinates semicircle is
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{
r(t) = R

ϕ(t) = t
, 0 ≤ t ≤ π. The form ω = xdy − ydx = r cosϕd(r sinϕ)− r sinϕd(r sinϕ) =

r2dϕ and v(t) = (rt, ϕt) = (0, 1), i.e. v(t) = ∂ϕ. We have that ω(v(t)) = r(t)2dϕ(∂ϕ) =
R2. Hence

∫
C
ω =

∫ π
0
R2dt = πR2. Answer is the same: The value of integral does not

change if we change coordinates in the plane.

For other examples see Homeworks.

2.6 Integral over curve of exact form

1-form ω is called exact if there exists a function f such that ω = df .

Theorem
Let ω be an exact 1-form in En, ω = df .
Then the integral of this form over an arbitrary curve C : r = r(t) t1 ≤

t ≤ t2 is equal to the difference of the values of the function f at starting and
ending points of the curve C:∫

C

ω = f
∣∣
∂C

= f(r2)− f(r1) , r1 = r(t1), r2 = r(t2) . (2.34)

Proof:
∫
C
df =

∫ t2
t1
df(v(t)) =

∫ t2
t1

d
dt
f(r(t))dt = f(r(t))|t2t1 .

Example Calculate an integral of the form ω = 3x2(1 +y)dx+x3dy over
the arc of the semicircle x2 + y2 = 1, y ≥ 0.

One can calculate the integral naively using just the formula (2.32):
Choose a parameterisation of C,e.g., x = cos t, y = sin t, then v(t) =
− sin t∂x + cos t∂x and ω(v(t)) = (3x2(1 + y)dx+x3dy)(− sin t∂x + cos t∂y) =
−3 cos2 t(1 + sin t) sin t+ cos3 t · cos t and∫

C

ω =

∫ π

0

(−3 cos2 t sin t− 3 cos2 t sin2 t+ cos4 t)dt = ...

Calculations are little bit long.
But for the form ω = 3x2(1 + y)dx+ x3dy one can calculate the integral

in a much more efficient way noting that it is an exact form:

ω = 3x2(1 + y)dx+ x3dy = d
(
x3(1 + y)

)
(2.35)

Hence it follows from the Theorem that∫
C

ω = f(r(π))− f(r(0)) = x3(1 + y)
∣∣x=−1,y=0

x=1,y=0
= −2 (2.36)
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Remark If we change the orientation of curve then the starting point be-
comes the ending point and the ending point becomes the starting point.—
The integral changes the sign in accordance with general statement, that in-
tegral of 1-form over parameterised curve is defined up to reparameterisation.

Corollary The integral of an exact form over an arbitrary closed curve
is equal to zero.

Proof. According to the Theorem
∫
C
ω =

∫
C
df = f

∣∣
∂C

= 0, because the
starting and ending points of closed curve coincide.

Example. Calculate the integral of 1-form ω = x5dy + 5x4ydx over the
ellipse x2 + y2

9
= 1 .

The form ω = x5dy+ 5x4ydx is exact form because ω = x5dy+ 5x4ydx =
d(x5y). Hence the integral over ellipse is equal to zero, because it is a closed
curve.

Remark The remarkable Theorem and Corollary of this section works
only for exact forms. Of course not any form is an exact form (see exercises
in Homeworks and subsection 2.9 below) E.g. 1-form xdy − ydx is not an
exact form6.

2.7 Differential 2-forms (in E2)

2.7.1 2-form–area of parallelogram

We give first general ideas about what is it differential k-form (k = 2, 3)
1-form is a linear function on vectors:

ω(A) : ω(λA + µB) = λω(A) + µω(B) ,

2-form is a bilinear function on two vectors:

ω(A,K) : ω(λA+µB,K) = λω(A, K)+µω(B, K) , ω(K, λA+µB) = λω(K,A)+µω(K,B)

which obey to the following condition

ω(A,B) = −ω(B.A) (2.37)

6if xdy− ydx = df = fxdx+ fydy, then fy = x and fx = −y. We see that on one hand
fxy = (fx)y = −1 and on the other hand fyx = (fy)x = 1. Contradiction.
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This condition implies that the value of of 2-form on vectors A,B is pro-
portional to the area of parallelogram ΠA,B formed vy these vectors. Explain
it on a simple example.

Consider differential 2-form dx ∧ dy in E2:

dx ∧ dy
(
∂

∂x
,
∂

∂y

)
= 1

(In the same way as 1-forms dx, dy are basic forms for 1-form.)
Linearity conditions and condition (2.37) imply that for an arbitrary 2-

form ω in E2 ω = a(x, y)dx ∧ dy.
Take two vector fields A,B, A = Ax

∂
∂x

+ Ay
∂
∂y

, Then due to conditions

(2.37) above we have

ω(A,B) = ω

(
Ax

∂

∂x
+ Ay

∂

∂y
,Bx

∂

∂x
+By

∂

∂y

)
=

AxBxω(∂x, ∂x)AxByω(∂x, ∂y)AyBxω(∂y, ∂x)AyByω(∂y, ∂y) =

a

AxBx dx ∧ dy(∂x, ∂x)︸ ︷︷ ︸
=0

AxBy dx ∧ dy(∂x, ∂y)︸ ︷︷ ︸
=1

AyBx dx ∧ dy(∂y, ∂x)︸ ︷︷ ︸
=−1

AyBy dx ∧ dy(∂y, ∂y)︸ ︷︷ ︸
=0

 =

a(AxBy − AyBx) = a · area of parallelogram ΠA,B = a det

(
Ax Ay
Bx By

)
In a analogous way 3-forms are related with volume of parallelipiped, .... k-form with

volume of k-parallelipiped...

2.7.2 † Wedge product

We considered detailed definition of 1-forms. Now we give some formal approach to de-
scribe 2-forms. Differential forms on E2 is an expression obtained by adding and multi-
plying functions and differentials dx, dy. These operations obey usual associativity and
distributivity laws but multiplications is not moreover of one-forms on each other is anti-
commutative:

ω ∧ ω′ = −ω′ ∧ ω if ω, ω′ are 1-forms (2.38)

In particular
dx ∧ dy = −dy ∧ dx, dx ∧ dx = 0, dy ∧ dy = 0 (2.39)

Example If ω = xdy + zdx and ρ = dz + ydx then

ω ∧ ρ = (xdy + zdx) ∧ (dz + ydx) = xdy ∧ dz + zdx ∧ dz + xydy ∧ dx
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and

ρ ∧ ω = (dz + ydx) ∧ (xdy + zdx) = xdz ∧ dy + zdz ∧ dx+ xydx ∧ dy = −ω ∧ ρ

Changing of coordinates. If ω = a(x, y)dx ∧ dy be two form and x = x(u, v), y = y(u, v)
new coordinates then dx = xudu + xvdv, dy = yudu + yvdv (xu = ∂x(u,v)

∂u , xv = ∂x(u,v)
∂v ,

yu = ∂y(u,v)
∂u , yv = ∂y(u,v)

∂v ). and

a(x, y)dx ∧ dy = a (x(u, v), y(u, v)) (xudu+ xvdv) ∧ (yudu+ yvdv) = (2.40)

a (x(u, v), y(u, v)) (xudu+ xvdv) (xuyvdu ∧ dv + xvyudv ∧ du) =

a (x(u, v), y(u, v)) (xuyv − xvyu)du ∧ dv

Example Let ω = dx ∧ dy then in polar coordinates x = r cosϕ, y = r sinϕ

dx ∧ dy = (cosϕdr − r sinϕdϕ) ∧ (sinϕdr + r cosϕdϕ) = rdr ∧ dϕ (2.41)

2.7.3 † 0-forms (functions)
d−→ 1-forms

d−→ 2-forms

We introduced differential d of functions (0-forms) which transform them to 1-form. It
obeys the following condition:

• d : is linear operator: d(λf + µg) = λdf + µdg

• d(fg) = df · g + f · dg

Now we introduce differential on 1-forms such that

• d : is linear operator on 1-forms also

• d(fω) = df ∧ ω + fdω

• ddf = 0

Remark Sometimes differential d is called exterior differential.

Perform calculations using this definition and (2.38):

dω = d(ω1dx+ ω2dy) = dw1 ∧ dx+ dw2 ∧ dy =
(
∂ω1(x, y)

∂x
dx+

∂ω1(x, y)
∂y

dy

)
∧ dx+

(
∂ω2(x, y)

∂x
dx+

∂ω2(x, y)
∂y

dy

)
∧ dy =

(
∂ω2(x, y)

∂x
− ∂ω1(x, y)

∂y

)
dx ∧ dy

Example Consider 1-form ω = xdy. Then dω = d(xdy) = dx ∧ dy.
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2.7.4 †Exact and closed forms

We know that it is very easy to integrate exact 1-forms over curves (see the sub-
section ”Integral over curve of exact form”)

How to know is the 1-form exact or no?
Definition We say that one form ω is closed if two form dω is equal to zero.
Example 1-form xdy + ydx is closed because d(xdy + ydx) = 0.

It is evident that exact 1-form is closed:

ω = dρ⇒ dω = d(dρ) = d ◦ dρ = 0 (2.42)

We see that the condition that form is closed is necessary condition that form is
exact.

So if dω 6= 0, i.e. the form is not closed, then it is not exact.
Is this condition sufficient? Is it true that a closed form is exact?
In general the answer is: No.
E.g. we considered differential 2-form

ω =
xdy − ydx
x2 + y2

(2.43)

defined in E2\0. It is closed, but it is not exact (See non-compulsory exercises 11,12,13 in
the Homework 6).

How to recognize for 1-form ω is it exact or no?
Inverse statement (Poincaré lemma) is true if 1-form is well-defined in E2:
A closed 1-form ω in En is exact if it is well-defined at all points of En, i.e. if it is

differentiable function at all points of En.

Sketch a proof for 1-form in E2: if ω is defined in whole E2 then consider the function

F (r) =
∫
Cr

ω (2.44)

where we denote by Cr an arbitrary curve which starts at origin and ends at the point r.
It is easy to see that the integral is well-defined and one can prove that ω = df .

The explicit formula for the function (2.44) is the following: If ω = a(x, y)dx+b(x, y)dy
then F (x, y) =

∫ 1

0
(a(tx, ty)x+ b(tx, ty)y) dt.

Exercise Check by straightforward calculation that ω = dF (See exercise 14 in Home-
work 6).

2.7.5 † Integration of two-forms. Area of the domain

We know that 1-form is a linear function on tangent vectors. If A,B are two vectors
attached at the point r0, i.e. tangent to this point and ω, ρ are two 1-forms then one
defines the value of ω ∧ ρ on A, B by the formula

ω ∧ ρ(A,B) = ω(A)ρ(B)− ω(B)ρ(A) (2.45)
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We come to bilinear anisymmetric function on tangent vectors. If σ = a(x, y)dx ∧ dy
is an arbitrary two form then this form defines bilinear form on pair of tangent vectors:
σ(A,B) =

a(x, y)dx ∧ dy(A,B) = a(x, y) (dx(A)dy(B)− dx(B)dy(A)) = a(x, y)(AxBy −AyBy)
(2.46)

One can see that in the case if a = 1 then right hand side of this formula is nothing but
the area of parallelogram spanned by the vectors A,B.

This leads to the conception of integral of form over domain.
Let ω = a(x)dx ∧ dy be a two form and D be a domain in E2. Then by definition∫

D

ω =
∫
D

a(x, y)dxdy (2.47)

If ω = dx ∧ dy then ∫
D

w =
∫
D

(x, y)dxdy = Area of the domain D (2.48)

The advantage of these formulae is that we do not care about coordinates7

Example Let D be a domain defined by the conditions{
x2 + y2 ≤ 1
y ≥ 0

(2.50)

Calculate
∫
D
dx ∧ dy.∫

D
dx ∧ dy =

∫
D
dxdy = area of the D = π

2 .
If we consider polar coordinates then according (2.41)

dx ∧ dy = rdr ∧ dϕ

Hence
∫
D
dx ∧ dy =

∫
D
rdr ∧ dϕ =

∫
D
rdrdϕ =

∫ 1

0

(∫ π
0
dϕ
)
rdr = π

∫ 1

0
rdr = π/2.

Another example
Example Let D be a domain in E2 defined by the conditions{

(x−c)2
a2 + y2

b2 ≤ 1
y ≥ 0

(2.51)

D is domain restricted by upper half of the ellipse and x-axis. Ellipse has the centre
at the point (c, 0). Its area is equal to S =

∫
D
dx ∧ dy. Consider new variables x′, y′:

7If we consider changing of coordinates then jacobian appears: If u, v are new coordi-
nates, x = x(u, v), y = y(u, v) are new coordinates then∫

a(x, y)dxdy =
∫
a(x(u, v), y(u, v)) det

(
xu xv
xu xv

)
dudv (2.49)

In formula(5.9) it appears under as a part of coefficient of differential form.
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x = c + ax′, y = by′. In new variables domain D becomes the domain from the previous
example:

(x− c)2

a2
+
y2

b2
= x′

2 + y′
2

and dx ∧ dy = abdx′ ∧ dy′. Hence

S =
∫

(x−c)2
a2

+ y2

b2
≤1,y≥0

dx ∧ dy = ab

∫
x′2+y′2≤1,y′≥0

dx′ ∧ dy′ =
πab

2
(2.52)

Theorem 2 ( Green formula) Let ω be 2-form such that ω = dω′ and D be a domain–
interior of the closed curve C. Then ∫

D

ω =
∫
C

ω′ (2.53)

3 Curves in Euclidean space. Curvature

3.1 Curves. Velocity and acceleration vectors

We already study velocity vector of curves. Consider now acceleration vector

a = d2r(t)
dt2

. For curve r = r(t) in En we have

v =
dr(t)

dt
, vi =

dxi(t)

dt
, (i = 1, 2, . . . , n) ,

and

a =
dv(t)

dt
=
d2r(t)

dt2
, ai =

d2xi(t)

dt2
, (i = 1, 2, . . . , n) . (3.1)

Velocity vector v(t) is tangent to the curve. In general acceleration vector
is not tangent to the curve. One can consider decomposition of acceleration
vector a on tangential and normal component:

a = atangent + a⊥, (3.2)

where atangent is the vector tangent to the curve (collinear to velocity vector)
and a⊥ is orthogonal to the tangent vector (orthogonal to the velocity vector).
The vector a⊥ is called normal acceleration vector of the curve 8.

