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1 Euclidean space

We recall important notions from linear algebra.

1.1 Vector space.

Vector space V' on real numbers is a set of vectors with operations 7 +
”—addition of vector and ” - ”—multiplication of vector Lon real number
(sometimes called coefficients, scalars). These operations obey the following
axioms

e VabeV,a+bel,
e Ve R VacV daeV.

Va,ba+ b = b + a (commutativity)

Va,b,c, a+ (b+c) = (a+ b) + c (associativity)

4 0 such that Va,a+ 0 =a

Va there exists a vector —a such that a + (—a) = 0.

VAeR,AN(a+b)=Xa+ )b
e VA ueR(AN+pa= X a+pa
o (An)a = A(pa)

e la=a

It follows from these axioms that in particularly 0 is unique and —a is
uniquely defined by a. (Prove it.)

Remark We denote by 0 real number 0 and vector 0. Sometimes we
have to be careful to distinguish between zero vector 0 and number zero.

Examples of vector spaces. .. Consider now just one non-trivial example:
a space of polynomials of order < 2:

V ={ax® +bx +c,a,b,c € R}.

It is easy to see that polynomials are ‘vectors’ with respect to operation of
addition and multiplication on numbers.
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Consider conterexample: a space of polynomials of order 2 such that
leading coefficient is equal to 1:

V ={2?+br+cabccR}.

This is not vcto space: why? since the for any two polynomials f, g from thsi
space the polynomials f — g, f + g does not belong to this space.

1.2 Basic example of (n-dimensional) vector space—
R’n

A basic example of vector space (over real numbers) is a space of ordered
n-tuples of real numbers.
R? is a space of pairs of real numbers. R* = {(z,v), =,y € R}
R3 is a space of triples of real numbers. R?® = {(z,vy, 2), z,y,2 € R}
R* is a space of quadruples of real numbers. R* = {(z,y, 2,t), =,9,2,t,€ R}
and so on...
R"—is a space of n-typles of real numbers:

R" = {(z', 2%, ...,2"), 2',...,, 2" € R} (1.1)

If x,y € R" are two vectors, x = (z',...,2"), y = (v}, ...,y") then

Xx+y=@1+y,...Tn+yn)-
and multiplication on scalars is defined as
X=X (2, ..., 2") = (', ..., "), (AER).
(A€ R).

Remark Why R” is n-dimensional vector space? We see it later in the
subsection 1.5

1.3 Affine spaces and vector spaces

Let V' be a vector space. A set A whose elements will be called ‘points’ is an
affine space associated with a vector space V' if the following rule is defined:
to every point P € A and an arbitrary vector x € V' a point () is assigned:
(P,x) — Q. We denote Q) = P + x.

The following properties must be satisfied:



e For arbitrary two vectors x,y € V and arbitrary point P € A,
P+ (x+y)=(P+x)+y.

e For an arbitrary point P € A, P+ 0 = P.

For arbitrary two points P,Q) € A there exists unique vector y € V
such that P +y = Q.

If P+ x = (@ we often denote the vector x =Q — P = P@ We say that
vector x = PQ starts at the point P and it ends at the point Q.

One can see that if vector x = PQ then QP = —ux; if P,Q, R are three
arbitrary points then PQ + QR PR.

Ezxamples of affine space.

Every vector space can be considered as an affine space in the following
way. We define affine space A as a same set as vector space V, but we
consider vectors of V' as points of this affine space. If A = a is an arbitrary
point of the affine space, and b is an arbitrary vector of vector space V', then
A+ b is equal to the vector a + b. We assign to two ‘points’ A =a, B=Db
the vector x = b — a.

On the other hand if A is an affine space with associated vector space V,
then choose an arbitrary point O € A and consider the vectors starting at
the at the origin. We come to the vector space V.

One can say that vector space is an affine space with fixed origin.

For example vector space R? of pairs of real numbers can be considered
as a set of points. If we choose arbitrary two points A = (a', a?), B = (b, %),
then the vector AB = B — A = (b — a!,b? — a?).

1.4 Linear dependence of vectors

We often consider linear combinations in vector space:

Z /\ixi = )\1X1 + )\2X2 + -+ /\me s (12)
where Ay, Ao, ..., A\, are coefficients (real numbers), x1,xa, .. ., X, are vectors
from vector space V. We say that linear combination (1.2) is trivial if all
coefficients Ay, Aa, ..., A\, are equal to zero.

M=X=--=),=0.



We say that linear combination (1.2) is not trivial if at least one of coefficients
A1, Ao, ..., Ay, 1S not equal to zero:

A1 # 0,0rA\y # 0,0r...0r\, #0.

Recall definition of linearly dependent and linearly independent vectors:

Definition The vectors {x1,Xa,...,X,;,} in vector space V are linearly
dependent if there exists a non-trivial linear combination of these vectors
such that it is equal to zero.

In other words we say that the vectors {x;,xXs,...,X,,} in vector space V'
are linearly dependent if there exist coefficients uq, po, ..., t, such that at
least one of these coefficients is not equal to zero and

f1X1 + feXo + - 4 fUmXm = 0. (1.3)

Respectively vectors {x1,Xa, ..., X, } are linearly independent if they are
not linearly dependent. This means that an arbitrary linear combination of
these vectors which is equal zero is trivial.

In other words vectors {x1, Xs, X, } are linearly independent if the condi-
tion

Xy + foXo + -+ Xy = 0

implies that pu; = po = -+ = py, = 0.

Very useful and workable

Proposition Vectors {xi,Xs,..., X} in vector space V are linearly
dependent if and only if at least one of these vectors is expressed via linear
combination of other vectors:

X; = Z )\ij .
J#i
Proof. If the condition (1.4) is obeyed then z; — >, ,; A;x; = 0. This non-trivial linear
combination is equal to zero. Hence vectors {z1,...,X,,} are linearly dependent.
Now suppose that vectors {x1,...,X,,} are linearly dependent. This means that there
exist coefficients 1, 2, ..., tm such that at least one of these coefficients is not equal to
zero and the sum (1.3) equals to zero. WLOG suppose that p1 # 0. We see that to

M2 M3 Hm
X]=—"X2— —X3— "~ —Xpy,
M1 H1 M1
i.e. vector x; is expressed as linear combination of vectors {Xs2,Xs,...,Xm} n



1.5 Dimension of vector space. Basis in vector space.

Definition Vector space V' has a dimension n if there exist n linearly inde-
pendent vectors in this vector space, and any n + 1 vectors in V' are linearly
dependent.

In the case if in the vector space V for an arbitrary N there exist IV linearly indepen-
dent vectors then the space V is infinite-dimensional. An example of infinite-dimensional
vector space is a space V' of all polynomials of an arbitrary order. One can see that for an
arbitrary N polynomials

{1,2,2% 23, ... 2}

are linearly idependent. (Try to prove it!). This implies V is infinite-dimensional vector

space.

Basis

Definition Let V' be n-dimensional vector space. The ordered set {ej, eq, . ..

of n linearly independent vectors in V' is called a basis of the vector space V.

Remark We say ‘a basis’, not ‘the basis’ since there are many bases in
the vector space (see also Homeworks 1.2).

Remark Focus your attention: basis is an ordered set of vectors, not just
a set of vectors?.

Proposition Let{ey,...,e,} be an arbitrary basis in n-dimensional vec-
tor space V. Then any vector x € V' can be expressed as a linear combination
of vectors {ey,...,e,} in a unique way, i.e. for every vector x € V there
exists an ordered set of coefficients {z"',... a"} such that

x =zle; + -+ z", (1.4)

and if
x=a'e;+---+a'e, =ble; +---+0b,, (1.5)
then a' = b',a®> = b?,...,a™ = b". In other words for any vector x € V there

exists an ordered n-tuple (x', ..., a™) of coefficients such that x =Y | x'e;
and this n-tuple is unique.

Proof Let x be an arbitrary vector in vector space V. The dimension of
vector space V equals to n. Hence n + 1 vectors (ey,...,e,,x) are linearly

1See later on orientation of vector spaces, where the ordering of vectors of basis will be
highly important.

€}



dependent: \je;+---+A,e,+A,11X = 0 and this combination is non-trivial.
If \,r1 = 0 then \je; +---+\,e, = 0 and this combination is non-trivial, i.e.

vectors (e, ..., e, are linearly dependent. Contradiction. Hence \,1 # 0,

i.e. vector x can be expressed via vectors (ey,...,e,): x = z'e; +...2",

where ' = —/\)‘—il. We proved that any vector can be expressed via vectors
n

of basis. Prove now the uniqueness of this expansion. Namely, if (1.5) holds
then (a'—b')e;+(a®?—b?)eg+- - -+(a"—b")e, = 0. Due to linear independence
of basis vectors this means that (a' — b') = (a®* = 0?) = --- = (a" = ") = 0,
ie.al=0a?=0%...,a" =b" -

In other words:

Basis is a set of linearly independent vectors in vector space V
which span (generate) vector space V.

(Recall that we say that vector space V' is spanned by vectors {x1,...,x,}
(or vectors vectors {xi,...,X,} span vector space V ) if any vector a € V
can be expresses as a linear combination of vectors {xi,...,x,}.

Definition Coefficients {a',...,a"} are called components of the vector
x in the basis {ey,...,e,} or just shortly components of the vector x.

Remark Basis is a maximal set of linearly independent vectors in a linear
space V.

This leads to definition of a basis in infinite-dimensional space. We have to note that
in infinite-dimensional space more useful becomes the conception of topological basis when
infinite sums are considered.

Canonical basis in R™

We considered above the basic example of n-dimensional vector space—a
space of ordered n-tuples of real numbers: R™ = {(z!,2?%,...,2"),2" € R}
(see the subsection 1.2). What is the meaning of letter ‘n’ in the definition
of R™?

Consider vectors e, es,...,e, € R™
e; = (1,0,0...,0,0)
e;= (0,1,0...,0,0) (16)

e, = (0,0,0...,0,1)

Then for an arbitrary vector R" 3 a = (a',a?,d?,...,a")

a=(a",ad%d® ... a"
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a'(1,0,0...,0,0)4+a*(0,1,0...,0,0)4+a*(0,0,1,0...,0,0)+ - -+a™(0,1,0...,0,1) =
= Z a'e; = a'e; (we will use sometimes condensed notations x = z’e;)
=1

Thus we see that for every vector a € R"™ we have unique expansion via the
vectors (1.6).

The basis (1.6) is the distinguished basis. Sometimes it is called canonical
basis in R™. One can find another basis in R"—just take an arbitrary ordered
set of n linearly independent vectors. (See exercises 7 and 8 in Homework

1).

1.6 Scalar product. Euclidean space

In vector space one have additional structure: scalar product of vectors.

Definition Scalar product in a vector space V' is a function B(x,y)
on a pair of vectors which takes real values and satisfies the the following
conditions:

B(x,y) = B(y,x) (symmetricity condition)
B(Ax + ux',y) = AB(x,y) + pB(x',y) (linearity condition) (1.7)
B(x,x) > 0,B(x,x) = 0 < x = 0 (positive-definiteness condition)

Definition Euclidean space is a vector space equipped with a scalar product.

One can easy to see that the function B(x,y) is bilinear function, i.e. it
is linear function with respect to the second argument also?. This follows
from previous axioms:
AB(y,x)+uB(y',x) =  AB(xy)+uB(xy').

~—
Symin. linear. symm.

A bilinear function B(x,y) on pair of vectors is called sometimes bilinear form on
vector space. Bilinear form B(x,y) which satisfies the symmetricity condition is called
symmetric bilinear form. Scalar product is nothing but symmetric bilinear form on vectors
which is positive-definite: B(x,x) > 0) and is non-degenerate ((x,x) =0=x = 0.

2Here and later we will denote scalar product B(x,y) just by (x,y). Scalar product
sometimes is called inner product. Sometimes it is called dot product.



Example We considered the vector space R", the space of n-tuples (see
the subsection 1.2). One can consider the vector space R" as Euclidean space
provided by the scalar product

Bx,y) =a'y' +-- -+ a"y" (1.8)

This scalar product sometimes is called canonical scalar product.
Exercise Check that it is indeed scalar product.