8Component of acceleration orthogonal to the velocity vector sometimes is called also
centripetal acceleration
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Example Consider a curve

C :

{
x = R cos Ωt

y = R sin Ωt
, (3.3)

If we consider parameter t as a time then we have the point which moves
over circle of the radius R with angular velocity Ω. We see that

v =

(
−RΩ sin Ωt
RΩ cos Ωt

)
, a = −

(
RΩ2 cos Ωt
RΩ2 sin Ωt

)
= −Ω2r(t)

Speed is constant: |v| = RΩ. Acceleration is perpendicular to the velocity.
(It is just centripetal acceleration.)

What happens if speed is increasing, or decreasing, i.e. if angular velocity
is not constant? One can see that in this case tangential acceleration is not
equal to zero, i.e. the velocity and acceleration are not orthogonal to each
other.

Analyze the meaning of an angle between velocity and acceleration vectors
for an arbitrary parameterised curve r = r(t). For this purpose consider the
equation for speed: |v|2 = (v,v) and differentiate it:

d|v|2

dt
=

d

dt
(v(t),v(t)) = 2(v(t), a(t)) = 2|v(t)||a(t)| cos θ(t) , (3.4)

where θ is an angle between velocity vector and acceleration vector.

We formulate the following
Proposition
Suppose that parameter t is just time. We see from this formula that if

point moves along the curve r(t) then

• speed is increasing in time if and only if the angle between velocity and
acceleration vector is acute, i.e. tangential acceleration has the same
direction as a velocity vector:

d|v|2

dt
> 0⇔ (v, a) > 0⇔ cos θ > 0⇔ atang = λv with λ > 0 . (3.5)

• speed is decreasing in time if and only if the angle between velocity
and acceleration vector is obtuse, i.e. tangential acceleration has the
direction opposite to the direction of a velocity vector.

d|v|2

dt
< 0⇔ (v, a) < 0⇔ cos θ < 0⇔ atang = λv with λ < 0 . (3.6)
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• speed is constant in time if and only if the velocity and acceleration
vectors are orthogonal to each other, i.e. tangential acceleration is
equal to zero.

d|v|2

dt
= 0⇔ (v, a) = 0⇔ cos θ = 0⇔ atang = 0 . (3.7)

Example Consider the curve r(t) :

{
x(t) = vxt

y(t) = vyt− gt2

2

It is path of the

point moving under the gravity force with initial velocity v =

(
vx
vy

)
. One

can see that the curve is parabola: y =
(
vy
vx

)
x −

(
gv2
y

v2
x

)
x2. We have that

v(t) =

(
vx

vy − gt

)
and acceleration vector a =

(
0
−g

)
. Suppose that vy > 0.

(v, a) = −g(vy − gt). Then at the highest point (vertex of the parabola)
(t = vy/g) acceleration is orthogonal to the velocity. For t < vy/g angle
between acceleration and velocity vectors is obtuse. Speed is decreasing. For
t > vy/g angle between acceleration and velocity vectors is acute. Speed is
increasing.

3.2 Behaviour of acceleration vector under reparam-
eterisation

How acceleration vector changes under changing of parameterisation of the
curve?

Let C : r = r(t), t1 ≤ t ≤ t2 be a curve and t = t(τ) reparametrisation
of this curve. We know that for new parameterised curve C ′ : r′(τ) =
r(t(τ)), τ1 ≤ τ ≤ τ2 velocity vector v′(τ) is collinear to the velocity vector
v(t) (see (2.3)):

v′(τ) =
dr′(τ)

dτ
=
dr(t(τ))

dτ
=
dt(τ)

dτ

dr(t(τ))

dt
= tτv(t(τ))

Taking second derivative we see that for acceleration vector:

a′(τ) =
d2r′(τ)

dτ 2
=
dv′(τ)

dτ
=

d

dτ
(tτv(t(τ))) = tττv(t(τ)) + t2τa(t(τ)) (3.8)
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Under reparameterisation acceleration vector in general changes its di-
rection: new acceleration vector becomes linear combination of old velocity
and acceleration vectors: direction of acceleration vector does not remain
unchanged 9.

We know that acceleration vector can be decomposed on tangential and
normal components (see (3.2)). Study how tangential and normal compo-
nents change under reparameterisation.

Decompose left and right hand sides of the equation (3.8) on tangential
and orthogonal components:

a′(τ)tangent + a′(τ)⊥ = tττv(t) + t2τ (a(t)tangent + a(t)⊥)

Then comparing tangential and orthogonal components we see that new tan-
gential acceleration is equal to

a′(τ)tangent = tττv(t) + t2τa(t)tangent (3.9)

and normal acceleration is equal to

a′(τ)⊥ = t2τa(t)⊥ (3.10)

The magnitude of normal (centripetal) acceleration under changing of
parameterisation is multiplied on the t2τ . Now recall that magnitude of ve-
locity vector under reparameterisation is multiplied on tτ . We come to very
interesting and important observation:

Observation

The magnitude
|a⊥|
|v2|

remains unchanged under reparameterisation. (3.11)

We come to the expression which is independent of parameterisation: it
must have deep mechanical and geometrical meaning. We see later that it is
nothing but curvature.

9The plane spanned by velocity and acceleration vectors remains unchanged.(This plane
is called osculating plane.)
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3.3 Length of the curve

If r(t), a ≤ t ≤ b is a parameterisation of the curve L and v(t) velocity vector
then length of the curve is equal to the integral of of |v(t)| over curve:

Length of the curve L =

∫ b

a

|v(t)|dt = (3.12)

∫ b

a

√(
dx1(t)

dt

)2

+

(
dx2(t)

dt

)2

+ · · ·+
(
dxn(t)

dt

)2

dt .

Note that formula above is reparameterisation invariant. The length of
the image of the curve does not depend on parameterisation. This corre-
sponds to our intuition.

Proof Consider curve r1 = r1(t), a1 ≤ t ≤ b1. Let t = t(τ), a2 < τ < b2 be another
parameterisation of the curve r = r(t), In other words we have two different parameterised
curves r1 = r1(t), a1 ≤ t ≤ b1 and r2 = r1(t(τ)), a2 ≤ τ ≤ b2 such that their images
coincide (See (2.2)). Then under reparameterisation velocity vector is multiplied on tτ

v2(τ) =
dr2

dτ
=
dt

dτ

dr1

dt
= tτ (τ)v1(t(τ))

Hence

L1 =
∫ b1

a1

|v1(t)|dt =
∫ b2

a2

|v1(t)|dt(τ)
dτ

dτ =
∫ b2

a2

|tτv1(t)|dτ =
∫ b2

a2

|v2(τ)|dτ = L2 ,

(3.13)
i.e. length of the curve does not change under reparameterisation.

If C : r = r(t) t1 ≤ t ≤ t2 is a curve in E2 then its length is equal to

LC =

∫ t2

t1

|v(t)|dt =

∫ t2

t1

√(
dx(t)

dt

)2

+

(
dy(t)

dt

)2

dt (3.14)

3.4 Natural parameterisation of the curves

Non-parameterised curve can be parameterised in many different ways.
Is there any distinguished parameterisation? Yes, it is.
Definition A natural parameter s = s(t) on the curve r = r(t) is a

parameter which defines the length of the arc of the curve between initial
point r(t1) and the point r(t).
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If a natural parameter s is chosen we say that a curve r = r(s) is given
in natural parameterisation.

Write down explicit formulae for natural parameter.
Let C : r(t), a < t < b be a curve in En. As always we suppose that it is

smooth and regular curve: (i.e. r(t) has derivatives of arbitrary order, and
velocity vector v 6= 0.

Then it follows from (3.12) that

s(t) = {length of the arc of the curve between points r(a) and r(t)} (3.15)

=

∫ t

a

|v(t′)|dt′ =

=

∫ t

a

√(
dx1(t′)

dt′

)2

+

(
dx2(t′)

dt′

)2

+ · · ·+
(
dxn(t′)

dt′

)2

dt′ . (3.16)

( As always we suppose that it is smooth and regular curve: (i.e. r(t) has
derivatives of arbitrary order, and velocity vector v 6= 0.)

Example Consider circle: x = R cos t, y = R sin t in E2. Then we come
to the obvious answer

s(t) = {length of the arc of the circle between points r(0) and r(t)} = Rt =

∫ t

0

√(
dx(t′)

dt′

)2

+

(
dy(t′)

dt′

)2

dt′ =

∫ t

0

√
R2 sin2 t′ +R2 cos2 t′dt′ =

∫ t

a

Rdt′ = Rt

s = Rt. Hence in natural parameterisation x = R cos s
R

, y = R sin s
R

.

Remark If we change an initial point then a natural parameter changes
on a constant.

For example if we choose as a initial point for the circle above a point
r(t1) for t1 = −π

2
, then the length of the arc between points r(−π

2
) and r(0)

is equal to Rπ
2

and

s′(t) = s(t) +R
π

2
.

Another
Example Consider arc of the parabola x = t, y = t2, 0 < t < 1:

s(t) = {length of the arc of the curve for parameter less or equal to t} = (3.17)
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∫ t

0

√(
dx(τ)
dτ

)2

+
(
dy(τ)
dτ

)2

dτ =

∫ t

0

√
1 + 4τ2dτ =

t
√

1 + 4t2

2
+

1
4

log
(

2t+
√

1 + 4t2
)

The first example was very simple. The second is harder to calculate 10. In general case
natural parameter is not so easy to calculate. But its notion is very important for studying
properties of curves.

Natural parameterisation is distinguished. Later we will often use the
following very important property of natural parameterisation:

Proposition If a curve is given in natural parameterisation then

• the speed is equal to 1

(v(s),v(s)) ≡ 1, i.e. |v(s)| ≡ 1 , (3.18)

• acceleration is orthogonal to velocity, i.e. tangential acceleration is
equal to zero:

(v(s), a(s)) = 0 , i.e. atangent = 0 . (3.19)

Proof: For an arbitrary parameterisation |v(t)| = dL(t)
dt

, where L(t) is a
length of the curve. In the case of natural parameter L(s) = s, i.e. |v(t)| =
dL(t)
dt

= 1. We come to the first relation.
The second relation means that value of the speed does not change (see

(3.4) and (3.7)).

10Denote by I =
∫ t

0

√
1 + 4τ2dτ . Then integrating by parts we come to:

I = t
√

1 + 4t2 −
∫

4τ2

√
1 + 4τ2

dτ = t
√

1 + 4t2 − I +
∫

1√
1 + 4τ2

dτ .

Hence

I =
t
√

1 + 4t2

2
+

1
2

∫
1√

1 + 4τ2
dτ .

and we come to the answer.
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3.5 Curvature of curve in En

3.5.1 Definition of curvature

How to find invariants of non-parameterised curve, i.e. magnitudes which depend on the
points of non-parameterised curve but which do not depend on parameterisation?

Answer at the first sight looks very simple: Consider the distinguished natural param-
eterisation r = r(s) of the curve. Then arbitrary functions on xi(s) and its derivatives
do not depend on parameterisation. But the problem is that it is not easy to calculate
natural parameter explicitly (See e.g. calculations of natural parameter for parabola in
the previous subsection). So it is preferable to know how to construct these magnitudes
in arbitrary parameterisation, i.e. construct functions f(dx

i

dt ,
d2xi

dt2 , . . . ) such that they do
not depend on parameterisation.

We define now curvature. First formulate reasonable conditions on cur-
vature:

• it has to be a function of the points of the curve

• it does not depend on parameterisation

• curvature of the line must be equal to zero

• curvature of the circle with radius R must be equal to 1/R

We first give definition of curvature in natural parameterisation. Then
study how to calculate it for a curve in an arbitrary parameterisation.

For a given non-parameterised curve consider natural parameterisation
r = r(s). We know already that velocity vector has length 1 and acceleration
vector is orthogonal to curve in natural parameterisation (see (3.18) and
(3.19)). It is just normal (centripetal) acceleration.

Definition. The curvature of the curve in a given point is equal to
the modulus (length) of acceleration vector (normal acceleration) in natural
parameterisation. Namely, let r(s) be natural parameterisation of this curve.
Then curvature at every point r(s) of the curve is equal to the length of
acceleration vector:

k = |a(s)|, a(s) =
d2r(s)

ds2
(3.20)

First check that it corresponds to our intuition (see reasonable conditions
above)
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It does not depend on parameterisation by definition.
It is evident that for the line in normal parameterisation xi(s) = xi0 + bis

(
∑
bibi = 1) the acceleration is equal to zero.
Now check that the formula (3.20) gives a natural answer for circle.

For circle of radius R in natural parameterisation

r = r(s) = (x(s), y(s)), where x(s) = R cos
s

R
, y(s) = R sin

s

R

(length of the arc of the angle θ of the circle is equal to s = Rθ.) Then

a(s) =
dr2(s)

ds2
=

(
− 1

R
cos

s

R
,− 1

R
sin

s

R

)
and for curvature

k = |a(s)| = 1

R
(3.21)

we come to the answer which agrees with our intuition.

Geometrical meaning of curvature: One can see from this example that 1
k is just

a radius of the circle which has second order touching to curve.(See the subsection ”Second
order contact” (this is not compulsory))

3.5.2 Curvature of curve in an arbitrary parameterisation.

Let curve be given in an arbitrary parameterisation. How to calculate curva-
ture. One way is to go to natural parameterisation. But in general it is very
difficult (see the example of parabola in the subsection ”Natural parameter-
isation”).

We do it in another more elegant way.

Proposition Curvature of the curve in terms of an arbitrary parameter-
isation r = r(t) is given by the formula:

k =
|a⊥(t)|
|v(t)|2

=
Area of parallelogram Πv,a formed by the vectors a,v

|v|3
,

(3.22)
where v(t) = dr(t)/dt is velocity vector and a⊥(t) is normal acceleration.

Proof of the Proposition
Prove first that k = |a⊥(t)|

|v(t)|2 . Note that in natural parameterisation speed

is equal to 1 and acceleration is orthogonal to curve: a = a⊥, |v| = 1 (see
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(3.18), (3.19)). Hence in natural parameterisation the ration |a⊥|
|v|2 is equal

just to modulus of acceleration vector, i.e. to the curvature (3.20). On the
other hand according to the observation (3.11) (see the end of the subsection

”Velocity and acceleration vectors”) the ratio |a⊥|
|v|2 = |a⊥|

(v,v)
does not depend

on parameterisation. Hence curvature is defined by the formula k = |a⊥(t)|
|v(t)|2 in

an arbitrary parameterisation.
Advantage of the formula k = |a⊥(t)|

|v(t)|2 is that it is given in an arbitrary
parameterisation. Disadvantage of this formula is that we still do not know
how to calculate a⊥(t). Do the next step. Note that

|a⊥(t)|
|v|2

=
|a⊥(t)| · |v|
|v|3

=

|a⊥(t)|
|v|2

=
|a⊥(t)| · |v|
|v|3

=
Area of parallelogram Πv,a formed by the vectors a,v

|v|3
.