Example We consider in 2-dimensional vector space V' with basis {e;, e;}
and B(X,Y) such that B(e;,e;) = 3, B(ey, e3) = 5 and B(ej,e3) = 0. Then
for every two vectors X = z'e; + 2%e; and Y = y'e; + y?e, we have that

B(X,Y)=(X,Y) = (z'e; + 2%es,y'e; + yes) =

zlyl (e, er) + x'y?(er, ex) + 2°y' (eg, €1) + 2°y% (e, €0) = 3z'y + 5a’y”.

One can see that all axioms are obeyed.
Notations!

Scalar product sometimes is called ”inner” product or "dot” product.
Later on we will use for scalar product B(x,y) just shorter notation (x,y)
(or (x,y)). Sometimes it is used for scalar product a notation x -y. Usually
this notation is reserved only for the canonical case (1.8).

Counterexample Consider again 2-dimensional vector space V' with ba-
sis {e;, ex}.

Show that operation such that (e;,e;) = (ez,€2) = 0 and (e, e3) = 1 does
not define scalar product. Solution. For every two vectors X = z'e; + z%e,
and Y = yle; + y2e, we have that

(X,Y) = (2z'e; + 2%es, y'er + yoe2) = z'y® + 2%y

hence for vector X = (1, —-1) (X,X) = —2 < 0. Positive-definiteness is not
fulfilled.

Another Counterexample Show that operation (X,Y) = zly! — 22y?
does not define scalar product. Solution. Take X = (0, —1). Then (X, X) =
—1. The condition of positive-definiteness is not fulfilled. (See also exercises
in Homework 2.)



1.7 Orthonormal basis in Euclidean space

One can see that for scalar product (1.8) and for the basis {ey, ..., e,} defined
by the relation (1.6) the following relations hold:

wer=ai={y 4 12 (19)
if 1

Let {e1,es,...,e,} be an ordered set of n vectors in n-dimensional Eu-
clidean space which obeys the conditions (1.9). One can see that this ordered
set is a basis 3.

Definition-Proposition The ordered set of vectors {e;,es,...,e,} in
n-dimensional Euclidean space which obey the conditions (1.9) is a basis.
This basis is called an orthonormal basis.

One can prove that every (finite-dimensional) Euclidean space possesses
orthonormal basis.

Later by default we consider only orthonormal bases in Euclidean spaces.
Respectively scalar product will be defined by the formula (1.8). Indeed let
{e1,es,...,e,} be an orthonormal basis in Euclidean space. Then for an
arbitrary two vectors x,y, such that x = > z'e;, y = > y/e; we have:

(x,y) = (Z a'e;, ZyjeJ) = Z r'y’ (e, €5) = Z 2y by = Zfﬁiyi
i=1

ij=1 ij=1

We come to the canonical scalar product (1.8). Later on we usually will
consider scalar product defined by the formula (1.8) i.e. scalar product in
orthonormal basis.

Remark We consider here general definition of scalar product then came
to conclusion that in a special basis, (orthonormal basis), this is nothing but
usual ‘dot” product (1.8).

Geometrical properties of scalar product: length of the vectors, angle between vectors
The scalar product of vector on itself defines the length of the vector:

Length of the vector x = |x| = /(x,x) = \/(21)2 + --- 4 ()2 (1.10)

3Indeed prove that conditions (1.9) imply that these n vectors are linear independent.
Suppose that Aje; + Aoes + -+ - + Ape, = 0. For an arbitrary ¢ multiply the left and right
hand sides of this relation on a vector e;. We come to condition \; = 0. Hence vectors
(e1,€a,...,e,) are linearly dependent.



If we consider Euclidean space E™ as the set of points (affine space) then
the distance between two points x,y is the length of corresponding vector:

distance between points x,y = [x —y| = \/(y1 — )y —an)?

We recall very important formula how scalar (inner) product is related
with the angle between vectors:

(x,y) = a'y" +a%y* = [x||y|cos o
where ¢ is an angle between vectors x and y in E.

This formula is valid also in the three-dimensional case and any n-dimensional
case for n > 1. It gives as a tool to calculate angle between two vectors:

(x,y) =a'y' + 2%y + -+ 2"y = [x|[y[cosp (1.11)
In particulary it follows from this formula that

angle between vectors x,y is acute if scalar product (X,y) is positive
angle between vectors x,y is obtuse if scalar product (x,y) is negative

vectors x,y are perpendicular if scalar product (x,y) is equal to zero
(1.12)

Remark Geometrical intuition tells us that cosinus of the angle between two vectors
has to be less or equal to one and it is equal to one if and only if vectors x,y are collinear.
Comparing with (1.11) we come to the inequality:

(x,9)? = (&g + - +amy)” < (@2 4+ @) (W) + (- + (15™2) = (x,%)(y,y)
and(x,y)? = (x,x)(y,y) if vectors are colienar, i.e. ¢ = Ay’ 13)
1.13

This is famous Cauchy-Buniakovsky—Schwarz inequality, one of most important inequali-

ties in mathematics. (See for more details Homework 2)

1.8 Transition matrices. Orthogonal bases and orthog-
onal matrices

One can consider different bases in vector space.

Let A be n x n matrix with real entries, A = ||a;||, 4,5 = 1,2,...,n:
a1 aig ... QA1np
a1 asgy ... agn
A= asy asz ... asy
Apn-1)1 An-1)2--- Qn-1)n
Qn 1 Ap2 ... QAnn
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Let {e1, es,...,e,} be an arbitrary basis in n-dimensional vector space V.

The basis {ej,eq,...,e,} can be considered as row of vectors, or 1 x n
matrix with entries—vectors.
Multiplying 1 x n matrix {e;,es,...,e,} on matrix A we come to new
row of vectors {e},€), ..., e/} such that
/ / /
{e},e,,...,e.} ={e1,eq,...,e,}A = (1.14)
aiq aig ... Q1np
a1 asy . .. Qo
asq asz ... as
/ / / n
{el.e5,...,e,} ={ei,eq,...,e,} (1.15)
Apn-1)1 An-1)2--- Qn-1)n
Ap 1 Ap2 ... QApn

(9,1 = aj1€; + az € +agies+ -+ ap-1)1€p-1 + An1€yn
€] = a12€1 + a2 + ages + -+ + A(n—1)2€n—1 + Ay2€p
€] = aj3e; + azses + agzes + - - + Am_1)3€n—1 + an1€y,

B S e

/
(€, = A1n€1 + A2,€2 + 3,83 + *** + A(n—1)n€n—1 + Ann€n

or shortly:
e = Z ek - (1.16)
k=1

Definition Matrix A which transforms a basis {e;,es,...,e,} to the row
of vectors {€}, e}, ..., e} (see equation (1.16)) is transition matriz from the
basis {ej1,es,...,€,} to the row {e},e},..., e, }.

What is the condition that the row {e},e),..., e/} is a basis too? The
row, ordered set of vectors, {e},€),... €/} is a basis if and only if vectors
(e},€h,...,el) are linearly independent. Thus we come to

Proposition 1 Let {ej,ey,...,€e,} be a basis in n-dimensional vector
space V', and let A be an n X n matriz with real entries. Then

{e}],ey,...,e } ={el, e ...,e,}A (1.17)

is a basis if and only if the transition matriz A has rank n, i.e. it is non-
degenerate (invertible) matriz.
Recall that nx matrix A is nondegenerate (invertible) < det A # 0.
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Remark Recall that the condition that n x n matrix A is non-degenerate
(has rank n) is equivalent to the condition that it is invertible matrix, or to
the condition that det A # 0.

Now suppose that {e;, es,...,e,} is orthonoromal basis in n-dimensional
Euclidean vector space. What is the condition that the new basis {€], €},... e/} =
{e1,es,...,e,}A is an orthonormal basis too?

Definition We say that n x n matrix is orthogonal matrix if its product
on transposed matrix is equal to unity matrix:

A"A=1. (1.18)
Exercise. Prove that determinant of orthogonal matrix is equal to £1:
A"A=T=detA=+1. (1.19)

Solution AT A = I. Hence det(ATA) = det AT det A = (det A)? = det [ =
1. Hence det A = +1. We see that in particular orthogonal matrix is non-
degenerate (det A # 0). Hence it is a transition matrix from one basis to
another. The following Proposition is valid:

Proposition 2 Let {e;, e, ..., e,} be an orthonormal basis in n-dimensional
Euclidean vector space. Then the new basis {€], €}, ...,e/} ={ej,es,...,e,}A
is orthonormal basis if and only if the transition matrix A is orthogonal ma-
trix.

Proof The basis {€},e),..., e} is orthonormal means that (e, €;) = d;;.
We have:
5ij 17 j (Z em mis j - Zen nj) = Z AmiAnj<em7en) =
m,n=1
> AiAnibmn =Y AmiAn; = Z AT A, = (ATA),;, (1.20)
m,n=1 m=1

Hence (AT A);; = 65, ie. ATA=1.
We know that determinant of orthogonal matrix equals to +1. It is very useful to
consider the following groups:

e The group O(n)—group of orthogonal n X n matrices:
O(n)={A: ATA=1T}. (1.21)
e The group SO(n) special orthogonal group of n x n matrices:

SO(n)={A: ATA=1,detA=1}. (1.22)
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1.9 Linear operators.
1.9.1 Matrix of linear operator in a given basis

Recall here facts about linear operators in vector space
Let P be a linear operator in vector space V:

P:V =YV, P(Ax + py) = AP(x) + uP(y).

Let {ey,...,e,} be an arbitrary basis in n-dimensional vector space V. Con-
sider the action of operator P on basis vectors: €, = P(e;):

e} = P(e1) = epi1 + €xpa1 + e3psy + - + €upn1
e, = P(e2) = e1p1a + €pa2 + €3p3a + - -+ + €002
ey = P(e3) = e;pi3 + €apa3 + €3p31 + - + €nPn3 (1.23)

/

e/ = P(e,) = €1pin + €apon + €3p3, + -+ + €,0nn

Definition Let {e;} be a basis. Then the transition matrix ||p;|| defined by
relation (1.23) is called matriz of operator P in the basis {e;}.

e; = P(e;) = Zekpki-

In the case if linear operator P is non-degenerate (invertible) then vectors
e, e, el ... e, form a basis. The matrix P = ||p;|| is the transition matrix

YN

from the basis {e;} to the basis {e, = P(e;)}.
How matrix of linear operatot changes if we change the basis? Consider

a new basis {f},...,f,} in the linear space V. Let A be transition matrix
from the basis {eq,...,e,} to the new basis {f;, ..., f,}:

{fl, e ,fn} = {el, Ce ,en}A, 1efz = Zekaki
k

(see equation (1.16)). Then the action of operator P in the new basis is given
by the formula f/ = P(f;). According to the formulae (1.9.1) and (1.23) we
have

f=P)="P (Z eqaqi> = Z Qqi <Z eTprq> = Zerprqaqi = Z e.(PA),; =
q q r ar

r

13



ka Yir (PA), ka AT'PA),

We see that in the new basis {f;} a matrix of linear operator is A~ PA:

If{e},....e/} ={e,...,e,} P, then {f],... . £} ={f,... £, }A'PA, |
(1.24)
where A is transition matrix from the basis {ey, ..., e,} to the basis {f, ..., f,},
Consider the following example.

Example Let P be a linear operator in 2-dimensional vector space V
such that in a basis e, ey it is given by the following relation:

P(e) =2e, P(ey)=¢ey.

Then the matrix of operator P in this basis is obviously

(g (1)) (1.25)

Now consider another basis, {f;, fo} in the space V:

= 3f, — 5f
: respectively {el 3h = Stz . (1.26)

fg = 481 + 362 €y = —4f1 + 7f2

{fl = 781 + 592
Calculate matrix of the operator P on this new basis:

P(f)) = P(Te,+5ey) = 14e,+5ey = 14(3f,—5f,)+5(—4f, +7f,) = 22f, —35f, |

P(fg) = P(4e1 +362) = 861+3€2 = 8(3f1 —5f2)+3(—4f1+7f2) = 12f1 — 19f2 .