(3.23)
Thus we proved formula (3.22). We express the curvature in terms of area of
the parallelogram Πv,a in an arbitrary parameterisation. We have that under
an arbitrary change of parameterisation t = t(τ)

v 7→ tτv
a⊥ 7→ t2τa⊥

Area of parallelogramΠv,a 7→ t3τArea of parallelogramΠv,a

(3.24)

Numerator and denominator of the fraction, which is in the RHS of the
equation (3.23) are multiplied on t3τ . The fraction, i.e. curvature does not
change.

3.5.3 Curvature of curve in E2,E3

We know how to calculate area of parallelogram spanned by the vectors a,v.
In particularly it is easy to do for E3 and E2, where this is just the magnitude
of vector product (see the formulae for vector product in the subsections
1.11.1 and 1.11. 2):

k =
Area of parallelogram Πv,a formed by the vectors a,v

|v|3
=
|v(t)× a(t)|
|v(t)|3

,

(3.25)
if curve is in E3.
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In the case if curve is in E2 then formula for curvature is

k =
|v(t)× a(t)|
|v(t)|3

=
|vxay − vyax|

(v2
x + v2

y)
3
2

=
|vxay − vyax|

(v2
x + v2

y)
3
2

=

=
|xtytt − ytxtt|

(x2
t + y2

t )
3
2

(if curve is in E2) (3.26)

This is workable formula.
In general case if curve is in En then to calculate the area S of parallelogram note that

S = |v||a|| sin θ| where |v||a| cos θ = (v,a). Hence S = |v||a|
√

1− cos2 θ =
√

v2a2 − (v · a)2

and curvature is equal to

k =
Area of parallelogram formed by the vectors v and a

Cube of the speed
=

√
v2a2 − (v · a)2

|v|3
(3.27)

Remark . Of course one can come to formulae (3.27), (3.25) and (3.5.3) by ”brute
force” making straightforward attack. Instead considering explicitly natural parameter-
isation of the curve we just try to rewrite the formula in definition (3.20) in arbitrary
parameterisation using chain rule. The calculations are not transparent. Try to do it.

Consider examples of calculating curvature for curves in E2 and E3.

Example Consider a curve Cf : r(t) :

{
x = t

y = f(t)
(It is parameteri-

sationn of graph of the function f = f(x)). Calculate curvature of this curve.

We see that v(t) =

(
1

f ′(t)

)
, a(t) =

(
0

f ′′(t)

)
and we have for the curvature

that

k =
|xtytt − ytxtt|

(x2
t + y2

t )
3
2

= k =
|f ′′(t)|

(1 + f ′(t)2)
3
2

(3.28)

Example. Consider circle of the radius R, x2 + y2 = R2. Take any
parameterisation, e.g. x = R cos t, y = R sin t. Then v = (−R cos t, R sin t),
a = (−R sin t,−R cos t). Applying the formula (3.26) we come to

k =
|xtytt − ytxtt|

(x2
t + y2

t )
3
2

=
|R2 cos2 t+R2 sin2 t|

(R2 cos2 t+R2 sin2 t)
3
2

=
R2

R3
=

1

R

:
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Example Consider ellipse r(t) :

{
x = a cos t

y = b sin t
, 0 ≤ t < 2π. Then v(t) =(

−a sin t
b cos t

)
, a(t) =

(
−a cos t
−b sin t

)
and for curvature we have

k =
|xtytt − ytxtt|

(x2
t + y2

t )
3
2

= k =
|ab sin2 t+ ab cos2 t|

(a2 sin2 t+ b2 cos2 t)
3
2

=
ab

(a2 sin2 t+ b2 cos2 t)
3
2

.

(3.29)
In particular we see that at the points (±a, 0) (t = 0, π) curvature is equal
to k = ab

b3
= a

b2
and at the points (0,±b) (t = ±π

2
) curvature is equal to

k = ab
a3 = b

a2 .

Example Consider helix

r(t) :


x = R cos t

y = R sin t

z = ct

(3.30)

We see that velocity and acceleration vectors are equal to

v(t) =
dr(t)

dt
=

−R sin t
R cos t
c

 , a(t) =
dv(t)

dt
=

−R cos t
R sin t

0


One can calculate curvature traightworwardly sing the formula (3.25):

k =
|v(t)× a(t)|
|v(t)|3

=

∣∣∣∣∣∣det

 i j k
−R sin t R cos t c
−R cos t −R sin t 0

∣∣∣∣∣∣
(R2 + c2)

3
2

=

√
c2R2 +R4(√
R2 + c2

)3 =
R
√
c2 +R2(√
R2 + c2

)3 =
R

R2 + c2
.

We come to the beautiful answer using ‘brute force’. Try to come to this
answer in a nicer way. Speed is constant: |v(t)| =

√
R2 + c2. Velocity vector

is orthogonal to acceleration vector. This can be checked directly, but it is
evident without any calculations since speed is constant. (In fact acceleration
vector is orthogonal not only to the velocity vector but to an arbitrary vector
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at the surface of the cylinder x2 + y2 = R2 since it is orthogonal to vertical
vectors and to velocity vector. )

How to calculate curvature? We can do it without the formula (3.25),
since the area of parallelogram is equal just to the product of speed and
length of acceleration vectors, or in the other way we may just use the formula
k = |a⊥|

v2| . We have

k =
|a⊥|
v2|

=
|a|
v2

=
R

R2 + c2

since |a| = RΩ2 Notice that in this formula curvature tends to 1
R

if c→ 0 (in
this case helix tends to the circle), and curvature k tends to 0 if c → ∞ (in
this case) helix tends to straight line.

See also examples in Homework 8.

4 Surfaces in E3. Curvatures and Shape op-

erator.

In this section we study surfaces in E3. One can define surfaces by equation
F (x, y, z) = 0 or by parametric equation

r(u, v) :


x = x(u, v)

y = y(u, v)

z = z(u, v)

, (4.1)

Example the equation x2+y2 = R2 defines cylinder (cylindrical surface).
z-axis is the axis of this cylinder, R is radius of this cylinder. One can define
this cylinder by the parametric equation

r(ϕ, h) :


x = R cosϕ

y = R sinϕ

z = h

, (4.2)

where ϕ is the angle 0 ≤ ϕ < 2π and −∞ < h < ∞ takes arbitrary real
values.
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Example sphere x2 + y2 + z2 = R2:

r(θ, ϕ) :


x = R sin θ cosϕ

y = R sin θ sinϕ

z = R cos θ

, 0 ≤ θ ≤ π, 0 ≤ ϕ ≤ 2π (4.3)

Example cone x2 + y2 − k2z2 = 0:

r(h, ϕ) :


x = kh cosϕ

y = kh sinϕ

z = h

,−∞ < h <∞ 0 ≤ ϕ ≤ 2π (4.4)

Example saddle z − xy = 0:

r(u, v) :


x = u

y = v

z = uv

,−∞ < u, v <∞ (4.5)

Example graph of the surface z = F (x, y):

r(u, v) :


x = u

y = v

z = F (u, v)

,−∞ < u <∞, −∞ < v <∞ (4.6)

We will mainly concetrate on these surfaces, and we will study the qeustion
how to define their curvatures 11

4.1 Coordinate basis, tangent plane to the surface.

Coordinate basis vectors are ru = ∂u, rv = ∂v. At the any point p, p = r(u, v)
these vectors span the plane, (two-dimensional linear space) TpM in three
dimensional vector space TpE

3.

TpM = {λru + µrv, λ, µ ∈ R}, Tp subspace inTpE
3 (4.7)

11There are many other interesting surfaces, e.g. so called ruled surfaces (surfaces such
that every point of the surface possesses the straight line. A good example of ruled surfaces
is saddle considered above.)
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E.g. consider the point p = (R, 0, 0) on the cylinder (4.2). Then p = r(ϕ, h)
for ϕ = 0, h = 0. Coordinate basis vectors are

rϕ =

−R sinϕ
R cosϕ

0

 , rh =

0
0
1

 (4.8)

or in other notations

rϕ = −R sinϕ∂x +R cosϕ∂y, rh = ∂z (4.9)

At the point p = (R, 0, 0) they are are equal to the vectors ∂y and ∂z re-
spectively attached at this point. Tangent plane at the point p is the plane
passing through the point p spanned by the vectors ∂y and ∂z.

4.2 Curves on surfaces. Length of the curve. Internal
and external point of the view. First Quadratic
Form

Let M : r = r(u, v) be a surface and C curve on this surface, i.e. C : r(t) =
r(u(t, v(t))).

Consider an arbitrary point p = r(t) = r(u(t), v(t)) at this curve.

• TpE
3—three-dimensional tangent space to the point p,

• TpM—two dimensional linear space tangent to the surface at the point p, spanned
by the tangent vectors ∂u, ∂v

• TpM—one dimensional linear space tangent to the curve at the point p spanned
by the velocity vector v(t).

v(t) =
dr(u(t), v(t))

dt
= ut

∂r
∂u

+ vt
∂r
∂v

= utru + vtrv (4.10)

These tangent spaces form flag of subspaces TpC < TpM < TpE
3.

How to calculate the length of the arc of the curve:

C : r(t) = r(u(t, v(t))) =


x = x(u(t), v(t))

y = y(u(t), v(t))

z = z(u(t), v(t))

t1 ≤ t2.
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External and internal observer do it in different ways. External observer just
looks at the curve as the curve in ambient space. He uses the formula (3.12):

L = Length of the curve L =

∫ b

a

|v(t)|dt =

∫ b

a

√(
dx(t)

dt

)2

+

(
dy(t)

dt

)2

+

(
dz(t)

dt

)2

dt .

(4.11)
What about internal observer?
Internal observer will perform calculations in coordinates u, v. We have

|v(t)| =
√

(v,v). We have

v =
dr(t)

dt
=
dr(u(t), v(t))

dt
= u̇

∂r(u, v)

∂u
+ v̇

∂r(u, v)

∂v
= u̇ru + v̇rv .

Hence the scalar product

(v,v) = (utru + vtrv, utru + vtrv) = u2
t (ru, ru) + 2utvt(ru, rv) + v2

t (vt, vt) .

To understand how internal observer can calculate the length of the curve
we have to introduce

Guu = (ru, ru), Guv = (ru, rv) Gvu = (rv, ru), Gvv = (rv, rv) (4.12)

Of course Guv = Gvu. We see that internal observer calculates the length
of the curve using time derivatives ut, vt of internal coordinates u, v and
coefficients (4.12):

(v,v) = u2
t (ru, ru) + 2utvt(ru, rv) + v2

t (vt, vt) = G11u
2
t + 2G12utvt +G22v

2
t .

(4.13)

We come to conception of first quadratic form.

Definition First quadratic form defines length of the tangent vector to
the surface in internal coordinates and length of the curves on the surface.

The first quadratic form at the point r = r(u, v) is defined by symmetric
matrix: (

Guu Guv

Gvu Gvv

)
=

(
(ru, ru) (ru, rv)
(ru, rv) (rv, rv)

)
, (4.14)

where ( , ) is a scalar product.

E.g. calculate the first quadratic form for the cylinder (4.2). Using (4.8),
(4.9) we come to(

Ghh Ghϕ

Gϕh Gϕϕ

)
=

(
(rh, rh) (rh, rϕ)
(rϕ, rh) (rϕ, rϕ)

)
=

(
1 0
0 R2

)
(4.15)
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(See this example and other examples in Homework 9)
Let X = aru+brv be a vector tangent to the surfaceM at the point r(u, v).

Then the length of this vector is defined by the scalar product (X,X):

|X|2 = (X,X) = (aru + brv, aru + brv) = a2(ru, ru) + 2ab(ru, rv) + b2(rv, rv)
(4.16)

It is just equal to the value of the first quadratic form on this tangent vector:

(X,X) = G(X,X) =
(
a, b

)
·
(
Guu Guv

Gvu Gvv

)
·
(
a
b

)
= Guua

2 + 2Guvab+Gvvb
2

(4.17)
External observer (person living in ambient space E3) calculate the length

of the tangent vector using formula (4.16). An ant living on the surface
(internal observer) calculate length of this vector in internal coordinates using
formula (4.17). External observer deals with external coordinates of the
vector, ant on the surface with internal coordinates.

If X,Y are two tangent vectors in the tangent plane TpC then G(X,Y) at the
point p is equal to scalar product of vectors X,Y: (X,Y) = (X1r1 + X2r2, Y

1r1 +
Y 2r2) = X1(r1, r1)Y 1 +X1(r1, r2)Y 2 +X2(r2, r1)Y 1 +X2(r2, r2)Y 2 = Xα(rα, rβ)Y β =
XαGαβY

β = G(X,Y). We identify quadratic forms and corresponding symmetric bilin-
ear forms. Bilinear symmetric form B(X,Y) = B(Y,X) defines quadratic form Q(X) =
B(X,X). Quadratic form satisfies the condition Q(λX) = λ2Q(X) and so called parallel-
ogram condition

Q(X + Y) +Q(X−Y) = 2Q(X) + 2Q(Y) (4.18)

First quadratic form and length of the curve
Let r(t) = r(u(t), v(t)) a ≤ t ≤ b be a curve on the surface.
The first quadratic form measures the length of velocity vector at every

point of this curve. Write down again the formula for length of the curve in
internal coordinates using First Quadratic form (compare with (4.13)).

Velocity of this curve at the point r(u(t), v(t)) is equal to v = dr(t)
dt

=
utru + vtrv. The length of the curve is equal to

L =

∫ b

a

|v(t)|dt =

∫ b

a

√
(v(t),v(t))dt =

∫ b

a

√
(utru + vtrv, utru + vtrv)dt =

(4.19)∫ b

a

√
(ru, ru)u2

t + 2(ru, rv)utvt + (rv, rv)v2
t dτ =
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∫ b

a

√
G11u2

t + 2G12utvt +G22v2
t dt . (4.20)

An external observer will calculate the length of the curve using (4.16).
An ant living on the surface calculate length of the curve via first quadratic
form using (4.20): first quadratic form defines Riemannian metric on the
surface:

ds2 = G11du
2 + 2G12dudv +G22dv

2 (4.21)

Example Consider the curve

r(t)


x = R cos Ωt

y = R sin Ωt

z = ct

, 0 ≤ t ≤ T

on the cylinder (4.2) (helix). The coordinates of this curve on the cylinder
(internal coordinates) are {

ϕ(t) = Ωt

h(t) = ct
.

(For ‘ant’ it will be line!)
To calculate the length of this curve the external observer will perform

the calculations

L =

∫ T

0

√
x2
t + y2

t + z2
t dt =

∫ T

0

√
Ω2R2 sin2 t+ Ω2R2 cos2 t+ c2dt =

∫ T

0

√
Ω2R2 + c2dt = T

√
Ω2R2 + c2 .