Hence the matrix of operator P in the basis {f;, fy} is matrix

(_2325 _1129> . (1.27)

Matrices (1.25) and (1.27) are different matrices which are represented the
same linear operator P in different bases. According to equation (1.26)

(2 2 -C COEN-(5 e )
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1.9.2 Determinant and Trace of linear operator

We recall the definition of determinant and explain what is the trace of linear

operator,
Definition-Proposition Let P be a linear operator in vector space V/
and let Py, = ||pix|| be transition matrix of this operator in an arbitrary basis

in V' (see construction (1.23).) Then determinant of linear operator P equals
to determinant of transition matrix of this operator.

det P = det (pix)
In the same way we define trace of operator via trace of matrix:
Tr P =Tr (|[pil]) = p11 + pa2 + P33+ -+ + Pn - (1.29)

Determinant and trace of operator are well-defined. since due to (1.24) de-
terminant and trace of transition matrice do not change if we change the
basis in spite of the fact that transition matrix changes: P — A“1PA, but

det (A7'PA) = det A" det Pdet A = (det A)~' det Pdet A = det P.

In the example above (see equations (1.25) and (1.27)) we have different
matrices which represent the same but one operator P in different bases.
These matrices are related by equations (1.26) and (1.28) and

det P — det (2 0) :2-1:det<22 12 ) 92 (—19)— (=35)-12 = 2

01 ~35 —19
2 0 22 12
T P="T <o 1):2+1:Tr (_35 _19):22—19:3

In the same way one can see that trace is invariant too:

Tr (A™'PA) = Z(A—lpA)ii = Z (A_l)ikp’fp = Z Ap (A_l)ikpkp =

i ik,p i,k,p
Z (A- Ail)pkpkp = Z5kppkp = Zpkk =TrP.
p,k p,k k

Trace of linear operator is an infinitesimal version of its determinant:
det(1 +tP) =1+ tTr P+ O(t?).

This is infinitesimal version for the followiong famous formula which relates trace and det

of linear operator:
det et = T4 (1.30)

n gn 0 -1 cost —sint
tA _ t"™A : _ tA __ tA _
where e =% - E.g. if A= (1 0 ), then e'* = <sint cost >7 dete’* =1 and

6tTrA — 60 = 1.
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1.9.3 Orthogonal linear operators

Now we study geometrical meaning of orthogonal linear operators in Eu-
clidean space.

Recall that linear operator P in Euclidean space E" is called orthogonal
operator if it preserves scalar product:

(Px, Py) = (x,y), for arbitrary vectors X,y (1.31)

In particular if {e;} is orthonormal basis in Euclidean space then due to
(1.31) the new basis {€; = P(e;)} is orthonormal too. Thus we see that
matrix of orthogonal operator P in a given orthogonal basis is orthogonal
matrix:

PT.P=1] (1.32)

(see (1.18) in subsection 1.7). In particular we see that for orthogonal linear
operator det P = +1 (compare with (1.19)).

1.10 Orthogonal operators in E>—Rotations and re-
flections

We show that an orthogonal operator ‘rotates the space’ or makes a ‘reflec-
tion’.

Let A be an arothogonal operator acting in Euclidean space E?: (Ax, Ay) =
(x,y). Let {e,f} be an orthonormal basis in 2-dimensional Euclidean space
E% (e,e) = (f,f) =1 (i.e. |e|] =|f| = 1) and (e, f) = 0-vectors e, f have
unit length and are orthogonal to each other.

Consider a new basis {€/,f'}, an image of basis e,f under action of A:

J

(see equation (??) and defintion after this equation):

e = A(e), f' = A(f). Let (3 ﬁ) be matrix of operator A in the basis e, f,

{e.f} = {e,f}A = {e,f} (‘;‘ ?) Jie.e =ae+~f, £ = Be + of

New basis is orthonormal basis also, (¢/,€') = (f',f') =1, (€,f)=0.
Operator A is orthogonal operator, and its matrix is orthogonal matrix:

ATA_OéﬁtOéﬁ_Oé’Y a B\ _ [a*+4? af+0\ (1 0
“\y §) \yv 6) \p §)\y 6) \ap+~5 B+6*) \0 1)
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Remark With some abuse of notation, (if it is not a reason of confusion)
we sometimes use the same letter for linear operator and the matrix of this
operator in orthonormal basis.

We have o? + 92 =1, af +~5 = 0 and 5% + 62 = 1.

It can be shown easily that the last equation implies that matrix of op-
erator A has the following appearance:

A= < ek o (’0) — — — —rotation on anlge ¢
sin ¢ cos
or '
A= ( A — o gp) — — — —reflection on anlge ...
sin ¢ cos ¢

Hence one can choose angles ¢,1: 0 < 27 such that a = cosp, v =
sinp, [ =sinvy, § = costy. The condition aff + vd = means that

cos @ sin ) + sin p cos ) = sin(p + ) =0

Hence singp = —sin, cosyp = cost (¢ + 1 = 0) or sinp = siny, cosp =

—cos? (p+1 =)
The first case: sinp = —sin ), cosy = cos Y,

_(a B\ _ [cosp —sing B
Ao = <7 ‘5) B (Singp cosgo) (det A, =1) (1.33)

The second case: sin ¢ = sin, cosp = — cos 1,

i _ (a B\ _ [cosp sing _
AQO - (’y 6) o (Sing@ — COS 90) (det A(p - 1) (134)

In the first case matrix of operator A, is defined by the relation (1.33).
In this case the new basis is:

() =cospe+sinpf
(f) —sinpe+ cospf

(1.35)
(ze + yf) = 2’e + y'f,

sing  cosp

(@, 1) = (e,£)A, = (o, f) (5% ~sinw) e =4,
¢ = A
= A,

For an arbitrary vector x = ze + yf x — A,(x)

2"\  f[cosp —sing) (z\ [xcosep —ysing (1.36)
y' )]  \sinp cosp y) \ sinp+ycosp |’ '
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Operator A, rotates basis vectors e,f and arbitrary vector x on an
angle ¢

In the second case a matrix of operator /Lp is defined by the relation
(1.34). One can see that

A@: (C?S(p sin ¢ ) _ <C9890 —Singp) (1 0 ) — AR (1.37)
sing —cosp sinp  cosp 0 —1
1 0
0 -1
to the basis {e, —f}—*“reflection”].
We see that in the second case the orthogonal operator fl@ is composition

of rotation and reflection: {e, f}A(”:—AfR{é, f}:

where we denote by R = a transition matrix from the basis {e, f}

{e, f}i{e’ = cospe+singl f,f = —sinpetcospfl—{&=¢, f = —f}
(1.38)
We come to proposition
Proposition. Let A be an arbitrary 2 x 2 orthogonal linear transfor-
mation, ATA = 1, and in particularly det A = £1. (As usual we consider
matrixz of orthogonal operator in the orthonormal basis.)
If det A = 1 then there exists an angle ¢ € [0,2m) such that A = A, is
an operator which rotates basis vectors and any vector (1.33) on the angle .
If det A = —1 then there exists an angle ¢ € [0,27) such that A = A, is
a composition of rotation and reflection (see (1.38)).

Remark One can show that orthogonal operator flg, is a reflection with respect to

the axis which have the angle £ with z-axis.
Consider just examples:
. v (cosp sing 1 0 e e
=0 A= )= 5 (- (%)
-1 0 e
0o 1)’ f
(reflection with respect to y-axis)
_m 5 _fcosp sing \ (0 1 e f
b = 2’ Ap = (singp cos<p> N (1 0)’ (f> ~ (e

sing —cosy
(reflection with respect to axis y = z (“swapping” of basis vectors))

(reflection with respect to x-axis)

o v [cosp sing
bo=m A= <sin<p — Cos g@)

Try to do it in general case.
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1.11 Orientation in vector space

) «“»”

You heard words “orientation...”,

You heard expressions like: A basis {a,b,c} have the same orientation
as the basis {a’,b’,c’} if they both obey right hand rule or if they both
obey left hand rule. In the other case we say that these bases have opposite
orientation...

Try to give the exact meaning to these words.

Note that in three-dimensional Euclidean space except scalar (inner)
product, one can consider another important operation: vector product. The
conception of orientation is indispensable for defining this operation.

Consider the set of all bases in the given vector space V.

Let (ey,...e,), (€],...€) be two arbitrary bases in the vector space V
and let T be transition matrix which transforms the basis {e;} to the new
basis {e€}}:

{el,...e} ={el,...e,}T, (e = Zektki) (1.39)
k=1

(see also (1.15)).

Definition We say that two bases {e;,...e,} and {€],...€/} in V have
the same orientation if the determinant of transition matrix (1.39) from the
first basis to the second one is positive: detT" > 0.

We say that the basis {e1,...e,} has an orientation opposite to the orienta-
tion of the basis {e], ... €]} (or in other words these two bases have opposite
orientation) if the determinant of transition matrix from the first basis to the
second one is negative: det T < 0.

Remark Transition matrix from basis to basis is non-degenerate, hence
its determinant cannot be equal to zero. It can be or positive or negative.

One can see that orientation establishes the equivalence relation in the set
of all bases. Denote this relation by “~7: {ei,...e,} ~ {e},...€e/}, if two
bases {ej,...e,} and {€],...€e/} have the same orientation, i.e. detT > 0
for transition matrix.

Show that “~” is an equivalence relation, i.e. this relation is reflexive,
symmetric and transitive.

Check it:
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e it is reflexive, i.e. for every basis {ej,...e,}
{e1,....,e,} ~{e1,...,e,}, (1.40)
because in this case transition matrix 7' = I and det/ =1 > 0.

e it is symmetric, i.e.

If {e1,...,e,} ~{€],...,€,} then {€],... €)) ~ {el,...,e,},

because if T is transition matrix from the first basis {ey, ..., e,} to the
second basis {e],...,e}}: {el,....e,} ={e1,...,e,}T,
then the transition matrix from the second basis {e€], ..., €/, } to the first
basis {ey, ..., e,} is the inverse matrix T~": {ey,...,e,} = {e},..., e, }JT "
Hence det 7' = = > 0 if det T > 0.

e s transitive, i.e. if {e1,...,e,} ~ {e],...,e,} and {€]|,...,€) ~
{é1,...,€&,}, then one can see that {e;,...,e,} ~ {&,...,&,}.
Do it in detail. For convenience call a basis {ey, ..., e,} the ‘I-st’ basis,
call a basis {€],...,el,} the ‘II-nd’ basis and call a basis {€,...,€,}

the ‘III-rd’ basis. Let 175 be a transition matrix from the I-st basis to
the II-nd basis, Ti3 be a transition matrix from the I-st basis to the
ITI-rd basis and 753 be a transition matrix from the II-nd basis to the

III-rd basis:
{e,....el,} ={e...,e,}Ts

{él,...,én} = {81,...,en}T13 (141)
{él,...,én} = {e’l,...,e;l}ng,
Hence {€,...,e,} ={e,..., e, } T =

({el, e ,en}Tm) T23 = {el, e 7en}T12 o T23 = {el, e 7en}T13.

We see that T3 = T o Tos
—~— —~— —~—~
I-st — III-rd  I-st — II-nd II-nd — Il-rd

Tis =T120153 = det T3 = d€t<T12 o ng) = det T}, - det Tos. (142)

Transitivity immediately follows from this relation: if I-st ~ II and
II-nd ~ III-rd, then determinants of matrices 115 and 753 are positive.
Hence according to relation (1.42) det T35 is positive too, i.e. I-st ~

[II-rd.
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Since it is equivalence relation the set of all bases is a union if disjoint
equivalence classes. Two bases are in the same equivalence class if and only
if they have the same orientation.

One can see that there are exactly two equivalence classes.

Proposition Let two bases {e1,...,e,} and {€},... €/} in vector space
V' have opposite orientation. Let {&q,...,&,} be an arbitrary basis in V.
Then the basis {€1,...,&,} and the first basis {ey,...,e,} have the same ori-
entation or the basis {€1,...,&,} and the second basis {e}, ..., e} have the
same orientation. In other words if{ey,...,e,}, {€},...,e} and{&;,...,&,}
are three bases in vector space V' such that {ei1,...,e,} o {€el,... e} then

{&1,...,&,} ~{e1,...,e,}or {&,...,e,} ~{€],....e,}. (1.43)

There are two equivalence classes of bases with respect to orientation. An
arbitrary basis belongs to the equivalence class of the basis {e1,e5...,e,}, or
it belongs to the to the equivalence class of the basis {€],es... €.} (in the
case if bases {€},...,€.}, {€1,...,€,} have opposite orientation).

Proof of the statement immediately follows from equations (1.41) and
(1.42). In the same way like in these equations we call a basis {ej,es...,e,}
the "I-st basis”, a basis {€], €}, ..., e/} the "II-nd basis” and a basis {€,€;...,&,}
the 7I1I-rd basis”. Determinant of transition matrix 7}, is negative since I-
st and II-nd bases have opposite orientation. Then it follows from relation
(1.42) that determinants of transition matrices 713 and Th3 have opposite
signs. Hence det Ti3 > 0, i.e. I-st and III-rd bases have the same orientation,
or det To3 > 0,i.e II-nd and III-rd bases have the same orientation. -

Example Let {e1,e;...,e,} be an arbitrary basis in n-dimensional vec-
tor space V. Swap the vectors e;, e;. We come to a new basis: {e}, e, ..., €}
€] = ey, e, = e, all other vectors are the same: e3 = €j,...,e, =€,
(1.44)
We have:
/ / / /
{e},e5,e5....e,} ={eser,e;, ....e,} ={e,ere;,....€,} Toyap, (1.45)

where one can easy see that the determinant for transition matrix 7iyap
is equal to —1, i.e. bases {ej,es...,e,} and {es,e;...,e,} have opposite
orientation.
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E.g. write down the transition matrix (1.45) in the case if dimension

. i I Al oA ol

of vector space is equal to 5, n = 5. Then we have {€], €}, €}, €}, et} =
{627el7e3ye47e5} = {elye27e37e47e5}T where

01 000
1 00 00
Towap =10 0 1 0 0 (det Towap = —1). (1.46)
00010
00001

We see that bases {ej,es...,e,} and {e}, e, ..., e} have opposite ori-
entation.

Hence according to Proposition above an arbitrary basis {€],...e} } have
the same orientation as the basis {ej,es...,e,}, i.e. belongs to the equiv-
alence class of basis {ej,ey...,e,}, or it has the same orientation as the
“swapped” basis {ej,e1...,e,}, i.e. it belongs to the equivalence class of

the “swappedd” basis {es,e;...,€,}.

The set of all bases is a union of two disjoint subsets.

Any two bases which belong to the same subset have the same orientation.
Any two bases which belong to different subsets have opposite orientation.

Definition An orientation of a vector space is an equivalence class of
bases in this vector space.

Note that fixing any basis we fix orientation, considering the subset of all
bases which have the same orientation that the given basis.

There are two orientations. Every basis has the same orientation as a
given basis or orientation opposite to the orientation of the given basis.

If we choose an arbitrary basis then all bases which belong to the equiva-
lence class of this basis may be called “left” bases and all the bases which do
not belong to the equivalence class of this basis may be called “right” bases

Definition An oriented vector space is a vector space equipped with ori-
entation.

Consider examples.

Example (Orientation in two-dimensional space). Let {e,, e,} be arbi-
trary two bases in R? and let a, b be arbitrary two vectors in R?. Consider
an ordered pair {a, b, }. The transition matrix from the basis {e,, e, } to the
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ordered pair {a,b} is T = (Zw bz):

yby

a, by a=aqze, + a,€e
N O T R { o
Yy )

b = b,e, + bye,

One can see that the ordered pair {a,b} also is a basis, (i.e. these two
vectors are linearly independent in R?) if and only if transition matrix is not
degenerate, i.e. detT # 0. The basis {a, b} has the same orientation as the
basis {e;,e,} if detT > 0 and the basis {a, b} has the orientation opposite
to the orientation of the basis {e,,e,} if detT < 0.

Example Let {e,f} be a basis in 2-dimensional vector space. Consider
bases {e, —f}, {f, —e} and {f, e}.

1) We come to basis {e, —f} reflecting the second basis vector. Transition
matrix from initial basis {e,f} to the basis {e, —f} is Tie ¢} = ((1) _01)
Its determinant is —1. Bases {e,f} and {e, —f} have opposite orientation.

2) Transition matrix from initial basis {e,f} to the basis {f,—e} is
Tig—cy = <(1] _01) Its determinant is 1. Bases {e,f} and {f, —e} have
same orientation. We come to basis {f, —e} rotating the initial basis on the
angle /2.

3) Transition matrix from initial basis {e, f} to the basis {f, e} is Tis e} =

0 1
1 0)°
orientation.

We come to basis {f, e} reflecting the initial basis.

Its determinant is —1. Bases {e,f} and {e, —f} have opposite

We see that bases {e, f} and {f, —e} have the same orientation; i.e. they
belong to the same equivalenceclass. Bases {e, —f} and {f, e} have the same
orientation too, they belong to the another equivalence class. If we say that
bases {e,f} and {f, —e} are left bases then bases {e, —f} and {f, e} are right
bases.

(There are plenty exercises in the Homework 3.)

Example(Orientation in three-dimensional euclidean space.) Let {e,,e,, €.}
be any basis in E? and a, b, ¢ are arbitrary three vectors in E?:

a=aze, +aye, +ae, b="be, +be,+be, c=ce,+ce +ce,.
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Consider ordered triple {a, b, c}. The transition matrix from the basis {e,, e,, e, }

az by ¢
to the ordered triple {a,b,c}isT = | a, b, ¢,
a, b, c,

{a,b,c} = {ex,ey,e,}T = {ex,ey,€,} | a, b, ¢

a. b, c

One can see that the ordered triple {a, b, c} also is a basis, (i.e. these three
vectors are linearly independent) if and only if transition matrix is not de-
generate det T # 0. The basis {a, b, c} has the same orientation as the basis
{es, ey, e }if

detT > 0. (1.47)

The basis {a, b, ¢} has the orientation opposite to the orientation of the basis
{es, ey €.} if
detT < 0. (1.48)

Remark Note that in the example above we considered in E? arbitrary
bases not necessarily orthonormal bases.

Relations (1.47),(1.48) define equivalence relations in the set of bases.
Orientation is equivalence class of bases. There are two orientations, every
basis has the same orientation as a given basis or opposite orientation.

If two bases {e;}, {ey } have the same orientation then they can be transformed
to each other by continuous transformation, i.e. there exists one-parametric family
of bases {e;(t)} such that 0 < ¢ < 1 and {e;(t)}|i=0 = {ei}, {ei(t)}|:=1 = {e}.
(All functions e;(t) are continuous) In the case of three-dimensional space the
following statement is true : Let {e;},{ey} (i = 1,2,3) be two orthonormal bases
in E® which have the same orientation. Then there erists an aris n such that
basis {e;} transforms to the basis {e;} under rotation around the axis.(This is
Euler Theorem (see it later).

Exercise Show that bases {e, f, g} and {f, e, g} have opposite orientation
but bases {e, f, g} and {f,e, —g} have the same orientation.

Solution. Transformation from basis {e, f, g} to basis {f, e, g} is “swap-
ping” of vectors ((e,f) — (f,e). This is reflection and this transformation
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changes orientation. One can see it using transition matrix:
010
T:{f,e,g}={ef,g}T ={ef,g}|1 0 0] .detT =-1
0 01

Transformation from basis {e, f,g} to basis {f, e, —g} is composition of two
transformations: “swapping” of vectors ((e,f) — (f,e) and changing direc-
tion of vector g (g — —g). We have two reflections:

{e7 f, g} reﬂiti)on {f, e, g} reﬂﬂon {f, e, _g}

Any reflection changes orientation. Two reflections preserve orinetation. One
may come to this result using transition matrix:

01 0
T:{f,e,—g} ={ef,g}T={e,f,g} |1 0 0 | .detT =1. Orientation is not changed.
0 0 —1

(1.49)
(See also exercises in Homework 3)

1.11.1 Orientation of linear operator

. Let P be invertible linear operator, i.e. det P # 0.

If a linear operator P acting on the space V' has positive determinant
then under the action of this operator an arbitrary basis {ey,...,e,} trans-
forms to the new basis {e],..., e} } such that transition matrix from basis
{e1,...,e,} to the new basis {€], ..., €/ } has positive determinant, i.e. these
bases have the same orientation. Respectively if a linear operator P acting on
the space V' has negative determinant then under the action of this operator
an arbitrary basis {ey, ..., e,} transforms to the new basis {e, ..., e} } such
that transition matrix from basis {ej,...,e,} to the new basis {€},..., €/}
has negative determinant, i.e. these bases have opposite orientation. Thus
we can define does the linear operator P acting in the vector space V' change
an orientation or it does not change an orientation of this vector space.

Definition. Non-degenerate (invertible) linear operator P (det P # 0)
acting in vector space V preserves an orientation of the vector space V if
det P > 0. It changes the orientation if det P < 0.

If {e1,...,e,} is an arbitrary basis which transforms to the new basis
{e},..., e}, } under the action of nvertible operator P: e, = P(e;) then these
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bases have the same orientation if and only if operator P preserves an orien-
tation, i.e. det P > 0, and these bases have opposite orientation if and only
if the operator P changes an orientation, i.e. det P < 0.

The matrix P = ||p;;|| is the transition matrix from the basis {e1, ..., e, } to the basis
{€l,..., el }. For an arbitrary vector x

Vx = E er' = (e,es,...,e

=1

2
z? ;
Px = (ej,es,...,e,) P E ex E Pk T’
" =1 i,k=1
If % are components of vector x at the basis {ey,...,e,} and z/* are components of

the vector x at the new basis {e}} then 2/ = 3", p;a*.

1.12 Rotations and orthogonal operators preserving
orientation of E" (n=2,3)

Orthogonal operators preserving orientation in E? and E? are rotations. We
try to explain this. The main result of this section will be the Euler Theorem
about rotation, that every orthogonal operator preserving orientation in E?
is rotation around some axis.

We will give an exact formulation of the Euler Theorem at the end of this
subsection. Now we will formualte just preliminary statement:

The Euler Theorem. (Preliminary statement) An orthogonal operator
in E3 preserving orientationis rotation operator with respect to an axis [ on
the angle ¢. The axis is directed along eigenvector N of the operator P,
P(N) = N,and angle of rotation is defined by equation

TrP=1+2cosp.

We will come to this statement gradually step by step, and then will
formulate it completely.

Let E™ be oriented vector space. Recall that oriented vector space means
that it is chosen the equivalence class of bases: all bases in this class have
the same orientation. We call all bases in the equivalence class defining
orientation “left” bases. All “left” bases have the same orientation. To
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define an orientation in vector space V' one may consider an arbitrary basis
{ego)} in V and claim that this basis is “left” basis. The basis {e|" } defines
equivalence class of “left” bases: all bases {e;} such that {e;} ~ {e|” will be
called “left” bases. We can say that basis {ego)} defines the orientation.

Later on considering oriented vector space we often call all bases defining
the orientation (i.e. belonging to the equivalence class of bases defining
orientation) “left” bases.

Now we define rotation of oriented E? and oriented E3.

Definition Let E? be an oriented Euclidean space. We say that linear
operator P rotates this space on an angle “¢” if for a given “left” orthonormal
basis {e, f}

{e’ = P(e) = ecos.go + fsinp e (e} = {e.f} (cQSgp — sin g0>
f' = P(f) = —esinp + fcos ¢ Sy - Ccosp

(1.50)
i.e. transition matrix from basis {e,f} to new basis {€¢’ = P(e),f’ = P(f)}
is the rotation matrix (1.33) (see also (1.35)).

Remark One can show that the angle of rotation does not depend on
the choice of “left” basis. If we will choose another left basis €, f then the
angle remains the same

Operator P rotates every vector rotates on the angle (.