An internal observer (”ant”) uses quadratic form (4.15) and perform the
following calculations:

L =

∫ T

0

√
G11ϕ2

t + 2G12ϕtht +G22h2
tdt =

∫ T

0

√
R2ϕ2

t + h2
tdt =

∫ T

0

√
Ω2R2 + c2dt = T

√
Ω2R2 + c2 .

The answer will be the same. (See this and other examples in Homework 9).

4.3 Unit normal vector to surface

We define unit normal vector field for surfaces in E3.
Consider vector field defined on the points of surface.
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Definition Let M : r = r(u, v) be a surface in E3. We say that vector
n(u, v) is normal unit vector at the point p = r(u, v) of the surface M if
it has unit length |n| = 1, and it is orthogonal to the surface, i.e. it is
orthogonal to the tangent plane TpM . This means that it is orthogonal to
any tangent vector ξ ∈ TpM , i.e. it is orthogonal to the coordinate vectors
ru = ∂u, rv = ∂v at the point p.

n : (n, ru) = (n, rv) = 0, (n,n) = 1 . (4.22)

Write down this equation in components:

If surface is given by equation r(u, v) :


x = x(u, v)

y = y(u, v)

z = z(u, v)

then

ru =

xuyu
zu

 , rv =

xvyv
zv

 ,

and n =

nxny
nz

 is unit normal vector. Then writing the previous conditions

in components we come to

(n, ru) = nxxu+nyyu+nzzv = 0, (n, rv) = nxxv+nyyv+nzzv = 0, (n,n) = n2
x+n

2
y+n

2
z = 1

Normal unit vector is defined up to a sign. At any point there are two normal
unit vetors: the transformation n → −n transforms normal unit vector to
normal unit vector.

Vector field defined at the points of the surface is called normal unit
vector field if any vector is normal unit vector.

In simple cases one can guess how to find unit normal vector field using
geometrical intuition and just check that conditions above are satisfied. E.g.
for sphere (4.3) r is orthogonal to the surface, hence

n(θ, ϕ) =
r(θ, ϕ)

R
= ±

sin θ cosϕ
sin θ sinϕ

cos θ
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For cylinder (4.2) it is easy to see that at any point (ϕ, h) (4.2), r : x =
R cosϕ, y = R sinϕ, z = h, a normal unit vector is equal to

n(ϕ, h) = ±

cosϕ
sinϕ

0

 (4.23)

Indeed it is easy to see that the conditions (4.22) are satisfied.
In general case one can define n(u, v) in two steps using vector product

formula:

n(u, v) =
N(u, v)

|N(u, v)|
where N = ru × rv (4.24)

Indeed by definition of vector product vector field N(u, v) is orthogonal to ru
and rv, i.e. it is orthogonal to the surface. Dividing N on the length we come
to unit normal vector field n(u, v) at the point r(u, v). (See other examples
of calculating normal unit vector in the Homework 9)

4.4 † Curves on surfaces—normal acceleration and
normal curvature

We know already how to measure the length of the curve belonging to the given surface.
What about curvature? Answering this question we will be able to study curvature of the
surface.

Before we have to introduce normal acceleration and normal curvature for curves on
the surfaces.

We know that acceleration vector a in general is not tangent to the curve. Recall that
when studying curvature we consider decomposition of acceleration vector on tangential
component and the component which is perpendicular to velocity vector: a = atang + a⊥.
The curvature of curve is nothing but the magnitude of normal acceleration a⊥ of particle
which moves along the curve with unit speed: k = |a⊥|

|v| .
Now we consider normal acceleration of the curve on the surface.
Let M : r = r(u, v) be a surface and C : u = u(t), v = v(t), i.e. r(t) = r(u(t), v(t)),

be curve on the surface M . Consider an arbitrary point p = r(t) = r(u(t), v(t)) on this
curve and velocity and acceleration vectors v = dr(t)

dt , a = d2r(t)
dt2 at this point.

Definition The component of acceleration vector of the curve on the surface orthogo-
nal to the surface is called a normal acceleration of curve on the surface. If a is acceleration
vector then

a = a|| + an, , (4.25)

where the vector a|| is tangent to the surface and the vector an is orthogonal (perpendic-
ular) to the surface. Calculate vector an.
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If n is a normal unit vector to the surface, then vector an is collinear (proportional)
to the vector n and vector a|| is orthogonal to this vector:

an = ann, (n,a||) = 0 .

Take a scalar product of left and right hand sides of the formula (4.25) on the vector n.
We come to:

(n,a) = (n,a|| + an) = (n,a||) + (n,an) = 0 + an(n,n) = an.

Hence we come to
a = ann = (n,a)n . (4.26)

Avoid confusion! The normal acceleration vector an of the curve on the surface is or-
thogonal to the surface. The normal acceleration vector of the curve in E3 a⊥ is orthogonla
to the velocity vector of the curve.

Now we are ready give a definition of normal curvature of the curve on the surface.
Definition Let C be a curve on the surface M . Let v, a be velocity and acceleration

vectors at the given point of this curve and n be normal unit vector at this point. Then

κn =
an
|v|2

=
(n,a)
(v,v)

(4.27)

is called normal curvature of the curve C on the surface M at the point p. Or in other
words

|κn| =
|an|

(v,v)
, (4.28)

i.e. up to a sign normal curvature is equal to modulus of normal acceleration divided on
the square of speed (Compare with formula (3.23) for usual curvature.)

Remark Avoid confusion: We know that usual curvature k of the curve is defined by
the formula k = |a⊥|

|v|2 , where a⊥ is a magnitude of the acceleration vector orthogonal to
the curve (see the formula (3.23)). Normal curvature of the curve on the surface is defined
by the analogous formula bunt in terms of normal acceleration an which is orthogonal to
the surface, not to the curve!

In fact one can see that |a⊥| ≤ |an|, i.e. modulus of the normal curvature is less or
equal to the usual curvature of the curve. (See in details the Appendix ”Relations between
usual curvature, normal curvature and geodesic curvature”)

4.5 Shape operator on the surface

Let M : r = r(u, v) be a surface and L(u, v) be an arbitrary (not necessarily unit normal)
vector field at the points of the surface M . We define at every point p = r(u, v) a linear
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operator KL acting on the vectors tangent to the surface M such that its value is equal
to the derivative of vector field L(u, v) along vector ξ

KL : ξ ∈ TpM 7→ KL(ξ) = ∂ξL = ξu
∂L(u, v)
∂u

+ ξv
∂L(u, v)
∂v

, (4.29)

ξu, ξv are components of vector ξ

ξ = ξuru + ξvrv (4.30)

The vector KLξ ∈ TpE3 in general is not a vector tangent to the surface C and KL is
linear operator from the space TpM in the space TpE3 of all vectors in E3 attached at the
point p

It turns out that in the case if vector field L(u, v) is a unit normal vector field then
operator KL takes values in vectors tangent to M and it is very important geometric
properties.

Definition-Proposition Let n(u, v) be a unit normal vector field to the
surface M . Then operator

S : S(X) = ∂X(−n) = −Xu
∂n(u, v)

∂u
−Xv

∂n(u, v)

∂v
(4.31)

maps tangent vectors to the tangent vectors:

S : TpM → TpM for every X = Xuru +Xvrv ∈ TpM, S(X) ∈ TpM
(4.32)

This operator is called shape operator.

Remark The sign ” − ” seems to be senseless: if n is unit normal vector field then
−n is normal vector field too. Later we will see why it is convenient (see the proof of the
Proposition below).

Show that property (4.32) is indeed obeyed, i.e. vector X′ = S(X) is
tangent to surface. Consider derivative of scalar product (n,n) with respect
to the vector field X. We have that (n,n) = 1. Hence

∂X(n,n) = 0 = ∂X(n,n) = (∂Xn,n) + (n, ∂Xn) = 2(∂Xn,n) .

Hence (∂Xn,n) = −(S(X),n) = −(X′,n) = 0, i.e. vector ∂Xn = −X′ is
orthogonal to the vector n. This means that vector X′ is tangent to the
surface.

Write down the action of shape operator on coordinate basis ru = ∂u,
∂v = rv at the given point p:

S(ru) = −∂run(u, v) = −∂n(u, v)

∂u
, S(rv) = −∂rvn(u, v) = −∂n(u, v)

∂v
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Since the shape operator transforms tangent vectors to tangent vectors,
then

S(ru) = −∂n(u,v)
∂u

= a ru + crv
S(rv) = −∂n(u,v)

∂v
= bru + drv

,

i.e.

S =

(
a b
c d

)
in the coordinate basis ru, rv (4.33)

Examples of shape operator see in the subsection above (Shape operator,
Gaussian and mean curvature for sphere and cylinder) and in the Homework
9.

Remark. Shape operator as well as normal unit vector is defined up to
a sign:

n(u, v)→ −n(u, v), then S → −S .

We show now that normal acceleration of a curve on the surface and normal curvature
are expressed in terms of shape operator.

Let C : r(t) be a curve on the surface M , r(t) = r(u(t), v(t)). Let v = v(t) = dr(t)
dt ,

a = a(t) = d2r(t)
dt2 be velocity and acceleration vectors respectively. Recall that

v(t) =
dr(t)
dt

= ẋex + ẏey + żez =
dr(u(t), v(t))

dt
= u̇ru + v̇rv (4.34)

be velocity vector; u̇, v̇ are internal components of the velocity vector with respect to the
basis {ru = ∂u, rv = ∂v} and ẋ, ẏ, ż, are external components velocity vectors with respect
to the basis {ex = ∂x, ey = ∂y, ez = ∂z} . As always we denote by n normal unit vector.

Proposition The normal acceleration at an arbitrary point p = r(u(t0), v(t0)) of the
curve C on the surface M is defined by the scalar product of the velocity vector v of the
curve at the point p on the value of the shape operator on the velocity vector:

an = ann = (v, Sv) n (4.35)

and normal curvature (4.27) is equal to

κn =
(n,a)
(v,v)

=
(v, Sv)
(v,v)

(4.36)

Proof of the Proposition. According to (5.32) we have

an = (n,a)n = n
(

n,
d

dt
v(t)

)
n = n

d

dt
(n,v(t))− n

(
d

dt
n(u(t), v(t)),v(t)

)
= 0 + (−∂vn,v) n = (Sv,v)n

This proves Proposition.
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4.6 Principal curvatures, Gaussian and mean curva-
tures and shape operator

Now we introduce on surfaces, principal curvatures, Gaussian curvature and
mean curvature.

Let p be an arbitrary point of the surface M and S be shape operator at
this point. S is symmetric operator: (Sa,b) = (b, Sa). Consider eigenvalues
λ1, λ2 and eigenvectors l1, l2 of the shape operator S

l1, l2 ∈ TpM, S l1 = κ1l1, S l2 = κ2l2, (4.37)

Definition Eigenvalues of shape operator λ1, λ2 are called principal cur-
vatures:

λ1 = κ1, λ2 = κ2

Eigenvectors l1, l2 define the two directions such that curves directed along
these vectors have normal curvature equal to the principal curvatures κ+, κ−.

These directions are called principal directions

Remark As it was noted above normal unit vector as well as a shape
operator are defined up to a sign. Hence principal curvatures, i.e. eigenvalues
of shape operator are defined up to a sign too:

n→ −n, then S → −S, then (κ1, κ2)→ (−κ1,−κ2) (4.38)

Remark. Principal directions are well-defined in the case if principal curvatures
(eigenvalues of shape operator) are different: λ1 = κ1 6= κ2 = λ2. In the case if eigenvalues
λ1 = λ2 = λ then S = λE is proportional to unity operator. In this case all vectors are
eigenvectors, i.e. all directions are principal directions. (This happens for the shape
operator of the sphere: see the Homework 9.)

Remark Do shape operator have always two eigenvectors? Yes, in fact one can prove
that it is symmetrical operator: 〈Sa,b〉 = 〈Sb,a〉 for arbitrary two vectors a,b, hence it
has two eigenvectors. This implies that principal directions are orthogonal to each other.
Indeed one can see that λ2(l2, l1) = (Sl2, l1) = (l2, Sl1) = λ1(l2, l1). It follows from this
relation that eigenvectors are orthogonal ((l−, l+) = 0) if λ− 6= λ+ If λ− = λ+ then all
vectors are eigenvectors. One can choose in this case l−, l+ to be orthogonal.

Definition

• Gaussian curvature K of the surface M at a point p is equal to the
product of principal curvatures.

K = κ1κ2 (4.39)
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• Mean curvature K of the surface M at a point S is equal to the sum
of the principal curvatures:

H = κ1 + κ2 (4.40)

Recall that the product of eigenvalues of a linear operator is determinant
of this operator, and the sum of eigenvalues of linear operator is trace of this
operator. Thus we immediately come to the useful formulae for calculating
Gaussian and mean curvatures:

Proposition Let S be a shape operator at the point p on the surface M .
Then

• Gaussian curvature K of the surface M at the point p is equal to the
determinant of the shape operator:

K = κ1κ2 = detS (4.41)

• Mean curvature H of the surface M at the point p is equal to the trace
of the shape operator S:

H = κ1 + κ2 = TrS (4.42)

E.g. if in a given coordinate basis a shape operator is given by the matrix(
a b
c d

)
(see e.g. equations (4.32) and(4.35) ), then

K = detS = det

(
a b
c d

)
= ad−bc, H = TrS = Tr

(
a b
c d

)
= a+d (4.43)

4.7 Shape operator, Gaussian and mean curvature for
sphere cylinder and cone

Consider now some examples. (These and other examples see in detail in the
Homework 8.)

Example Calculate mean an Gaussian curvature for sphere x2+y2+z2 =
R2.
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For the sphere of radius R in spherical coordinates (see 4.3)

r(θ, ϕ) :


x = R sin θ cosϕ

y = R sin θ sinϕ

z = R cos θ

, 0 ≤ θ ≤ π, 0 ≤ ϕ ≤ 2π

coordinate basis vectors are rθ = ∂r
∂θ

=

R cos θ cosϕ
R cos θ sinϕ
−R sin θ

, rϕ = ∂r
∂ϕ

=

−R sin θ sinϕ
R sin θ cosϕ

0


and unit normal vector which is orthogonal to sphere equals to n(θ, ϕ) =

r(θ,ϕ)
R

=

sin θ cosϕ
sin θ sinϕ

cos θ

.

One can see that n is indeed orthogonal to the sphere. This is evident
geometrically: the fact that (n, rθ) = (n , rϕ) = 0 and its length equals to 1
can be checked by straightforward calculations. On the other hand one cna
prove it noticing that equation of sphere x2 + y2 + z2 = R2 can be rewritten
as (r, r) = R2. Differentiating this equation by θ and ϕ we come to

∂

∂θ
(r, r) = 0 = 2(rθ, r)

∂

∂ϕ
(r, r) = 0 = 2(rϕ, r)

Thus we have proved that vector r is orthogonal to basic vectors rθ, rϕ, i.e.to
any tangent vector. The length of this vector is equal to R. Hence n = ± r

R
.

Consider shape operator. By definition Sv = −∂vn:

Srθ = −∂n(θ, ϕ)

∂θ
= − ∂

∂θ

(
r(θ, ϕ)

R

)
= −rθ

R

and

Srϕ = −∂n(θ, ϕ)

∂ϕ
= − ∂

∂ϕ

(
r(θ, ϕ)

R

)
= −rϕ

R

Hence in the coordinate basis rθ, rϕ S =

(
− 1
R

0
0 − 1

R

)
. In the case if we

choose the opposite direction for unit normal vector then we will come to the
answer just with changing the signs: if n→ −n, S → −S.

We see that principal curvatures, i.e. eigenvalues of shape operator are
the same:

λ1 = λ2 = − 1

R
, i.e. κ1 = κ2 = − 1

R
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(if we choose the opposite sign for n then κ1 = κ2 = 1
R

). Thus we can
calculate Gaussian and mean curvature: Gaussian curvature

K = κ1 · κ2 = detS =
1

R2
.

Mean curvature

H = κ1 + κ2 = TrS = − 2

R
.

If we choose the opposite sign for n then S → −S, principal curvatures
change the sign, Gaussian curvature K = κ1 · κ2 does not change but mean
curvature H = κ1 + κ2 will change the sign: if n→ −n then H = 2

R
.

Example Cylindircal surface x2 + y2 = a2

For the cylinder we have (see 4.2)

r(h, ϕ) :


x = a cosϕ

y = a sinϕ

z = h

, 0 ≤ ϕ < 2π,−∞ < h <∞ .

Coordinate basis vectors are (see 4.8) rϕ = ∂r
∂ϕ

=

−a sinϕ
a cosϕ

0

, rh = ∂r
∂h

=0
0
1

 and unit normal vector which is orthogonal to cylinder equals to

n(h, ϕ) =

cosϕ
sinϕ

0

. One can see that n is indeed orthogonal to cylin-

der surface. This is evident geometrically but one can calculate also that
((n, rh) = (n , rϕ) = 0) and its length equals to 1. Consider shape operator.
By definition Sv = −∂vn:

Srh = −∂n(h, ϕ)

∂h
= − ∂

∂h

cosϕ
sinϕ

0

 = 0,

and

Srϕ = −∂n(θ, ϕ)

∂ϕ
= − ∂

∂ϕ

cosϕ
sinϕ

0

 = −

 sinϕ
− cosϕ

0

 =
1

a

−a sinϕ
a cosϕ

0

 = −rϕ
a
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We see that rh, rϕ are eigenvectors of Shape operator. In the coordinate basis

rh, rϕ S =

(
0 0
0 − 1

a

)
. In the case if we choose the opposite direction for unit

normal vector (n 7→ −n) then we will come to the same answer just with
changing the signs: if n→ −n, S → −S.

We see that principal curvatures, i.e. eigenvalues of shape operator are:

λ1 = 0, λ2 = −1

a
, i.e. κ1 = 0, κ2 = −1

a

(if we choose the opposite sign for n then κ2 = 1
a
). Thus we can calculate

Gaussian and mean curvature: Gaussian curvature

K = κ1 · κ2 = detS = 0 .

Mean curvature

H = κ1 + κ2 = TrS = −1

a
.

If we choose the opposite sign for n then S → −S, principal curvatures
change the sign, Gaussian curvature K = κ1 · κ2 does not change but mean
curvature H = κ1 + κ2 will change the sign: if n→ −n then H = 1

a
.

Example Surface of the cone x2 + y2 − k2z2 = 0
For the surface of the cone we have (see 4.4)

r(h, ϕ) :


x = kh cosϕ

y = kh sinϕ

z = h

, 0 ≤ ϕ < 2π,−∞ < h <∞ .

Coordinate basis vectors are (see 4.8) rϕ = ∂r
∂ϕ

=

−h sinϕ
h cosϕ

0

, rh = ∂r
∂h

=cosϕ
sinϕ

1

 For cone the expression for unit normal vector is not so trivial

like fro sphere or cylindre. One can see that the vector N =

cosϕ
sinϕ
−k

 is

orthogonal to the surface: (N, rϕ) = cosϕ(−kh sinϕ) + sinϕ(kh cosϕ) =
0 and (N, rh) = cosϕk cosϕ + sinϕk sinϕ) − k = 0. The length fo this
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vector is equal to
√
k2 + 1, hence unit unit normal vector which is orthogonal

to cylinder equals to n(h, ϕ) = ±1√
k2+1

cosϕ
sinϕ
−k

. Sure we can calculate it

straightforwardly: n = rϕ×rh
|rϕ×rh|

.

Now consider shape operator. By definition Sv = −∂vn:

Srh = −∂n(h, ϕ)

∂h
= − ∂

∂h

 1√
k2 + 1

cosϕ
sinϕ
−k

 = 0 ,

and

Srϕ = −∂n(θ, ϕ)

∂ϕ
= − ∂

∂ϕ

 1√
k2 + 1

cosϕ
sinϕ
−k

 = − rϕ

kh
√
k2 + 1

We see that rh, rϕ are eigenvectors of Shape operator. In the coordinate basis

rh, rϕ S =

(
0 0
0 − 1

kh
√
k2+1

)
. In the case if we choose the opposite direction for

unit normal vector then we will come to the same answer just with changing
the signs: if n→ −n, S → −S.

We see that principal curvatures, i.e. eigenvalues of shape operator are:

λ1 = 0, λ2 = − 1

kh
√
k2 + 1

, i.e. κ1 = 0, κ2 = − 1

kh
√
k2 + 1

.

(If we choose the opposite sign for n then κ2 = 1
kh
√
k2+1

). Thus we can
calculate Gaussian curvature K and mean curvature H:

K = κ1 · κ2 = detS = 0 , H = κ1 + κ2 = TrS =
1

kh
√
k2 + 1

.

If we choose the opposite sign for n then S → −S, principal curvatures
change the sign, Gaussian curvature K = κ1 · κ2 does not change but mean
curvature H = κ1 + κ2 will change the sign: if n→ −n then H = 1

kh
√
k2+1

.

4.8 †Principal curvatures and normal curvature

In this subsection we principal curvatures, eigenvectors of the shape operator by κ−, κ+

and respectively eigenvectors by l−, l+.
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One can consider different curves passing through an arbitrary point p on the surface
M . We know that if v velocity vector of the curve then normal curvature is equal to
κn = (Sv,v)

(v,v) (see (4.36)). What are the relations between normal curvature of curves and
principal curvature? The following Proposition establishes these relations.

Proposition
Let κ−, κ+, κ− ≤ κ+ be principal curvatures of the surface M at the point p (eigen-

values of shape operator S at the point p).
Then normal curvature κ of an arbitrary curve on the surface M at the point p takes

values in the interval (κ−, κ+):
κ− ≤ kn ≤ κ+ (4.44)

Example E.g. consider cylinder surface of the radius R. One can calculate that
principal curvatures are equal to κ− = 0, κ+ = 1

R (see Homework 8). Then for an arbitrary
curve on the surface normal curvature κn takes values in the interval (0, 1

R ) (up to a sign).
(See Homework 8 and appendix ”Normal curvature of curves on cylinder surface”)

Proof of Proposition: If velocity vector v of curve is collinear to the eigenvector l+,
v = λl+ then normal curvature of the curve C at the point p according to (4.36) is equal
to

κn =
(v, Sv)
(v,v)

=
(λl+, Sλl+)
(λl+, λl+)

=
λ2 (l+, κ+l+)
λ2(l+, l+)

=
κ+ (l+, l+)

(l+, l+)
= κ+ .

Analogously if velocity vector v is collinear to the eigenvector l− then normal curvature
of the curve C at the point p is equal to κn = (v,Sv)

(v,v) = (l−,Sl−)
(l−,l−) = (l−,κ−l−)

(l−,l−) = κ−.
In the general case if v = v+l+ + v−l− is expansion of velocity vector with respect to

the basis of eigenvectors then we have for normal curvature

kn =
(v, Sv)
(v,v)

=
(v+l+ + v−l−, λ+v+l+ + λ−v−l−)

(v+l+ + v−l−, v+l+ + v−l−)
=
κ+v

2
+ + κ−v

2
−

v2
+ + v2

−
. (4.45)

Hence we come to the conclusion that

κ− ≤ κnormal =
κ+v

2
+ + κ−v

2
−

v +2 +v2
−

≤ κ+ (4.46)

Thus we prove that normal curvature varies in the interval (λ−, λ+).
Now remember the definition of principal curvatures from the subsection 4.4: we see

that λ−, λ+ are just principal curvatures.

Summarize all the relations between normal curvature, shape operator and Gaussian
and mean curvature.

• Principal curvatures κ−, κ+ of the surface M at the given point p are eigenvalues
of shape operator S acting at the tangent space TpM (κ−, κ+). Corresponding
eigenvectors l+, l− define directions which are called principal directions. Principal
directions are orthogonal or can be chosen to be orthogonal if κ− = κ+. The normal
curvature κn for an arbitrary curve on the surface M at the point p varies in the
interval (κ−, κ+):

κ− ≤ κn ≤ κ+ (4.47)
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• Gaussian curvature K of the surface M at a point S is equal to the product of
principal curvatures, i.e. determinant of shape operator S:

K = κ+ · κ− = detS (4.48)

• Mean curvature H of the surface M at a point S is equal to the half-sum of the
principal curvatures, i.e. half of the trace of shape operator S:

H = κ+ + κ− = Tr S (4.49)

4.9 † Parallel transport of vectors along curves. Geo-
metrical meaning of Gaussian curvature.

4.9.1 † Concept of parallel transport of the vector tangent to the
surface

Parallel transport of the vectors is one of the fundamental concept of differential geometry.
Here we just give some preliminary ideas and formulate the concept of parallel transport
for surfaces embedded in Euclidean space.

Let M be a surface r = r(u, v) in E3 and C : r(t) = r(u(t), v(t)), t1 ≤ t ≤ t2 be a
curve on this surface.

Let X1 be a vector tangent to the surface at the initial point p = r(t1) of the curve
r(t) on the surface: X1 ∈ TpM . Note that X1 is a vector tangent to the surface, not
necessarily to the curve. We define now parallel transport of the vector along the curve C:

Definition Let X(t) be a family of vectors depending on the parameter t (t1 ≤ t ≤ t2)
such that following conditions hold

• For every t ∈ [t1, t2] vector X(t) is a vector tangent to the surface M at the point
r(t) = r(u(t), v(t)) of the curve C.

• X(t) = X1 for t = t1

• dX(t)
dt is orthogonal to the surface, i.e.

dX(t)
dt

is collinear to the normal vector n(t),
dX(t)
dt

= λ(t)n(t) (4.50)

Recall that normal vector n(t) is a vector attached to the point r(t) of the curve
C : r(t). This vector is orthogonal to the surface M .
The condition (4.50) means that only orthogonal component of vector field X(t)
can be changed.

We say that a family X(t) is a parallel transport of the vector X1 along a curve C : r(t)
on the surface M . The final vector X2 = X(t2) is the image of the vector X1 under the
parallel transport along the curve C.
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Using the relation (4.50) it is easy to see that the scalar product of two vectors remains
invariant under parallel transport. In particularly it means that length of the vector does
not change. If X(t), Y(t) are parallel transports of vectors X1,Y1 then

d

dt
(X(t),Y(t)) =

(
dX(t)
dt

,Y(t)
)

+
(

X(t),
dY(t)
dt

)
= 0

because vector dX(t)
dt is orthogonal to the vector Y(t) and vector dY(t)

dt is orthogonal to
the vector X(t). In particularly length does not change:

d

dt
|X(t)|2 =

d

dt
(X(t),X(t)) = 2

(
dX(t)
dt

,X(t)
)

= 2(λ(t)n(t),X(t)) = 0 (4.51)

Remark The relation (4.50) shows how the surface is engaged in the parallel transport.
Note that it is non-sense to put the right hand side of the equation (4.50) equal to zero:
In general a tangent vector ceased to be tangent to the surface if it is not changed! (E.g.
consider the vector which transports along the great circle on the sphere)

Example
In the case if surface is a plane then everything is easy. If vector X1 is tangent to

the plane at the given point, it is tangent at all the points. Vector does not change under
parallel transport X(t) ≡ X, dX(t)

dt = 0.
Example
Consider the vector ex = ∂

∂x attached at the point (0, 0, R). It is tangent vector to
the sphere x2 + y2 + z2 = R2 at the North Pole. Define parallel transport of this vector
along the meridian ϕ = 0, θ = t: r(t) : x = R sin t, y = 0, z = R cos t.

Consider the vector field X(t) =

 cos t
0

− sin t

 attached at the point r(t) of the meridian.

One can see that X(t)|t=0 =

1
0
0

 is the initial vector attached at the North pole and

dX(t)
dt

=
d

dt

 cos t
0

− sin t

 =

− sin t
0

− cos t

 = −r(t)
R

is orthogonal to the surface of the sphere. Hence X(t) is the parallel transport of the
initial vector along the meridian on the sphere.

More in detail about parallel transport see also in the Appendix “Parallel transport
of vectors tangent to sphere”.

4.9.2 †Parallel transport along a closed curve

We will formulate another Theorem which is strictly related with the Theorema Egregium
and explains how internal observer can calculate Gaussian curvature.
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Let C be a closed curve on a surface M such that C is a boundary of a compact
oriented domain D ⊂M , then during the parallel transport of an arbitrary tangent vector
along the closed curve C the vector rotates through the angle

∆Φ = ∠ (X,RCX) =
∫
D

Kdσ , (4.52)

where K is the Gaussian curvature and dσ =
√

det gdudv is the area element induced by
the First quadratic form on the surface on the surface M , i.e. dσ =

√
det gdudv.

In particular if Gaussian curvature K is constant then

∆Φ = ∠ (X,RCX) = KS (4.53)

For example consider the sphere x2 + y2 + z2 = R2 and the triangle ABC on it with
vertices A = (0, 0, 1), B = (1, 0, 0) and C = (cosϕ, sinϕ, 0). Then during parallel transport
of the vector along the triangle ABC it will rotate on the angle ϕ (see the Homework 8).
On the other hand the area of this triangle equals to S = R2ϕ. We see that

ϕ =
S

R2
= KS

The angle of rotation of tangent vector in fact depends only on the internal geometry
of surface. Thus the relation above can be used for proving the Theorema Egregium.