If we choose a basis with opposite orientation (“right” basis) then the
angle will change: ¢ — —o.

We see from formula (1.50) that the matrix of operator P is orthogonal
matrix such that its determinant equals 1. On the other hand we proved
that all orthogonal 2 x 2 matrices A such that det A = 1 have the appearance
(1.50) (see the subsection 1.8). Hence in 2-dimensional case we come to the
folowing simple

Proposition Let P be an orthogonal operator in oriented 2-dimensional
Euclidean space. If operator P preserves orientation (det P = 1) then it is a
rotation operator (1.50) on some angle .

The situation is little bit more tricky in 3-dimensional case.

Let E3 be an Euclidean vector space. (Problem of orientation we will
discuss below.) Let N # 0 be an arbitrary non-zero vector in E3. Consider
the line I, spanned by vector N. This is axis directed along the vector N.

27



Choose a unit vector
n= ii (1.51)
IN] '

Vector n fixes an orientation on [n. Changing n — —n changes an orientation on oppo-
site).

Choose an arbitrary orthonormal basis such that first vector of this basis
is directed along the axis: a basis {n,f, g}.

Definition We say that a linear operator P rotates the Euclidean space
E3 on the angle ¢ with respect to an axis In directed along a vector N if the

following conditions are satisfied:

P(N) =N

vector N (and all vectors proportional to this vector) are eigenvectors
of operator P with eigenvalue 1, i.e. axis remain intact

e for an orthonormal basis {n, f, g} such that the first vector of this basis
is equal to n, (n is a unit vector, proportional to IN)

f'=Pf)="f i g
(f) cos.<p+gsmg0 e (F.g) = {f.g) <095g0 sin gp) .
g =P(f) = —fsinp+gcosyp sing  cosp

(1.52)
In other words plane (subspace) orthogonal to axis rotates on the angle
©: linear operator P rotates every vector orthogonal to axis on the angle
¢ in the plane (subspace) orthogonal to the axis.

Linear operator P transforms the basis {n,, f, g} to the new basis {n, f’, g’}
= {n,fcos p+gsinp, —fsinp+gcosp}. The matrix of operator P, i.e. the
transition matrix from the basis {n,,f, g} to the basis {n,f’ g’} is defined
by the relation:

1 0 0
{n,f' g’} = {n,fcosp+gsiny, —fsinpt+gcosp}t ={n,,f,g} | 0 cosp —sinyp
0 sing cose
(1.53)
Recalling definition (1.29) of trace of linear operator we come to the following
relation
TrP=1+2cosy (1.54)
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where ¢ is angle of rotation. Note that Trace of the operator does not depend
on the choice of the basis. This formula express cosine of the angle of rotation
in terms of operator, irrelevant of the choice of the basis.

Remark This formula defines angle of rotation up to a sign.

If we change orientation then ¢ — —@. For non-oriented Euclidean space rotation is
defined up to a sign*

Careful reader maybe already noted that even fixing the orientation of E* does not fix
the “sign” of the angle: If we change the orientation of the axis (changing n — —n) then
changing the corresponding “left” basis will imply that ¢ — —@. In fact angle ¢ is the
angle of rotation of oriented plane which is orthogonal to the axis of rotation. Orientation
on the plane is defined by orientation in E® and orientation of the axis which is orthogonal
to this plane. In the case of 3-dimensional space sign of the angle depends not only on
orientation of E3 but on orientation of axis. In what follows we will ignore this. This
means that we define rotation on the angle +¢ up to a sign.... Rotation is defined for
operators preserving orientation. The difference between angles of rotations ¢ and —¢ is
depending not only on orientation of E3 but on orientation of axis too. But we ignore this
difference. Note that cos ¢ in the formula is defined up to a sign

Rotation operator eviently is orthogonal operator preserving orientation.
Is it true converse implication? We are ready to formulate the following
remarkable result.

Theorem (the Euler Theorem) Let P be an orthogonal operator preseruv-
ing an orientation of Euclidean space E3, i.e. operator P preserves the scalar
product and orientation. Then it is a rotation operator with respect to an axis
[ on the angle . Every vector N directed along the axis does not change, i.e.
the azxis is 1-dimensional space of eigenvectors with eigenvalue 1, P(N) = N.
Every vector orthogonal to axis rotates on the angle ¢ in the plane orthogonal
to the axis,

TrP=1+2cosp.

The angle ¢ is defined up to a sign. Changing orientation of the Euclidean
space and of the axis change sign of .

This Theorem can be restated in the following way: every orthogonal
operator P preserving orientation, (det P # 0) has an eigenvector N # 0 with
eigenvalue 1. This eigenvector defines the axis of rotation. In an orthonormal
basis {n, f, g} where n is a unit vector along the axis, the transition matrix
of operator has an appearance (1.53). Angle of rotaion can be defined via
Trace of operator by formula Tr P = 1 + 2 cos ¢.

Remark If P is an identity operator, P = I then “ there is no rotation”,
more precisely: any line can be considered as an axis of rotation (every vector

4Does it recall you expressions such as “clockwise”, “anticlock-wise” rotation?
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is eigenvector of identity matrix with eigenvalue 1) and angle of rotation is

equal to zero. If P # I then axis of rotation is defiend uniquely.

Proof of the Euler Theorem. The proof of the Euler Theorem has two parts. First and
central part is to prove the existence of the axis. The rest is trivial: we take an arbitrary
orthonormal basis n, f, g such that n is eigenvector and we come to relation (1.52). We
expose here maybe the most beautiful proof which belongs to Coxeter.

Let P be linear orthogonal operator preserving orientation. Note that for any two
not-zero distinct vectors e,f one can consider orthogonal operator R ¢ which changes
orientation and swaps the vectors e, f: it is reflection with respect to the plane spanned
by the vectors e + f and a vector e x f.

Let {e,f,g} be an arbitrary orthonormal basis in E? and let ', f’, g’ be image of this
basis under operator P

Ple)=¢, P(f)=f"P(g) =g .
If e = € nothing to prove (e is eigenvector with eigenvalue 1). If this is not the case,
apply reflection operator Rees to the initial basis {e,f,g} we come to the orthonormal
basis {e’, f , G}, Then applying reflection operator R je to this basis we come to the basis

e, f’,g. The third vector has no choice it has to be equal to g’ since in the case if it
is equal to —g’ orientation is opposite. Hence we see that operator P is the product of
two reflections operators. Consider the line [, intersection of these planes, we come to
eigenvectors with eigenvalue 1.

There are many other proofs, for example:

Another proof: Any non-degenerate 3 x 3 matrix has at least one eigenvector x:
Px = )x, since cubic equation det(P — AI) = 0 has at lest one real root. Since P is
orthogonal operator, then A = £1. If A = 1, then x defines the axis. If A = -1, Px = —x,
then eigenvector with eigenvalue 1 belongs to the plane orthogonal to x. m

Example Consider linear operator P such that for orthonormal basis

{es,ey,e:}
P(e;) =e,, P(e,) =e,, Ple,) = —e, (1.55)

This is obviously orthogonal operator since it transforms orthogonal ba-
sis to orthogonal one. This operator swaps first two vectors and reflects
the third one. It preserves orientation: matrix of operator in the basis
{e., ey, e.}, i.e. the transition matrix from the basis {e,,,e,, e.} to the
basis {P(e,), P(e,), P(e.)} is defined by the relation:

{P(ez)v P(ey)’ P(eZ)} = {ey7exa _ez} = {exv 7eyvez}

o = O

1 0
0 0
0 -1

det P = 1. This operator preserves orientation. Hence by Euler Theorem it

is a rotation. Find first axis of rotation. It is easy to see from (1.55) that
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N = \(e, + e,) is eigenvector with eigenvalue 1:
P(N)=P(e, +e,) =e,+e,=N.

Hence axis of rotation is directed along the vector e, +e,. Tr P = 14+2cos ¢ =

0. hence angle of rotation ¢ = +7.
One can calculate explicitly angle of rotation: Consider orthonormal basis {n, f,g}
adjusted to the axis (n||N). We have that n = % since n is proportional to N and it

is unit vector. Choose f = —Sz e

and g = e,. Then it is easy to see that

V2
e, t+e, —e;+e
n7f’ = - y7 = y7 }
{n,f,g} { 7 Vs
is orthonormal basis.Using (1.55)one can see that
e, +e e, +e
P(n)=P (= Y] = T =n,
()=
—e; +e —€e, +e
Pf)=r W)= M — _f Pg)=—
(0= p (= 0r) = = (®)=

We see that

{1’1, fa g}i){na _f7 _g} .
Comparing with (1.52) and (1.53) we see that the operator P is rotation of E® on the
angle m with respect to the axis directed along the vector e, + e,,.

1.13  Vector product in oriented E3

Now we give a definition of vector product of vectors in 3-dimensional Eu-
clidean space equipped with orientation.

Let E? be three-dimensional oriented Euclidean space, i.e. Euclidean
space equipped with an equivalence class of bases with the same orientation.
To define the orientation it suffices to consider just one orthonormal basis
{e,f, g} which is claimed to be left basis. Then the equivalence class of the
left bases is a set of all bases which have the same orientation as the basis
{e,f,g}.

Definition Vector product L(x,y) = x X y is a function of two vectors
which takes vector values such that the following axioms (conditions) hold

e The vector L(x,y) = x X y is orthogonal to vector x and vector y:
(xxy)lx, (xxy)ly (1.56)

In particular it is orthogonal to the the plane spanned by the vectors
x,y (in the case if vectors x,y are linearly independent)
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XXy =-y XX, (anticommutativity condition) (1.57)

(Ax+py)xz=ANxxz)+puly xz), (linearity condition) (1.58)

If vectors x,y are perpendicular each other then the magnitude of the
vector x X y is equal to the area of the rectangle formed by the vectors
x and y:

xxy|=x[-|y], if x Ly,ie(x,y)=0. (1.59)

If the ordered triple of the vectors {x,y,z}, where z = x X y is a basis,
then this basis and an orthonormal basis {e, f, g} defining orientation
of E? have the same orientation:

{x,y,z} = {e, f,g}T, where for transition matrix 7', det T" > 0.
(1.60)

Vector product depends on orientation in Euclidean space.

Comments on conditions (axioms) (1.56)—(1.60):

1. The condition (1.58) of linearity of vector product with respect to
the first argument and the condition (1.57) of anticommutativity imply that
vector product is an operation which is linear with respect to the second
argument too. Show it:

ZX (Ax+py) = —(Ax+py)xz=—-Axxz)—u(yxz) = Nzxx)+u(zxy).

Hence vector product is bilinear operation. Comparing with scalar prod-
uct we see that vector product is bilinear anticommutative (antisymmetric)
operation which takes vector values, while scalar product is bilinear symmet-
ric operation which takes real values.

2. The condition of anticommutativity immediately implies that vector
product of two colinear (proportional) vectors x,y (y = Ax) is equal to zero.
It follows from linearity and anticommuativity conditions. Show it: Indeed

XXYy=XX(AX)=AXXX)=—-AxxX)=—-xX(Ax)=—xXxYy. (1.61)
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Hence x x y =0, ify:)\x..

3. It is very important to emphasize again that vector product depends
on orientation. According the condition (1.60) if z = x x y and we change
the orientation of Euclidean space, then z — —z since the basis {x,y, —z}
as an orientation opposite to the orientation of the basis {x,y,z}.

You may ask a question: Does this operation (taking the vector product) which obeys
all the conditions (axioms) (1.56)—(1.60) exist? And if it exists is it unique? We will
show that the vector product is well-defined by the axioms (1.56)—(1.60), i.e. there exists
an operation x X y which obeys the axioms (1.56)—(1.60) and these axioms define the

operation uniquely.

We will assume first that there exists an operation L(x,y) = x X y which
obeys all the axioms (1.56)—(1.60). Under this assumption we will construct
explicitly this operation (if it exists!). We will see that the operation that
we constructed indeed obeys all the axioms (1.56)—(1.60).