The Theorem above has very interesting
Corollary Let ABC be triangle on the surface M where AB,AC,BC are shortest

curves connecting the points A,B,C. Let α, β, γ be angles of this triangle. For usual
triangle sum of angles equal to π. It turns out that for triangel on the surface the sum of
angles is related with Gaussian curvature:

α+ β + γ − π =
∫
4ABC

Kdσ (4.54)

Internal observer may use this formula for calculating gaussian curvature at any given
point: He draws the triangle calculate the sum of angles and see that

K ≈ α+ β + γ − π
S

4.9.3 Theorema Egregium

We know that Gaussian curvature of cylinder cone and plane equals to zero
and Gaussian curvature of sphere equals to 1

R2 (see the calculations in the
end of the subsection 4.7 and Homework 8.)

We know that we can form cylindrical surface and cone surface bending
the sheet of paper without ”shrinking”. On the other hand one can not form
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a part of sphere from the sheet of the paper without ”shrinking” it. How to
express mathematically this fact?

Consider on the sheet of the paper two close points A,B and the segment
AB. The length of this segment is the shortest distance between points A
and B. Any curve starting at the point A and finishing at the point B has the
length which is greater or equal than the length of the segment AB. When we
form cylindrical (or conic) surface bending the sheet of the paper we do not
distort this property. The segment AB on the cylindrical surface will become
the curve which we will denote also AB, but the length of this curve will be
the same and it will be the shortest curve amongst all the curves connecting
the points A and B. Internal observer (”ant” mathematician living on the
cylindrical surface) observes that the curve AB on the cylinder has the same
length as it has before (being the segment on flat sheet of the paper). This is
strictly related with the fact that Gaussian curvature of the cylinder surface
equals to zero.

Theorem (Theorema Eggregium) The Gaussian curvature of surface is
defined by first quadratic form. If Two surfaces have the same quadratic form
then they have the same Gaussian curvature.

In other words if we measure the length of the curves and angles between
them on two surfaces we will come to the same answers, then these surfaces
have the same Gaussian curvature.

In particular if a surfaces have vanishing Gaussian curvature then locally
one comes to this surface bending the sheet of the paper without ”shrinking”.

This Theorem explains why sphere even locally cannot be transformed to
the plane without distorting.

This remarkable Theorem which belongs to Gauss is the foundation result
in differential geometry.

The proof of Theorem will be given in the course of Riemannian geometry.
Note that we calculated Gaussian curvature using Shape operator, i.e.

in terms of External observer. The Theorem says that Gaussian curvature
depends only on distances on the surface, hence the internal observer can
calculate the Gaussian curvature using e.g. the formulae for rotation of vector
over closed curve. or the formula (4.54)for sum of the angles of triangle.

4.10 Gauss Bonnet Theorem

I would like to finish the course with the following very inspiring formula:
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Consider the integral of curvature over whole closed surfaceM . According
to the Theorem above (see the formula (4.52)) the answer has to be equal
to 0 (modulo 2π), i.e. 2πN where N is an integer, because this integral is a
limit when we consider very small curve. We come to the formula:∫

D

Kdσ = 2πN

(Compare this formula with formula (5.27)).
What is the value of integer N?
We present now one remarkable Theorem which answers this question

and prove this Theorem using the formula (5.54).
Let M be a closed orientable surface.12 All these surfaces can be clas-

sified up to a diffeomorphism. Namely arbitrary closed oriented surface M
is diffeomorphic either to sphere (zero holes), or torus (one hole), or pretzel
(two holes),... ”Number k” of holes is intuitively evident characteristic of the
surface. It is related with very important characteristic—Euler characteristic
χ(M) by the following formula:

χ(M) = 2(1− g(M)), where g is number of holes (4.55)

Remark What we have called here ”holes” in a surface is often referred
to as ”handles” attached o the sphere, so that the sphere itself does not have
any handles, the torus has one handle, the pretzel has two handles and so
on. The number of handles is also called genus.

Euler characteristic appears in many different way. The simplest appear-
ance is the following:

Consider on the surface M an arbitrary set of points (vertices) connected
with edges (graph on the surface) such that surface is divided on polygons
with (curvilinear sides)—plaquets. (”Map of world”)

Denote by P number of plaquets (countries of the map)
Denote by E number of edges (boundaries between countries)
Denote by V number of vertices.

12Closed means compact surface without boundaries. Intuitively orientability means
that one can define out and inner side of the surface. In terms of normal vectors ori-
entability means that one can define the continuous field of normal vectors at all the
points of M . The direction of normal vectors at any point defines outward direction.
Orientable surface is called oriented if the direction of normal vector is chosen.
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Then it turns out that

P − E + V = χ(M) (4.56)

It does not depend on the graph, it depends only on how much holes has
surface.

E.g. for every graph on M , P − E + V = 2 if M is diffeomorphic to
sphere. For every graph on M P −E+V = 0 if M is diffeomorphic to torus.

Now we formulate Gauß -Bonnet Theorem.
Let M be closed oriented surface in E3.
Let K(p) be Gaussian curvature at any point p of this surface.
Recall that sign of Gaussian curvature does not depend on the orienta-

tion. If we change direction of normal vector n → −n then both principal
curvatures change the sign and Gaussian curvature K = detA/ detG does
not change the sign 13.

Theorem (Gauß -Bonnet) The integral of Gaussian curvature over the
closed compact oriented surface M is equal to 2π multiplied by the Euler
characteristic of the surface M

1

2π

∫
M

Kdσ = χ(M) = 2(1− number of holes) (4.57)

In particular for the surface M diffeomorphic to the sphere κ(M) = 2,
for the surface diffeomorphic to the torus it is equal to 0.

The value of the integral does not change under continuous deformations
of surface! It is integer number (up to the factor π) which characterises
topology of the surface.

E.g. consider surface M which is diffeomorphic to the sphere. If it is
sphere of the radius R then curvature is equal to 1

R2 , area of the sphere is
equal to 4πR2 and left hand side is equal to 4π

2π
= 2.

13For an arbitrary point p of the surface M one can always choose cartesian coordinates
(x, y, z) such that surface in a vicinity of this spoint is defined by the equation z =
ax2 + bx2 + . . . , where dots means terms of the order higher than 2. Then Gaussian
curvature at this point will be equal to ab. If a, b have the same sign then a surfaces looks
as paraboloid in the vicinity of the point p. If If a, b have different signs then a surfaces
looks as saddle in the vicinity of the point p. Gaussian curvature is positive if ab > 0 (case
of paraboloid) and negative if ab < 0 saddle

96



If surface M is an arbitrary surface diffeomorphic to M then metrics and
curvature depend from point to the point, Gauß -Bonnet states that integral
nevertheless remains unchanged.

Very simple but impressive corollary:
Let M be surface diffeomorphic to sphere in E3. Then there exists at least one point

where Gaussian curvature is positive.
Proof: Suppose it is not right. Then

∫
M
K
√

det gdudv ≤ 0. On the other hand
according to the Theorem it is equal to 4π. Contradiction.

In the first section in the subsection ”Integrals of curvature along the plane curve”
we proved that the integral of curvature over closed convex curve is equal to 2π. This
Theorem seems to be ”ancestor” of Gauß-Bonnet Theorem14.

Proof of Gauß-Bonet Theorem
Consider triangulation of the surface M . Suppose M is covered by N triangles. Then

number of edges will be 3N/over2. If V number of vertices then according to Euler
Theorem

N − 3N
2

+ V = V − N

2
= χ(M).

Calculate the sum of the angles of all triangles. On the one hand it is equal to 2πV . On
the other hand according the formula (5.54) it is equal to

N∑
i=1

(
π +

∫
4i
Kdσ

)
= πN +

N∑
i=1

(∫
4i
Kdσ

)
= Nπ +

∫
M

Kdσ

We see that 2πV = Nπ +
∫
M
Kdσ, i.e.∫

M

Kdσ = π

(
2V − N

2

)
= 2πχ(M)

5 †Appendices

5.1 Formulae for vector fields and differentials in cylin-
drical and spherical coordinates

Cylindrical and spherical coordinates

14Note that there is a following deep difference: Gaussian curvature is internal property
of the surface: it does not depend on isometries of surface. Curvature of curve depends
on the position of the curve in ambient space.
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• Cylindrical coordinates in E3
x = r cosϕ
y = r sinϕ
z = h

(0 ≤ ϕ < 2π, 0 ≤ r <∞) (5.1)

• Spherical coordinates in E3
x = r sin θ cosϕ
y = r sin θ cosϕ
z = r cos θ

(0 ≤ ϕ < 2π, 0 ≤ r <∞)−−− cylindrical coordiantes in E3

(5.2)

Example (Basis vectors and forms for cylindrical coordinates)
Consider cylindrical coordinates in E3: u = r, v = ϕ,w = h. Then calculating partial

derivatives we come to

∂r = ∂x
∂r ∂x + ∂y

∂r ∂y + ∂z
∂r∂z = cosϕ∂x + sinϕ∂y

∂ϕ = ∂x
∂ϕ∂x + ∂y

∂ϕ∂y + ∂z
∂ϕ∂z = −r sinϕ∂x + r cosϕ∂y

∂h = ∂x
∂h∂x + ∂y

∂h∂y + ∂z
∂h∂z = ∂z

(5.3)

Basic forms are dr, dϕ, dh and

dr(∂r) = 1, dr(∂ϕ) = 0, dr(∂h) = 0

dϕ(∂r) = 0, dϕ(∂ϕ) = 1, dϕ(∂h) = 0

dh(∂r) = 0, dh(∂ϕ) = 0, dh(∂h) = 1

(5.4)

Example (Basis vectors for spheric coordinates)
Consider spheric coordinates in E3: u = r, v = θ, w = ϕ. Then calculating partial

derivatives we come to

∂r = ∂x
∂r ∂x + ∂y

∂r ∂y + ∂z
∂r∂z = sin θ cosϕ∂x + sin θ sinϕ∂y + cos θ∂z

∂θ = ∂x
∂θ ∂x + ∂y

∂θ∂y + ∂z
∂θ∂z = r cos θ cosϕ∂x + r cos θ sinϕ∂y − r sin θ∂z

∂ϕ = ∂x
∂ϕ∂x + ∂y

∂ϕ∂y + ∂z
∂ϕ∂z = −r cos θ sinϕ∂x + r sin θ cosϕ∂y

(5.5)

Basic forms are dr, dθ, dϕ and

dr(∂r) = 1, dr(∂θ) = 0, dr(∂ϕ) = 0

dθ(∂r) = 0, dθ(∂θ) = 1, dθ(∂ϕ) = 0

dϕ(∂r) = 0, dϕ(∂θ) = 0, dϕ(∂ϕ) = 1

(5.6)
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We know that 1-form is a linear function on tangent vectors. If A,B are two vectors
attached at the point r0, i.e. tangent to this point and ω, ρ are two 1-forms then one
defines the value of ω ∧ ρ on A, B by the formula

ω ∧ ρ(A,B) = ω(A)ρ(B)− ω(B)ρ(A) (5.7)

We come to bilinear anisymmetric function on tangent vectors. If σ = a(x, y)dx ∧ dy
is an arbitrary two form then this form defines bilinear form on pair of tangent vectors:
σ(A,B) =

a(x, y)dx ∧ dy(A,B) = a(x, y) (dx(A)dy(B)− dx(B)dy(A)) = a(x, y)(AxBy −AyBy)
(5.8)

One can see that in the case if a = 1 then right hand side of this formula is nothing but
the area of parallelogram spanned by the vectors A,B.

This leads to the conception of integral of form over domain.
Let ω = a(x)dx ∧ dy be a two form and D be a domain in E2. Then by definition∫

D

ω =
∫
D

a(x, y)dxdy (5.9)

If ω = dx ∧ dy then ∫
D

w =
∫
D

(x, y)dxdy = Area of the domain D (5.10)

The advantage of these formulae is that we do not care about coordinates15

Example Let D be a domain defined by the conditions{
x2 + y2 ≤ 1
y ≥ 0

(5.12)

Calculate
∫
D
dx ∧ dy.∫

D
dx ∧ dy =

∫
D
dxdy = area of the D = π

2 .
If we consider polar coordinates then according (2.41)

dx ∧ dy = rdr ∧ dϕ

Hence
∫
D
dx ∧ dy =

∫
D
rdr ∧ dϕ =

∫
D
rdrdϕ =

∫ 1

0

(∫ π
0
dϕ
)
rdr = π

∫ 1

0
rdr = π/2.

Another example

15If we consider changing of coordinates then jacobian appears: If u, v are new coordi-
nates, x = x(u, v), y = y(u, v) are new coordinates then∫

a(x, y)dxdy =
∫
a(x(u, v), y(u, v)) det

(
xu xv
xu xv

)
dudv (5.11)

In formula(5.9) it appears under as a part of coefficient of differential form.
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Example Let D be a domain in E2 defined by the conditions{
(x−c)2
a2 + y2

b2 ≤ 1
y ≥ 0

(5.13)

D is domain restricted by upper half of the ellipse and x-axis. Ellipse has the centre
at the point (c, 0). Its area is equal to S =

∫
D
dx ∧ dy. Consider new variables x′, y′:

x = c + ax′, y = by′. In new variables domain D becomes the domain from the previous
example:

(x− c)2

a2
+
y2

b2
= x′

2 + y′
2

and dx ∧ dy = abdx′ ∧ dy′. Hence

S =
∫

(x−c)2
a2

+ y2

b2
≤1,y≥0

dx ∧ dy = ab

∫
x′2+y′2≤1,y′≥0

dx′ ∧ dy′ =
πab

2
(5.14)

Theorem 2 ( Green formula) Let ω be 2-form such that ω = dω′ and D be a domain–
interior of the closed curve C. Then ∫

D

w =
∫
C

w′ (5.15)

5.2 Curvature and second order contact (touching) of
curves

Let C1, C2 be two curves in E2. For simplicity we here consider only curves in E2.

Definition Two non-parameterised curves C1, C2 have second order contact (touch-
ing) at the point r0 if

• They coincide at the point r0

• they have the same tangent line at this point

• they have the same curvature at the point r0

If r1(t), r2(t) are an arbitrary parameterisations of these curves such that r1(t0) =
r2(t0) = r0 then the condition that they have the same tangent line means that velocity
vectors v1(t),v2(t) are collinear at the point t0.

(As always we assume that curves under considerations are smooth and regular, i.e.
x(t), y(t) are smooth functions and velocity vector v(t) 6= 0.)

Example Consider two curves Cf , Cg—graphs of the functions f1, f2. Recall that
curvature of the graph of the function f at the point (x, y = f(x)) is equal to (see (3.28))

k(x) =
f ′′(x)

(1 + f ′(x))
3
2

(5.16)
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Then condition of the second order touching at the point r0 = (x0, y0) means that
They coincide at the point r0: f(x0) = g(x0)
They have the same tangent line at this point: f ′(x0) = g′(x0)
They have the same curvature at the point r0: f ′′(x0)

(1+f ′(x0))
3
2

= g′′(x0)

(1+g′(x0))
3
2
, i.e. f ′′(x0) = g′′(x0)

We see that second order touching means that difference of the functions in vicinity of the
point x0 is of order o((x− x0)2). Indeed due to Taylor formula

f(x) = f(x0) + f ′(x0)(x− x0) + 1
2f
′′(x0)(x− x0)2 + . . .

g(x) = g(x0) + g′(x0)(x− x0) + 1
2g
′′(x0)(x− x0)2 + . . .

(5.17)

where we denote by dots terms which are o(x − x0)2. (They say that f(x) = o(x − x0)n

if limx→x0
f(x)

(x−x0)n = 0).
Hence

f(x)− g(x) = o(x− x0)2 (5.18)

because f(x0) = g(x0), f(x0) = g(x0), f ′(x0) = g′(x0) and f ′′(x0) = g′′(x0)
In general case if two curves have second order contact then in the vicinity of the

contact point one can consider these curves as a graphs of the functions y = f(x) (or
x = f(y)).

To clarify geometrical meaning of second order touching consider the case where one
of the curves is a circle. Then second order touching means that curvature of one of these
curves is equal to 1/R, where R is a radius of the circle.

We see that to calculate the radius of the circle which has the second order touching
with the given curve at the given point we have to calculate the curvature of this curve at
this given point.

Example. Let C1 be parabola y = ax2 and C2 be a circle. Suppose these curves have
second order contact at the vertex of the parabola: point 0, 0.

Calculate the curvature of the parabola at the vertex. Curvature at the vertex is equal
to k(t)|t=0 = 2a (see Homework). Hence the radius of the circle which has second order
touching is equal to

R =
1
2a
.

To find equation of this circle note that the circle which has second order touching to
parabola at the vertex passes trough the vertex (point (0, 0)) and is tangent to x-axis.
The radius of this circle is equal to R = 1

2a . Hence equation of the circle is

(x−R2) + y2 = 0, where R =
1
2a

One comes to the same answer by the following detailed analysis:
Consider equation of a circle: (x− x0)2 + (y − y0)2 = R2. The condition that curves

coincide at the point (0, 0) means that x2
0 + y2

0 = R2. x-axis is tangent to parabola at
the vertex. Hence it is tangent to the circle too. Hence y2

0 = R2 and x0 = 0. We
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see that an equation of the circle is x2 + (y − R)2 = R2. The circle x2 + (y − R)2 =
x2 + y2 − 2yR = 0 in the vicinity of the point (0, 0) can be considered as a graph of the
function y = R−

√
R2 − x2 .. The condition that functions y = ax2 and y = R−

√
R2 − x2

have second order contact means that

R−
√
R2 − x2 = ax2 + terms of the order less that x2 .

But

R−
√
R2 − x2 = R−R

√
1− x2

2R2
= R−R

(
1− x2

2R2
+ o(x2)

)
=
x2

2R
+ o(x2) .

Comparing we see that a = 1
2R and 1

R = 2a. But curvature of the parabola at the vertex
is equal to k = 2a (if a > 0). We see that k = 1

R .

5.3 Integral of curvature over planar curve.

We consider here the following problem: Let C = r(t) be a planar curve, i.e. a curve in
E2.

Let n(r(t) be a unit normal vector field to the curve, i.e. n is orthogonal to the curve
(velocity vector) and it has unit length.

E.g. if r(t) : x(t) = R cos t, y(t) = R sin t, then n(r(t)) =
(

cos t
sin t

)
If point moves along the curve r(t), t1 ≤ t ≤ t2 then velocity vector and vector field

n(t) rotate on the same angle. It turns out that this angle is expressed via integral of
curvature over the curve...

Try to analyze the situation:

Proposition Let C : r(t) be a curve in E2, v(t) = dr(t)
dt , velocity vector, k(r(t))—

curvature and n(t) unit normal vector field. Denote by ϕ(t) the angle between normal
vector n(t) and x-axis.

Then
dn(t)
dt

= ±k(r(t))v(t) (5.19)

dϕ(t)
dt

= ±k(r(t))|v(t)| (5.20)

(Sign depends on the orientation of the pair of vectors (v,n))
Note that the second statement of the Proposition has a clear geometrical meaning:

If C is a circle of the radius R then RHS of (5.20) is equal to v
R . It is just angular velocity

dϕ/dt.

To prove this Proposition note that (n,n) = 1. Hence

0 =
d

dt
(n(t),n(t)) = 2

(
dn(t)
dt

,n(t)
)
,
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i.e. vector dn(t)
dt is orthogonal to the vector n. This means that dn(t)

dt is collinear to v(t),
because curve is planar. We have dn(t)

dt = κ(r(t))v(t) where κ is a coefficient. Show that
the coefficient κ is just equal to curvature k (up to a sign). Clearly (n,v) = 0 because
these vectors are orthogonal. Hence

0 =
d

dt
(n(t),v(t)) =

(
dn(t)
dt

,v(t)
)

+
(

n(t),
dv(t)
dt

)
=

(κ(r(t))v(t),v(t)) + (n(t),a(t)) = κ(r(t))|v(t)|2 + (n,a⊥) ,

because (n(t),a(t)) = (n,a⊥). But (n,a⊥) is just centripetal acceleration: (n,a⊥) =
±|a⊥| and curvature is equal to |a⊥|/|v|2. Hence we come to κ(r(t)) = ± |a⊥||v|2 = ±k. Thus
we prove (5.19).

To prove (5.20) consider expansion of vectors n(t),v(t) over basis vectors ∂x, ∂y. We
see that

n(t) = cosϕ(t)∂x + sinϕ(t)∂y and v(t) = |v(t)| (− sinϕ(t)∂x + cosϕ(t)∂y) (5.21)

Differentiating n(t) by t we come to dn(t)
dt = dϕ(t)

dt (− sinϕ(t)∂x + cosϕ(t)∂y) = dϕ(t)
dt

v(t)
|v(t)| .

Comparing this equation with equation (5.19) we come to (5.20).
The appearance of sign factor in previous formulae related with the fact that normal

vector field is defined up to a sign factor n→ −n.
It is useful to write formulae (5.19), (5.20) in explicit way. Let r(t) : x(t), y(t) be a

parameterisation of the curve. Then v(t) =
(
xt
yt

)
velocity vector. One can define normal

vector field as

n(t) =
1√

x2
t + y2

t

(
−yt
xt

)
(5.22)

or changing the sign as

n(t) =
1√

x2
t + y2

t

(
yt
−xt

)
(5.23)

If we consider (5.22) for normal vector field then

dn(t)
dt

=
xttyt − yttxt
(x2
t + y2

t )
3
2

(
xt
yt

)
(5.24)

Recalling that k = |xttyt−ytt|xt
(x2
t+y

2
t )

3
2

we come to (5.19). For the angle we have

dϕ

dt
=
xtytt − ytxtt
(x2
t + y2

t )
3
2

√
x2
t + y2

t =
xtytt − ytxtt

(x2
t + y2

t )
(5.25)

This follows from the considerations above but it can be also calculated straightforwardly.
Remark Note that last two formulae do not possess indefenity in sign.

This Proposition has very important application. Consider just two examples:
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Consider upper half part of the ellipse x2/a2 + y2/b2 = 1, y ≥ 0. We already know
that curvature at the point x = a cos t, y = b cos t of the ellipse is equal to

k =
ab

(a2 sin t2t+ b2 cos2 t)3/2

and speed is equal to
√
a2 sin2 t+ b2 cos2 t Apply formula (5.20) of Proposition. The

curvature is not equal to zero at all the point. Hence the sign in the (5.20) is the same for
all the points, i.e.

π =
∫ π

0

dϕ(t)dt = ±
∫ π

0

k(r(t))|v(t)| = (5.26)∫ π

0

ab

(a2 sin2 t+ b2 cos2 t)3/2

√
a2 sin2 t+ b2 cos2 t dt =

∫ π

0

abdt

a2 sin2 t+ b2 cos2 t
.

We calculated this integral using geometrical considerations: left hand side represents the
angle of rotation of normal unit vector and this angle is equal to π. Try to calculate the
last integral straightforwardly: it is not easy exercise in calculus.

Another example: Let r = r(t), x = x(t), y = y(t), t1 ≤ t ≤ t2 be a closed curve in
E2 (r(t1) = r(t2).) We suppose that it possesses self-intersections points. We cannot us
a formula (5.20) for integration because in general curvature may vanish at some points,
but we still can use the formula (5.25). The rotation of the angle ϕ is equal to 2πn, (n-is
called winding number of the curve). Hence according to (5.25) see that∫ t2

t1

xtytt − xtytt
x2
t + y2

t

= 2πn

or
1

2π

∫ t2

t1

xtytt − xtytt
x2
t + y2

t

= n (5.27)

The integrand us equal to the curvature multiplied by the speed (up to a sign). Left hand
side is integral of continuous function divided by transcendent number π. The geometry
tells us that the answer must to be equal to integer number.

5.4 Relations between usual curvature normal curva-
ture and geodesic curvature.

Consider at any point p of the curve the following basis {v, f , n}, where

• velocity vector v is tangent to the curve

• the vector f is the vector tangent to the surface but orthogonal to the vector v.

• n is the unit normal vector to the surface, i.e.it is orthogonal to vectors v and f .

Decompose acceleration vector over three directions, i.e. over three one-dimensional
spaces spanned by vectors v, f and n:
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a = aorthogonal to surface + atang.to surf. and orthog. to curve + atangent to curve
(5.28)

The vector aorthogonal to surface which is collinear to normal unit vector n, will be
called vector of normal acceleration of the curve on the surface. We denote it by an.

The vector atang.to surf. and orthog. to curve , collinear to unit vector fC will be
called vector of geodesic acceleration . We denote it by ageod.

The vector atangent to curve , collinear to velocity vector v, is just vector of tangential
acceleration . We denote it atang. We can rewrite (5.28) as

a = an + ageod + atang (5.29)

Study the expansion (5.29). Both vectors an and ageod are orthogonal to the curve.
The vector ageod is orthogonal to the curve but it is tangent to the surface. The vector
an is orthogonal not only to the curve. It is orthogonal to the surface.

The vector ageod + an = a⊥ is orthogonal to the curve. It is the vector of normal
acceleration of the curve.

Remark Please note that when we consider the curves on the surface it could arise
the confusion between the vector an—normal acceleration of the curve on the surface and
the vector a⊥ of normal acceleration of the curve (see (3.2)).

When we decompose in (5.29) the acceleration vector a in the sum of three vectors
an,ageod and atang then the vector an, the normal acceleration of the curve on the surface
is orthogonal to the surface not only to the curve. The vector

a⊥ = an + ageod,

is orthogonal only to the curve and in general it is not orthogonal to the surface (if
ageod 6= 0). It is the normal acceleration of the curve. It depends only on the curve.
The normal acceleration an of the curve on the surface which is orthogonal to the surface
depends on the surface where the curve lies.

We know that the curvature of the curve is equal to the magnitude of normal acceler-
ation of the curve divided on the square of the speed (see (3.22)). We have:

curvature of the curve k =
|a⊥|
|v|2

=
|an + ageod|
|v|2

.

The vectors an and ageod transform under reparameterisation in the same way as a vector
a⊥ (see (3.11)). If t→ t(τ) then

a′⊥(τ) = t2τa⊥ and a′n(τ) = t2τan(t), a′geod(τ) = t2τageod(t) (5.30)

where a′(τ) = d2

dτ2 r(t(τ)) = t2τa + tττv (see (3.9), (3.10), (3.8)). Hence the magnitudes

|ageod|
|v|2

and
|an|
|v|2

(5.31)
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are reparameterisation invariant as well as magnitude k = |a⊥|
|v|2 = |an+ageod|

|v|2 .
Multiply left and right hand sides of the equation (5.29) on unit normal vector n.

Then (atang,n) = (ageod,n) = 0 because vectors ageod and atang are orthogonal to the
vector n. We come to the relation

an = (n,a)n and , |an| = |(a,n)| . (5.32)

Or in other words scalar product (n,a) is equal to |an| (up to a sign).
Compare the formula

κn =
(n,a)
(v,v)

(5.33)

(see (4.27)) for normal curvature with the formula

k =
|a⊥|

(v,v)

for usual curvature (see (3.22)).
It follows from (5.30), (5.31) and (4.27) (or (5.33)) that for any curve on the surface

the modulus of the normal curvature is less or equal than usual curvature.

|κn| ≤ k (5.34)

Indeed we have for usual curvature

k =
|a⊥|
|v|2

=
|ageod + anormal|

|v|2
=

√
a2
geod + a2

norm

|v|2
≥ |anormal|

|v|2
= |κn| (5.35)

Normal curvature is a positive or negative real number. (Usual curvature is non-
negative real number). Normal curvature changes a sign if n→ −n.

Remark We obtained in (5.31) that the magnitude |ageod||v|2 is reparameterisation in-

variant. It defines so called geodesic curvature κgeod = |ageod|
|v|2 . We see that usual curvature

k, normal curvature κ and geodesic curvature κgeod are related by the formula

k2 = κ2
geod + κ2

normal (5.36)

5.5 Normal curvature of curves on cylinder surface.

Example Consider an arbitrary curve C : h = h(t), ϕ = ϕ(t) on the cylinder

r(ϕ, h) :


x = R cosϕ
y = R sinϕ
z = h

Pick any point p on this curve and find normal acceleration vector at this point of this
curve.

106



Without loss of generality suppose that point p is just a point (R, 0, 0). Note that
vector ex attached at the point (R, 0, 0) is unit vector orthogonal to the surface of cylinder,
i.e. ex = −n at the point p = (R, 0, 0).

RemarkUnit vector, as well as normal curvature is defined up to a sign. It is conve-
nient for us to choose n = −ex, not n = ex.

Vectors ey, ez are tangent to the surface of cylinder. At the point p = (R, 0, 0)
ϕ = 0, h = 0.

We have

v =
dr(t)
dt

=
dx(t)
dt

ex +
dy(t)
dt

ey +
dz(t)
dt

ez =

R
d cosϕ(t)

dt
ex +R

d sinϕ(t)
dt

ey +
dh(t)
dt

ez = −R sinϕϕ̇ex +R cosϕϕ̇ey + ḣez

Thus v = Rϕ̇ey + ḣez at the point p = (R, 0, 0) . (5.37)

For acceleration vector

a =
d2r(t)
dt2

=
d2x(t)
dt2

ex+
d2y(t)
dt2

ey+
d2z(t)
dt2

ez = R
d2 cosϕ(t)

dt2
ex+R

d2 sinϕ(t)
dt2

ey+
d2h(t)
dt2

ez =

R
(
−(ϕ̇)2 cosϕ− ..