Let {e,, ey, €.} be an arbitrary left orthonormal basis of oriented Eu-
clidean space E3, i.e. a basis which belongs to the equivalence class of the
basis {e, f,g} defining orientation of E*. Then it follows from the consider-
ations above for vector product that

e, xe, =0, e, Xe =€, €, Xe, =—¢e,
e, X e, =—e, e, xe, =0, e, X e, =e, (1.62)
e, Xxe, =e, €,Xe =—e, e, xe, =0

E.g. e, xe, =0, because of (1.57), e, X e, is equal to e, or to —e, according
to (1.59), and according to orientation arguments (1.60) e, X e, = e,.

Now it follows from linearity and (1.62) that for two arbitrary vectors
a=aze, +aye, +a.e,, b=>be, +be,+b.e,

axb = (a,e,+a,e,+a.e,)x (be,+be,+b.e,) = abe, xe,+a,b.e, xe,+

aybye, X e; +ayb.e, x e, +a.bye, X e, +a.be, x e, =
(ayb, — azby)e, + (a.b, — azb,)e, + (azby — ayby)e, . (1.63)

It is convenient to represent this formula in the following very familiar way:

e, €5 e,
L(a,b)=axb=det |a, a, a, (1.64)
b, b, b,
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We see that the operation L(x,y) = x x y which obeys all the axioms (1.56)—(1.60),
if it exists, has an appearance (1.64), where {e,,e,,e.} is an arbitrary orthonormal basis
(with rightly chosen orientation). On the other hand using the properties of determinant
and the fact that vectors are orthogonal if and only if their scalar product equals to zero
one can easy see that the vector product defined by this formula indeed obeys all the
conditions (1.56)—(1.60).

Thus we proved that the vector product is well-defined by the axioms (1.56)—(1.60)
and it is given by the formula (1.64) in an arbitrary orthonormal basis (with rightly chosen
orientation).

Remark In the formula above we have chosen an arbitrary orthonormal
basis which belongs to the equivalence class of bases defining the orientation.
What will happen if we choose instead the basis {e,,e,,e,} an arbitrary
orthonormal basis {f;, f5, f3}. We see that such that answer does not change
if both bases {e,,e,, e.} and {f}, f;, f3} have the same orientation, Formulae
(1.62) are valid for an arbitrary orthonormal basis which have the same
orientation as the orthonormal basis {e,,e,, e,}.— In oriented Euclidean
space E? we may take an arbitrary basis from the equivalence class of bases
defining orientation. On the other hand if we will consider the basis with
opposite orientation then according to the axiom (1.60) vector product will
change the sign. (See also the question 6 in Homework 4)

1.13.1 Vector product—area of parallelogram

The following Proposition states that vector product can be considered as
area of parallelogram:

Proposition 2 The modulus of the vector z = x X y is equal to the area
of parallelogram formed by the vectors x and y.:

S(x,y) = S(Il(x,y)) = [x xy|, (1.65)

where we denote by S(x,y) the area of parallelogram II(x,y) formed by the
vectors X,y.

Proof: Consider the expansion y = y) + y., where the vector y, is
orthogonal to the vector x and the vector yj is parallel to to vector x. The
area of the parallelogram formed by vectors x and y is equal to the product of
the length of of the vector x on the height. The height is equal to the length
of the vector y,. We have S(x,y) = |x||y.|. On the other z = x Xy =
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XX (yj+yL) =xxy;+xxys. But xxy; =0, because these vectors
are colinear. Hence z = x Xy, and |z| = |x||y .| = S(x,y) because vectors
x,y. are orthogonal to each other.

This Proposition is very important to understand the meaning of vector
product. Shortly speaking vector product of two vectors is a vector which is
orthogonal to the plane spanned by these vectors, such that its magnitude is
equal to the area of the parallelogram formed by these vectors. The direction
is defined by orientation.

Remark It is useful sometimes to consider area of parallelogram not as a positive
number but as an real number positive or negative (see the next subsubsection.)

It is not worthless to recall the formula which we know from the school
that area of parallelogram formed by vectors x,y equals to the product of
the base on the height. Hence

x X y| = |x| - [y[[sinf], (1.66)

where 6 is an angle between vectors x,y.

Finally I would like again to stress:

Vector product of two vectors is equal to zero if these vectors are colinear
(parallel). Scalar product of two vectors is equal to zero if these vector are
orthogonal.

Exercise!Show that the vector product obeys to the following identity:
(axb)xc)+((bxc)xa)+((cxa)xb)=0. (Jacoby identity) (1.67)

This identity is related with the fact that heights of the triangle intersect in the one point.
Exercise’ Show that a x (b x c) = b(a,c) — c(a, b).

1.13.2 Area of parallelogram in E? and determinant of 2 x 2 ma-
trices

Let a,b be two vectors in 2-dimensional vector space E?.

One can consider E? as a plane in 3-dimensional Euclidean space E3. Our
aim is to calculate the area of the parallelogram Il(a, b) formed by vectors
a,b. Let n be a unit vector in E® which is orthogonal to E2. Then it is
obvious that the vector product a x b is proportional to the normal vector
n to the plane E%:

axb=A(a,b)n, (1.68)
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and the area of the parallelogram II(a, b) equals to the modulus of the coef-
ficient A(c,b):
S(II(a,b)) = |a x b| = |A(a,b)|. (1.69)

The normal unit vector n and coefficient A(a,b) are defined up to a sign: n — —n,
A — —A. On the other hand the vector product a x b is defined up to a sign too:
vector product depends on orientation. The answer for a X b is not changed if we perform

calculations for vector product in an arbitrary basis {e/,e/,e.} which have the same

orientation as the the basis {e,f,n} and axb —— —axb. If v:;e consider an arbitrary basis
{e, e}, e} which have the orientation opposite to the orientation of the basis {e,f,n}
(e.g. the basis {e,f,—n}) then A(a,b) — —A(a,b). The magnitude A(a,b) is so called
algebraic area of parallelogram. It can positive and negative.

If (ay,as), (by,by) are coordinates of the vectors a, b in the basis {e, f}:

a = aje + axf, b = bje + bof and according to (1.64)

e f n 0 a
axb=det|a; a 0| =ndet|,” )Y (1.70)
by, by
by by 0O

Thus A(a,b) in equation (1.69) is equal to det <ZI Zy), and we come to
@ Oy

the following formula for area of parallelogram

Ay Ay
det (bz by)’. (1.71)

This is an important formula for relation between determinant of 2 x 2 matrix,
area of parallelogram and vector product.

S(II(a,b)) = |ax b| =

One can deduce this relation in other way:
Let E? be a 2-dimensional Euclidean space. The function A(a,b) defined by the
relation (1.71) obeys the following conditions:

e It is anticommutative:
A(a,b) = —A(a,b) (1.72)

e It is bilinear
A(Ma+ub,c) = MA(a,c)+ pA(b,c); A(c, \a+ ub) = AA(c,a)+ pA(c,b). (1.73)
e and it obeys normalisation condition:
Ale,f) = £1 (1.74)

for an arbitrary orthonormal basis.
(Compare with conditions (1.56)—(1.60).)
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One can see that these conditions define uniquely A(a,b) and these are the conditions

which define the determinant of the 2 x 2 matrix.

1.13.3 Volumes of parallelograms and determinnants of linear op-
erators in E?

Let A be an arbitrary linear operator in E2. One can see that the following
formula holds.
Let a,b be two arbitrary vectors in E2. Let a’, b’ be two vectors such
that
a'=A(a), b=A().

Consider two parallelograms: Parallelogram Il(a, b) formed by vectors a, b,
and the second parallelogram TI(a’, b’) formed by vectors o’.b’. Then one can
deduce from equation (1.71) that

Area of II(a’,b’) = |det A| - Area of II(a,b) . (1.75)

This formula relates volumes of parallelograms Il(a,b), II(a’,b’) with de-
terminant of linear operator which transforms the first parallelogram to the
second one. (See also exercise 9 in Homework 4).

1.13.4 Volume of parallelepiped

The vector product of two vectors is related with area of parallelogram. What
about a volume of parallelepiped formed by three vectors {a,b,c}?

Consider parallelepiped II(a, b, c) formed by vectors {a,b,c}. The par-
allelogram II(a, b) formed by vectors b, ¢ can be considered as a base of this
parallelepiped.

Let 6 be an angle between height and vector a. It is just the angle between
the vector b x ¢ and the vector a. Then the volume is equal to the length of
the height multiplied on the area of the parallelogram, V' = Sh = S|a| cos 6,
i.e. volume is equal to scalar product of the vectors a on the vector product
of vectors b and c:

e, € e,
V({a,b,c}) =|(a,b x c)| = || aye, + aye, + a.e,,det | b, b, b,
Cx Cy €

= |(aze, + aye, + aze,, (byc, — b.cy)e, + (bycy — bycy)ey + (becy — byci)e,)| =
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ay ay a,
lag(byc, — b.cy) + ay(bcp — bycy) + az(byey — bycy)| = |det | b, b, b,

Cx Cy Cs
We come to beautiful and useful formula:
g Gy a
volume of II(a,b,c) = |(a,[b x c])| = |det | b, b, b, || . (1.76)
Co Cy C;

Compare this formula for the formula (1.71) for the area of parallelogram.
Remark In these formulae we consider the volume of the parallelepiped as a positive
number. It is why we put the sign of ‘modulus’ in all the formulae above. On the other
hand often it is very useful to consider the volume as a real number (it could be positive
and negative).
Exercise Consider the function F(a,b,c) = (a,b x c¢).
1. Show that F'(a,b,c) = 0 if and only if vectors a, b, ¢ are linear dependent.
2. Show that for an arbitrary vector a, F'(a,a,c) = 0.

3. Show that for arbitrary vectors a,b, F(a,b,c) = —F(a,b,c). Can you deduce 3)
from the 2)?

1.13.5 Volumes of parallelepipeds and determinnants of linear op-
erators in E3

Write down an equation for the volumes of parallelepipeds analogous to equa-
tion (1.75) for the the areas of parallelograms. Now instead parallelogram
we consider parallelepiped, and instead linear operator A in E? we consider
linear operator A in E3.

Let A be an arbitrary linear operator in E3. In the same way as in formula
(1.75) the following formula holds:

Let a, b, ¢ be three arbitrary vectors in E3. Linear operator A transforms
these three vectors to three vectors a’,b’, ¢ where

a' =A(a), b=AD),c =P().

Consider two parallelepipeds: Parallelepiped II(a,bc¢) formed by vectors
a, b, c and the second parallelepiped II(a’, b’ ') formed by vectors o'.V/, c’.
Then it follows from (1.76) the following formula and determinant of operator
A:

Volume of II(a’,b’,¢’) = |det A| - Volume of II(a, b, c) . (1.77)

This formula relates volumes of parallelepipeds Il(a, b, c), TI(a’,b’, ¢’) with
determinant of linear operator which transforms the first parallelepiped to
the second one. (See also exercise 9 in Homework 4).
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2 Differential forms

2.1 Tangent vectors, curves, velocity vectors on the
curve

Tangent vector is a vector v applied at the given point p € E".

The set of all tangent vectors at the given point p is a vector space. It is
called tangent space of E? at the point p and it is denoted T}, (E™).

One can consider vector field on E", i.e.a function which assigns to every
point p vector v(p) € T,(E").

It is instructive to study the conception of tangent vectors and vector
fields on the curves and surfaces embedded in E". We begin with curves.

A curve in E" with parameter ¢ € (a,b) is a continuous map

C: (a,b) — E" r(t) = ('(t),...,2"(t)), a<t<b (2.1)
For example consider in E? the curve
C: (0,27) — E? r(t) = (Rcost, Rsint), 0 <t < 27.

The image of this curve is the circle of the radius R. It can be defined by
the equation:

?+y* =R,

To distinguish between curve and its image we say that curve C' in (2.1)
is parameterised curve or path. We will call the image of the curve unpa-
rameterised curve (see for details the next subsection). It is very useful to
think about parameter ¢ as a "time” and consider parameterised curve like
point moving along a curve. Unparameterised curve is the trajectory of the
moving point. The using of word ”curve” without adjective ”parameterised”
or "nonparameterised” sometimes is ambiguous.

Vectors tangent to curve—uvelocity vector

Let r(t) r=r(t) be a curve in E".
Velocity v(t) it is the vector

v(t) = % = (&'(t),...,...a"(1) = (v'(2),...,v"(1))

in E™. Velocity vector is tangent vector to the curve.
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Let C': r = r(t) be a curve and ry = r(ty) any given point on it. Then
the set of all vectors tangent to the curve at the point ry = r(ty) is one-
dimensional vector space T;,C. It is linear subspace in vector space 1;,C.
The points of the tangent space T,,C' are the points of tangent line.

In the next section we will return to curves and consider them in more
details.

Remark We consider by default only smooth, regular curves. Curve r(t)
= (z'(t),...,2"™(t)) is called smooth if all functions z'(t), (i = 1,2,...,n) are
smooth functions (Function is called smooth if it has derivatives of arbitrary

dr(t)
dt

order.) Curve r(t) is called regular if velocity vector v(t) = is not equal

to zero at all t.

2.2 Reparameterisation

One can move along trajectory with different velocities, i.e. one can consider
different parameterisation. E.g. consider

Cy: o(t) =t 0<t<1, Cy: x(t)zs'm; O<t<Z
y(t) =1 y(t) = sin®¢ 2

Images of these two parameterised curves are the same. In both cases
point moves along a piece of the same parabola but with different velocities.

Definition
Two smooth curves Cy: ry(t): (ar,b1) — E"and Cy:  ro(7): (ag,b) —
E™ are called equivalent if there exists reparameterisation map:

t(T): <a27 b2> — (alu b1)7
such that

ro(7) = 1r1(t(7)) (2.2)

Reparameterisation ¢(7) is diffeomorphism, i.e. function #(7) has derivatives
of all orders and first derivative ¢'(7) is not equal to zero.

E.g. curves in (2.2) are equivalent because a map ¢(t) = sint transforms
first curve to the second.

Equivalence class of equivalent parameterised curves is called non-parameterised
curuve.
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Equivalent curves have the same image.

It is useful sometimes to distinguish curves in the same equivalence class
which differ by orientation.

Definition Let curves (4,5 be two equivalent curves. We say that
they have same orientation (parameterisations ri(t and r(7) have the same
orientation) if reparameterisation ¢ = ¢(7) has positive derivative, t'(7) > 0.
We say that they have opposite orientation (parameterisations rq(¢ and r(7)
have the opposite orientation) if reparameterisation ¢t = ¢(7) has negative
derivative, t'(7) < 0.

Changing orientation means changing the direction of "walking” around
the curve.

Equivalence class of equivalent curves splits on two subclasses with respect
to orientation.

Non-formally: Two curves are equivalent curves (belong to the same
equivalence class) if these parameterised curves ( paths) have the same im-
ages. Two equivalent curves have the same image. They define the same set
of points in E™. Different parameters correspond to moving along curve with
different velocity. Two equivalent curves have opposite orientation If two pa-
rameterisations correspond to moving along the curve in different directions
then these parameterisations define opposite orientation.

What happens with velocity vector if we change parameterisation? It
changes its value, but it can change its direction only on opposite (If these
parameterisations have opposite orientation of the curve):

_dey(r) _dr(t(r)) _ di(r) dr(t)
v = dr o e

Or shortly: V(T)|T = tT(T)V(t)‘t:t(T)

We see that velocity vector is multiplied on the coefficient (depending on
the point of the curve), i.e. velocity vectors for different parameterisations
are collinear vectors.

(We call two vectors a, b collinear, if they are proportional each other, i,e, if
a= \b.)

(2.3)

Example Consider following curves in E%:

x = cosf T=u
Ch: ,0< 0 <, Csy: ,—l<u<1,
! {yzsinQ ? {y:\/l—lﬂ
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T = tant T T
{y:@ ,—Z<t<z (24)
cost

These three parameterised curves,(paths) define the same non-parameterised
curve: the upper piece of the circle: 22 4+ y? = 1,y > 0. The reparameterisa-
tion u(#) = cos 6 transforms the second curve to the first one.

The reparameterisation u(6) = cos transforms the second curve to the
first one.

The reparameterisation () = tant transforms the second curve to the

third one one; Y2t — v cos?tosint _ V1 —tan2t.

cost cost
Curves (1, Cy have opposite orientation because u/'(f) < 0. Curves Cy, Cs

have the same orientation, because u/(t) > 0. Curves C; and Cy have opposite
orientations too (Why?).

In the first case point moves with constant pace |v(6)| = 1 anti clock-wise
”from right to left” from the point A = (1, 0) to the point B = (—1,0). In the
second case pace is not constant, but v, = 1 is constant. Point moves clock-
wise ”from left to right”, from the point B = (—1,0) to the point A = (1,0).
In the third case point also moves clock-wise ”from the left to right”.

There are other examples in the Homeworks.

2.3 0O-forms and 1-forms

Most of considerations of this and next subsections can be considered only for E? or E3.

All examples for differential forms is only for E?, E3.

0-form on E™ it is just function on E” (all functions under consideration
are differentiable)

Now we define 1-forms.
Definition Differential 1-form w on E" is a function on tangent vectors
of E™, such that it is linear at each point:

w(r, Avy + pve) = dw(r, vi) + pw(r, va) . (2.5)

Here vy, vy are vectors tangent to E™ at the point r, (vi, vy € T,E™) (We
recall that vector tangent at the point r means vector attached at the point
r). We suppose that w is smooth function on points r.

If X(r) is vector field and w-1-form then evaluating w on X(r) we come
to the function w(r, X(r)) on E3.
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Let ey, ..., e, beabasisin E® and (z', ..., 2") corresponding coordinates:
an arbitrary point with coordinates (z!,... x™") is assigned to the vector
r = az'e; +2%e, + ... 2", starting at the origin.

Translating basis vectors e; (¢ = 1,...,n) from the origin to other points
of E™ we come to vector field which we also denote e; (i = 1,...,n). The
value of vector field e; at the point (x!,...,z") is the vector e; attached at
this point (tangent to this point).

Let w be an 1-form on E". Consider an arbitrary vector field A(r) =
Azt ... ")

A@) = Alfr)ey + -+ A"(¥)e, = 3 A'(r)e,

Then by linearity
w(r,A(r)) =w (r,A'(r)e; + -+ A"(r)e,) = A'w(r,e) +- -+ A"w(r,e,).
Consider basic differential forms dxt, dz?, ..., dz" such that
1if i = j

0if i # j (26)

dz'(e;) = 5; = {

Then it is easy to see that
dr'(A) = Al dx*(A) = A? ... ied2'(A) = A
Hence
w(r,A(r)) = (wi(r)dz' + wa(r)dz® + - - - + wy,(r)dz") (A(r))

where components w;(r) = w(r, ;).

In the same way as an arbitrary vector field on E" can be expanded over
the basis {e;} (see (2.3)), an arbitrary differential 1-form w can be expanded
over the basis forms(2.3)

w=uw (2. . ") dst +wy(zt, ... 2")dz® + - Fw,(2t, ... 2™)da"™ .

Example Consider in E? a basis e,, e,, e, and corresponding coordinates
(x,y,2). Then

dz(e,) = 1,dz(e,) = 0,dz(e,) =0
dy(e:c) =0, dy(ey) =1, dy(ez) =0 (27)
dz(e;) = 0,dz(e,) =0,dz(e,) =1



The value of a differential 1-form w = a(z,y, 2)dx +b(x,y, 2)dy + c(x, y, z)dz
on vector field X = A(x,y, 2)e, + B(z,y, z)e, + C(z,y, z)e, is equal to

w(r,X) = a(z,y, 2)de(X) + b(z,y, 2)dx(X) + ¢(x,y, z)dz(X) =

a(x,y, z)A(z,y,2) + b(z,y,2)B(x,y, 2) + c(x,y,2)C(2,y, 2)

It is very useful (see below ) introduce for basic vectors new notations:

e; — — for basic vectors e,. e,. e, in E*e ng »—>£e r—>£
1 Ot Ty Cys 2z T or Y 8?/ z 0z
(2.8)

In these new notations the formula (2.3) looks like

dmi(i):(ﬁ: 1lfl‘:]‘
xJ ! 0if i #£

and the formula (2.7) looks like

dx (a%) =1,dx a% =0,dr (%) =0
dy (57) = 0:dy (5 ) = 1.dy (57) = 0
dz (a%) =0,dz 8% =0,dz (%) =1

It is very useful to introduce new notation for vectors e,, e, e..

In the next subsection we will consider the directional derivative of func-
tion along vector fields. The directional derivative will justify our new nota-
tions (2.8).

2.3.1 Vectors—directional derivatives of functions

Let R be a vector in E" tangent to the point r = ry (attached at a point
r = rg). Define the operation of derivative of an arbitrary (differentiable)
function at the point ry along the vector R— directional derivative of function
f along the vector R

Definition
Let r(t) be a curve such that

° I‘(t)|t:0 = To
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e Velocity vector of the curve at the point ry is equal to R d’;(tt) —o =R

Then directional derivative of function f with respect to the vector R at the
point rg Or f ‘I‘o is defined by the relation

d

Orfl,, = 5 (F () |- (2.9)

Using chain rule one come from this definition to the following important
formula for the directional derivative:

0
oxt

[l 2 (2.10)

If R= iRiei then 6’Rf|r0 = iRi
i=1 i=1

r=ro

It follows form this formula that
One can assign to every vector R =3 | R'e; the operation Og = Rla%l—l—

R2% +-+ R”% of taking directional derivative:

R:Zn:Riei HaRzzn:Riaii (2.11)
=1 =1

Thus we come to notations (2.8). The symbols 0,, d,, 0, correspond to partial
derivative with respect to coordinate x or y or z . Later we see that these new
notations are very illuminating when we deal with arbitrary coordinates, such
as polar coordinates or spherical coordinates, The conception of orthonormal
basis is ill-defined in arbitrary coordinates, but one can still consider the
corresponding partial derivatives. Vector fields e,, e,, e, (or in new notation
Dz, 0y, 0,) can be considered as a basis® in the space of all vector fields on
E3 .
An arbitrary vector field (2.3) can be rewritten in the following way:

A(r) = Alr)er + -+ A'(r)e, = A1<r>% * AQ(r>% ot A"(r>ain
(2.12)

Differential on 0-forms

5Coefficients of expansion are functions, elements of algebra of functions, not numbers
,elements of field. To be more careful, these vector fields are basis of the module of vector
fields on E3
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Now we introduce very important operation: Differential d which acts on
O-forms and transforms them to 1 forms.

Differential d | Differential

O-forms — 1-forms

Later we will learn how differential acts on 1-forms transforming them to
2-forms.

Definition Let f = f(x)-be 0-form, i.e. function on E™. Then

df = ; af(xlé;i' ) (2.13)

The value of 1-form df on an arbitrary vector field (2.12) is equal to

" Of(at,. .2 L Of(at,. . a2
df(A) = . dz'(A) = . A'=0 2.14
) =3 S () = 3 S W (214)
We see that value of differential of O-form f on an arbitrary vector field A
is equal to directional derivative of function f with respect to the vector A.

The formula (2.14) defines df in invariant way without using coordinate expansions.

Later we check straightforwardly the coordinate-invariance of the definition (2.13).
Exercise Check that
dz'(A) = Oax’ (2.15)

Example If f = f(z,y) is a function (0 — form) on E? then

of(z,y) of(z,y)
df = d
f ar + Jy
and for an arbitrary vector field A = A = A,e, + Ayje, = A, (z,y)0, +

Ay(SB» y)ay

dy

i) = LD o) + a0 Ly ) -
A LD s o) EED 5.