ϕ sinϕ
)
ex+R

(
−(ϕ̇)2 sinϕ+

..
ϕ cosϕ

)
ey +

..

hez =
..
ϕRey +

..

hez− (ϕ̇)2Rex

at the point p = (R, 0, 0) where cosϕ = 0, sinϕ = 1. We see that

a =
..
ϕRey +

..

hez︸ ︷︷ ︸
tangent to the surface

− (ϕ̇)2Rex︸ ︷︷ ︸
normal to the surface

(5.38)

We see that an = (ϕ̇)2Rex. Comparing with velocity vector (5.37) we see that

an =
v2
horizontal

R
n (5.39)

We see that for any curve on the cylinder x2 + y2 = R2 the normal curvature (an,n)
|v|2

(see (4.27)) is equal to
(an,n)
|v|2

=
Rϕ̇2

R2ϕ̇2 + ḣ2
(5.40)

and it obeys relations

0 ≤ κnormal ≤
1
R

depending of the curve. E.g. if the curve on the cylinder is a straight line x = x0, y =
y0, z = t then a = 0 and normal curvature of this curve is equal to the naught as well as
usual curvature.

If the curve is circle x = R cos t, y = R sin t, z = z0 then normal curvature of this curve
as well as usual curvature is equal to 1

R .

Remark Very important conclusion from this example is
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normal curvature of the cylinder of the radius R takes values in the interval
(
0, 1

R

)
. It

cannot be greater than 1
R

Note that we can consider on cylinder very curly curve of very big curvature. The normal
curvature at the points of this curve will be still less than 1

R .

At any point of the surface normal curvature in general depends on the curve but it
takes values in the restricted interval.

E.g. for the sphere of radius R one can see that normal curvature at any point is
equal to 1

R independent of curve. In spite of this fact the usual curvature of curve can be
very big 16. If we consider the circle of very small radius r on the sphere then its usual
curvature is equal to k = 1

r and k →∞ if r → 0 So we see that one can define curvature
of surface in terms of normal curvature.

5.6 Parallel transport of vectors tangent to the sphere.

1. Consider now in a more detail the parallel transport along curves on sphere.
In the case if surface is a plane then everything is easy. If vector X1 is tangent to

the plane at the given point, it is tangent at all the points. Vector does not change under
parallel transport X(t) ≡ X.

Consider a case of parallel transport along curves on the sphere.

Consider on the sphere x2 + y2 + z2 = a2 (a is a radius) tangent vectors:

rθ =

a cos θ cosϕ
a cos θ sinϕ
−a sin θ

 rϕ =

−a sin θ sinϕ
a sin θ cosϕ

0

 (5.41)

attached at the point r(θ, ϕ) =

a sin θ cosϕ
a sin θ sinϕ
a cos θ

. One can see that

(rθ, rθ) = a, (rh, rϕ) = 0, (rϕ, rϕ) = a2 sin2 θ

It is convenient to introduce vectors which are parallel to these vectors but have unit
length:

eθ =
rθ
a
, eϕ =

rϕ
a sin θ

(eθ, eθ) = 1, (eθ, eϕ) = 0, (eϕ, eϕ) = 1 . (5.42)

How these vectors change if we move along parallel (i.e. what is the value of ∂eθ
∂ϕ , ∂eϕ

∂ϕ );

how these vectors change if we move along meridians (i.e. what is the value of ∂eθ
∂θ , ∂eϕ∂θ ).

First of all recall that unit normal vector to the sphere at the point θ, ϕ is equal to r(θ,ϕ)
a :

n(θ, ϕ) =

sin θ cosϕ
sin θ sinϕ

cos θ


16It is the geodesic curvature of the curves which characterises its curvature with respect

to the curve. The relation between usual geodesic and normal curvature is given by the
formula (5.36).
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Now calculate:
∂eθ
∂θ

=
∂

∂θ

cos θ cosϕ
cos θ sinϕ
− sin θ

 =

− sin θ cosϕ
− sin θ sinϕ
− cos θ

 = −n (5.43)

,

∂eθ
∂ϕ

=
∂

∂ϕ

cos θ cosϕ
cos θ sinϕ
− sin θ

 =

− cos θ sinϕ
cos θ cosϕ

0

 = cos θeϕ, (5.44)

,

∂eϕ
∂θ

=
∂

∂θ

− sinϕ
cosϕ

0

 =

− cos θ sinϕ
cos θ cosϕ

0

 = 0, (5.45)

∂eϕ
∂ϕ

=
∂

∂ϕ

− sinϕ
cosϕ

0

 =

− cosϕ
− sinϕ

0

 = − sin θn− cos θeθ, (5.46)

Some of these formulaes are intuitively evident: For example formula (5.43) which
means that family of the vectors eθ(θ) is just parallel transport along meridian, because
its derivation is equal to −n.

Another intuitively evident example: consider the meridian θ(t) = t, ϕ(t) = ϕ0,
0 ≤ t ≤ π. It is easy to see that the vector field

X(t) = eθ(θ(t), ϕ0) =

cos θ(t) cosϕ0

cos θ(t) sinϕ0

− sin θ(t)


attached at the point (θ(t), ϕ0) is a parallel transport because for family of vectors X(t)
all the conditions of parallel transport are satisfied. In particular according to (5.43)

dX(t)
dt

=
dθ(t)
dt

∂

∂θ

cos θ cosϕ
cos θ sinϕ
− sin θ

 = −n(θ(t), ϕ0)

Now consider an example which is intuitively not-evident.
Example. Calculate parallel transport of the vector eϕ along the parallel. On the

sphere of the radius a consider the parallel

θ(t) = θ0, ϕ(t) = t, 0 ≤ t ≤ 2π (5.47)

In cartesian coordinates equation of parallel will be:

r(t) =

a sin θ(t) cosϕ(t)
a sin θ(t) sinϕ(t)
−a cos θ(t)

 =

 a sin θ0 cos t
a sin θ(t) sin t
−a cos θ0

 , 0 ≤ t ≤ 2π (5.48)

It is easy to see that the family of the vectors eϕ(θ0, ϕ(t)) on parallel, is not parallel
transport! because deϕ(θ0,ϕ(t))

dt = deϕ(θ0,ϕ)
dϕ is not equal to zero (see (5.46) above). Let a
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family of vectors X(t) be a parallel transport of the vector eϕ along the parallel (5.47):
X(t) = a(t)eθ(t)+b(t)eϕ(t) where a(t), b(t) are components of the tangent vector X(t) with
respect to the basis eθ, eϕ at the point θ = θ0, ϕ = t on the sphere. Initial conditions for
coefficients are a(t)|t=0 = 0, b(t)|t=0 = 1 According to the definition of parallel transport
and formulae (5.43)—(5.46) we have:

dX(t)
dt

=
d (a(t)eθ(t) + b(t)eϕ(t))

dt
=
(
da(t)
dt

)
eθ + a(t) cos θ0eϕ +

db(t)
dt

eϕ+

b(t) (− sin θ0n− cos θeθ) =

=
(
da(t)
dt
− b(t) cos θ0

)
eθ +

(
db(t)
dt

+ a(t) cos θ0

)
eϕ − b(t) sin θ0n (5.49)

Under parallel transport only orthogonal component of the vector changes. Hence we
come to differential equations{

da(t)
dt − wb(t) = 0

db(t)
dt + wa(t)

a(0) = 0, b(0) = 0, w = cos θ0 (5.50)

The solution of these equations is a(t) = sinwt, b(t) = coswt. We come to the following
answer: parallel transport along parallel θ = θ0 of the initial vector eϕ is the family

X(t) = sinwt eθ + coswt eϕ, w = cos θ0 (5.51)

During traveling along the parallel θ = θ0 the eθ component becomes non-zero At the
end of the traveling the initial vector X(t)|t=0 = eϕ becomes X(t)|t=2π = sin 2πweθ +
cos 2πweϕ: the vector eϕ after woldtrip traveling along the parallel θ = θ0 trans-
forms to the vector sin(2π cos θ0)eθ + cos(2π cos θ0)eϕ. In particularly this means
that the vector eϕ after parallel transport will rotate on the angle

angle of rotation = 2π cos θ0

Compare the angle of rotation with the area of the segment of the sphere above the
parallel θ = θ0. According to the formula (??) area of this segment is equal to S =
2πah = 2πa2(1 − cos θ0). On the other hand Gaussian curvature of the sphere is equal
to 1

a2 . Hence we see that up to the sign angle of rotation is equal to area of the seqment
divided on the Gaussian curvature:

∆ϕ = ± S
K

= ±2π cos θ0 (5.52)

5.7 Parallel transport along a closed curve on arbi-
trary surface.

The formula above for the parallel transport along parallel on the sphere keeps in the
general case.

Theorem Let M be a surface in E3. Let r(t) : r(t), t1 ≤ t ≤ t2, r(t1) = r(t2) be a
closed curve on the surface M such that it is a boundary of domain D of the surface M .
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(We suppose that the domain D is bounded an orientate.) Let X(t) be a parallel transport
of the arbitrary tangent vector along this closed curve. Consider initial and final vectors
X(t1),X(t2). They have the same length according to (4.51).

Theorem The angle ∆ϕ between these vectors is equal to the integral of Gaussian
curvature over the domain D:

∆ϕ = ±
∫
D

Kdσ (5.53)

where we denote by dσ the element of the area of surface of M .

The calculations above for traveling along the parallel are just example of this Theo-
rem. The integral of Gaussian curvature over the domain above parallel θ = θ0 is equal
to K · 2πa(1− cos θ0)= 1

a2 · 2πa2(1− cos θ0) = 2π(1− cos θ0). This is equal to the angle of
rotation 2π cos θ0 (up to a sign and modulo 2π). Another simple

Example. Consider on the sphere x2 + y2 + z2 = a2 points A = (0, 0, 1), B = (1, 0, 0)
and C = (0, 1, 0). Consider arcs of great circles which connect these points. Consider the
vector ex attached at the point A. This vector is tangent to the sphere. It is easy to see
that under parallel transport along the arc AB it will transform at the point B to the
vector −ez. The vector −ez under parallel transport along the arc BC will remain the
same vector −ez. And finally under parallel transport along the arc CA the vector −ez
will transform at the point A to the vector −ey. We see that under traveling along the
curvilinear triangle ABC vector ex becomes the vector −ey, i.e. it rotates on the angle π

2 .
It is just the integral of the curvature 1

a2 over the triangle ABC: K · S = 1
a2 · 4πa2

8 = π
2 .

We know that for planar triangles sum of the angles is equal to π. It turns out that
Corollary Let ABC be a triangle on the surface formed by geodesics. Then

∠A+ ∠B + ∠C = π +
∫
4ABC

Kds (5.54)

The Gaussian curvature measures the difference of π and sum of angles.
The corollary evidently follows form the Theorem. It is of great importance: It gives

us tool to measure curvature. (See the tale about ant.)

5.8 A Tale on Differential Geometry

Once upon a time there was an ant living on a sphere of radius R. One day he asked
himself some questions: What is the structure of the Universe (surface) where he lives? Is
it a sphere? Is it a torus? Or may be something more sophisticated, e.g. pretzel (a surface
with two holes)

Three-dimensional human beings do not need to be mathematicians to distinguish
between a sphere torus or pretzel. They just have to look on the surface. But the ant
living on two-dimensional surface cannot fly. He cannot look on the surface from outside.
How can he judge about what surface he lives on 17This is not very far from reality: For
us human beings it is impossible to have a global look on three-dimensional manifold. We

17∗
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need to develop local methods to understand global properties of our Universe. Differential
Geometry allows to study global properties of manifold with local tools.?

Our ant loved mathematics and in particular Differential Geometry. He liked to draw
various triangles, calculate their angles α, β, γ, area S(∆). He knew from geometry books
that the sum of the angles of a triangle equals π, but for triangles which he drew it was
not right!!!!

Finally he understood that the following formula is true: For every triangle

(α+ β + γ − π)
S(∆)

= c (1)

A constant in the right hand side depended neither on size of triangle nor the triangles
location. After hard research he came to conclusion that its Universe can be considered as
a sphere embedded in three-dimensional Euclidean space and a constant c is related with
radius of this sphere by the relation

c =
1
R2

(2)

...Centuries passed. Men have deformed the sphere of our old ant. They smashed it. It
seized to be round, but the ant civilisation survived. Moreover old books survived. New
ant mathematicians try to understand the structure of their Universe. They see that
formula (1) of the Ancient Ant mathematician is not true. For triangles at different places
the right hand side of the formula above is different. Why? If ants could fly and look on the
surface from the cosmos they could see how much the sphere has been damaged by humans
beings, how much it has been deformed, But the ants cannot fly. On the other hand they
adore mathematics and in particular Differential Geometry. One day considering for every
point very small triangles they introduce so called curvature for every point P as a limit
of right hand side of the formula (1) for small triangles:

K(P ) = lim
S(∆)→0

(α+ β + γ − π)
S(∆)

Ants realise that curvature which can be calculated in every point gives a way to decide
where they live on sphere, torus, pretzel... They come to following formula 18 : integral
of curvature over the whole Universe (the sphere) has to equal 4π, for torus it must equal
0, for pretzel it equalts −4π...

1
2π

∫
K(P )dP = 2 (1− number of holes)

5.8.1 Gramm matrix, Gramm determinant

This inequality is related with the following construction. Let {a1, . . . ,am} be m vectors
in Euclidean vector space En (where m,n in general are two different positive integers.
Consider so called Gramm matrix (Grammian) of these vectors

||Gik|| : Gik = (ai,ak)

18In human civilisation this formula is called Gauß -Bonet formula. The right hand side
of this formula is called Euler characteristics of the surface.
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Let aki is a matrix of components of vectors {ai} in an orthonormal basis {ei}:

ai =
n∑
k=1

aki ek

Then the following very important identity takes place

detG = (detA)2 . (5.55)

Proof is easy. We have

(ai,aj) =

(
n∑
k=1

aki ek,
n∑

k′=1

ak
′

j ek′

)
=
(
AAT

)
ij
⇒ detG = det

(
AAT

)
= (detA)2

Corollary 1. Vectors {a1, . . . ,am} are linear independent if and only if detG > 0..

Corollary 2. Take m = 2. We come to CBS inequality:

detG = (a,a)(b,b)− (a, b)2 ≥ 0 .
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