Example Find the value of 1-form w = df on the vector field A =
z0, + y0, if f = sin(z? + y?).
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w(A) = df(A). One can calculate it using formula (2.13) or using formula

(2.14).
Solution (using (2.13)):
w=df = = f fdy—?xcos(:v + %) dx + 2y cos(z? + y*)dy .
890 8y

w(A) = 2z cos(z® + y*)dx(A) + 2y cos(2? + 3?)dy(A) =
27 cos(z? + y*) A, + 2y cos(2? + y*)dA, = 2(z* + y?) cos(2® + y?),
Another solution (using (2.14))

f+A 8f

vo0 T Ay, 2(2° +y*) cos(z® + y°) .

df(A) = Oaf = A,

See other examples in Homeworks.

2.4 Differential 1-form in arbitrary coordinates

Why differential forms? Why so strange notations for vector fields.

If we use the technique of differential forms we in fact do not care about
what coordinates we work in: calculations are the same in arbitrary coordi-
nates.

2.4.1 Calculations in arbitrary coordinates *

Consider an arbitrary (local) coordinates u!,...,u"™ on E": u' = u'(z!,... 2"), i =
1,...,n. Show first that
du’ = zn: dek (2.16)
po Oxk ' ’

It is enough to check it on basic fields:

du’ (afm) = O o yu' = 6“(—” zn: Quals ™) o ((afm)) .

k=1

because (see (2.3)):
1if i = j

9 i _
dx’ (5‘ J):éj_{Oifi7éj . (2.17)

(We rewrite the formula (2.3) using new notations 9; instead e;). In the previous formula
(2.3) we considered cartesian coordinates.
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Show that the formula above is valid in an arbitrary coordinates.
One can see using chain rule that

0 oo oo o o oo
out  Out dx! | Oul Ox? out dxn — Out O+ ’

Calculate the value of differential form du® on vector field % using (2.16) and (2.18):

(D) Nt a) (im0 0

i (5) = T W X gwae ) = (219)
i: out(xt,... a") 8x”(u1,...,u")d vl 0\ _
k.or=1 8xk au] v ox" N

3

_ 5]
Oud Oxk v

zn: oul(zt, ..., a") 3xT(u17...,u")6k K 87:6’“%
oxk oud T

k,r=1 k=1

We come to

(0 ; lifi=j
dut () =si=4 1T (2.20)
ou’ 0if i #£j
We see that formula (2.17) has the same appearance in arbitrary coordinates. In other
words it is invariant with respect to an arbitrary transformation of coordinates.

Exercise Check straightforwardly the invariance of the definition (2.13). In coordi-
nates (ul,..., u")

Solution We have to show that the formula (2.13) does not changed under changing
of coordinates u® = u(x!,... a").

" of(xt, .. ) "of(xt, ... a) 0t |, " of |,
ar =Y gyt =y SR T S = S S
i1 i—1

_ oz’ ouk uk
=1,k

1 n i
because >, 781%8;;-"93 )% = aank
Example
Consider more in detail E2. (For E? considerations are the same, just calculations little
bit more complicated) Let u, v be an arbitrary coordinates in E2, u = u(z,y),v = v(z,y).

u(z,y) u(z,y) ov(z,y) dv(z,y)
= = 2.21
du 5 dx + ay dy, dv pe dxr + 5 dy (2.21)
wd Oz (u, v) Ay(u,v) Oz (u, v) dy(u,v)
_ Ox(u,v y(u,v _ O0x(u,v y(u, v
Oy = 5 Oz + 5 Oy, Oy = 5 Oz + 50 Oy (2.22)
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(As always sometimes we use notation 0, instead %, 0y instead 3% e.t.c.) Then

du(0y,) = 1,du(d,) =0
(2.23)
dv(0y) = 0,dv(0,) =1

This follows from the general formula but it is good exercise to repeat the previous calcu-
lations for this case:

_ (Ou(z,y) du(z,y) Ox(u,v) Ay(u,v)
du(au)—( p dx + oy dy 5 Or + 5 Dy

Oulw,y) Oa(u,v) | uli,y) Dy(usv) _ Dalusv) dulrsy) | Oyl e) dulasy) _ |
ox ou dy ou  Ou ox ou oy
We just apply chain rule to the function v = u(z, y) = u(z(u,v),y(u,v)):
Analogously

_ (Oulz,y) du(z,y) O (u, v) dy(u, v)
du(&)( o dx + 9 dy 50 Ox + 50 Oy

ou(z,y) Ox(u,v) n ou(z,y) Oy(u,v)  Ox(u,v) du(x,y) n 0y(u,v) du(z,y)
Oox ov oy o Ov ox v dy

The same calculations for dv.

=0

2.4.2 Calculations in polar coordinates

Example (Polar coordinates) Consider polar coordinates in E?:

{x(r, Y) =rcose

. (0<p<2m,0<r <o0),
y(r, ) = rsing

Respectively

{r(x’y) =VEty (2.24)

— ¥
¢ = arctan

We have that for basic 1-forms

dr = ryde +ry,dy = N — + Ldy = M (2:25)
/32 + 42 /22 1 2 r
and
—yd d dy — yd
dp = ol + g,y = — 0 + Py = TS (2.26)

x2 + y2 1-2 + y2 7-2
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Respectively
dr = x,dr + x,dyp = cos pdr — rsin pdp

and
dy = y,dr + y,dyp = sin pdr + r cos pdyp (2.27)
For basic vector fields
ox oy , 20, + YO
0, = Eﬁx + Eﬁy = cos 0, + sin pd, = Ty’
Oy = g—i@x + g—iay = —rsinpd, + rcos 0y = 0, — YOy, (2.28)
respectively
_or dp, Y
0w = 83car + 835650 N rar B 7"28“0
and 5 9
r % Y x
=—0,+—0,==0,+ =0, 2.2
% Ay +8ya¢ yOrt a0 (2.29)

Example Calculate the value of forms w = xdx +ydy and 0 = xdy —ydx
on vector fields A = z0, + yd,, B = 20, — y0,. Perform calculations in
Cartesian and in polar coordinates.

In Cartesian coordinates:

w(A) = zdx(20,+y0,)+ydy(x0,+y0,) = 2*+y?, w(B) = zdz(B)+ydy(B) = 0,

o(A) = zdy(A) — ydx(A) =0, 0(B) = xdy(B) — ydx(B) = 2> + *.

Now perform calculations in polar coordinates. According to relation (2.25)
w = xdx + ydy = rdr, 0 = xdy — ydr = r’dyp
and according to relations (2.28) and (2.29)
A =20, +y0, =10, B=20,—y0, =0,
Hence w(A) = rdr(A) =1r* = 2% + y*,w(B = rdr(d,) = 0,
o(A) = r%dp(rd,) =0, o(B)=1r*dp(d,) =1r*=2>+1>.

Answers coincide.
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Example. Let f = 2* — y* and vector field A = rd,. Calculate 1-form
w=df and w(A).
We have w = df = 4x*dx — 4y3dy. One has transforms form from Cartesian
coordinates to polar or vector field from polar coordinates to Cartesian.

In Cartesian coordinates: A =rf =z2 + ya%. Hence w(A) = df(A) =

ox

0 0 0 0 0 0
(42”dx—4dy> dy) (I% + y8_y> = 42°dx (xa—x + ya—y) —4a3dy (I— + ya—y> = 4ot —dgt

0 0
Or using (2.14) , w(A) = df(A) = 0af = (:v£ + y8_y> (2t —y*) = 4zt —ay*
In polar coordinates f = z*—y* = (22 —y?)(x*+y?) = r*(r sin? ) =
rtcos2p, w = df = 4r3cos2pdr — 2rtsin2pdp, and wW(A) = w(rd,) =
474 cos 2¢ since dr(0,) = 1,dp(d,) = 0. Or using (2.14)

2 2

cos¥ —r

w(A) =df(A) =0af = T% (7“4 cos 90) = 4r* cos 2p.

Example Calculate the value of form w = “ig;gg“ on the vector field A = 0,. OaAF =
r2 (rfcos2p) = 4r* cos2p = 4(z* — y*). Or using 1-forms: We have to transform form

from Cartesian coordinates to polar or vector field from polar to Cartesian.

xdy — ydx
W =dp, w(A)=dp(d,)=1

or

xdy(z0y — y0y) — ydx(x0, — y0O,)

=1.
22 + 42

Op = 20y — Y0y, w(A) =

2.5 Integration of differential 1-forms over curves

Let w = wi(zh,...,a")dat + -+ +wi(at, ... 2™)da™ = Y7 widz® be an
arbitrary 1-form in E"
and C: r =r(t),t; <t <ty be an arbitrary smooth curve in E".
One can consider the value of one form w on the velocity vector field
_ dr(t) .
v(t) = =5~ of the curve:

w(v(t)) = ZM (z'(t),...,2"(t))dz" (v(1)) = Zwi ('), ..., 2" (1)) dxc;gt)
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We define now integral of 1-form w over the curve C.

Definition The integral of the form w = wy (2!, ..., 2")dz'+ - -+w, (2!, ..., 2")dx"
over the curve C:  r=r(t) t; <t <tyisequal to the integral of the func-
tion w(v(t)) over the interval ¢; <t < ty:

/Cw:/jw(v(t))dt:/tz <Zw (1), .., 2"(1)) dx;)f”) dt. (2.30)

Proposition The integral fcw does not depend on the choice of coordi-
nates on E". It does not depend (up to a sign) on parameterisation of the
curve: if C: r=r(t) t; <t<tyisacurve andt = t(r) is an arbitrary
reparameterisation, i.e. new curve C': /(1) =r(t(r)) 7 <7 <79, then

fcw = :I:féw:

/ w= / w, if orientaion is not changed, i.e. if t'(t) >0
C’ !/

and
/ W= —/ w, if orientaion is changed, i.e. if t'(T) <0
C !

If reparameterisation changes the orientation then starting point of the
curve becomes the ending point and vice versa.

Proof of the Proposition Show that integral does not depend (up to a sign) on the

parameterisation of the curve. Let t(7) (11 <t < 73) be reparameterisation. We come to
dr(t(r))

the new curve C’: r'(7) = r(t(7)). Note that the new velocity vector v/(7) = =5

t'(T)v(t(r)). Hence w(v'(1)) = w(v(t(7)))t (7). For the new curve C’

/lw = /: w(v'())dr = /T:2 w(v(t(r))dil(:)dT = /f(f::) w(v(t))dt

t(m1) = t1, t(12) = to if reparameterisation does not change orientation and ¢(71) = ta,
t(r2) = t if reparameterisation changes orientation.

Hence [, w = f:f)w(v(t))dt = [ w if orientation is not changed and [, w =

ftzl) w(v(t))dt = — :12) w(v(t))dt = — [, w is orientation is changed.

Example
Let
w = a(z,y)dz + b(z, y)dy
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be 1-form in E? (z,y-are usual Cartesian coordinates). Let C: r =

— 2(t
r(t) z = a(t) ,t1 <t <ty bea curve in E2.
y =y(t)
Consider velocity vector field of this curve

v(t) = O _ <”x(t)) - <xt(t)) — 2,0, + 9., (2.31)

dt Vy (t) Yt (t>

dx d
(:Et = d(tt)a Ye = %)

One can consider the value of one form w on the velocity vector field v(t)
of the curve: w(v) = a(z(t),y(t))dz(v) + b(x(t), y(t))dy(v) =

a(a(t), y(t))x(t) + b(x (), y())y:(t) .

The integral of the form w = a(z,y)dx + b(x,y)dy over the curve C: r =
r(t) t; <t < tyis equal to the integral of the function w(v(t)) over the
interval t; <t < tq:

szlﬁwwmﬁzKZG@wwmﬂﬁ”+Mﬁmmw%?>w.
1 1 (2.32)

Example Consider an integral of the form w = 3dy+3y?dz over the curve
= t
C:r(t) v C.OS ,0 <t < 7/2. (Cis the arc of the circle % + y* = 1
Yy =sint
defined by conditions =,y > 0).

Vetocity veetor v(e) = 2 = (1)) = ())<= (). The

value of the form on velocity vector is equal to

w(v(t)) = 3y*(t)va(t) + 3v,(t) = 3sin?¢(—sint) + 3cost = 3cost — 3sin® ¢

and
s Jus Bt x
/Cw = /02 w(v(t))dt = /02 (3cost—3sin®t)dt = 3 (sint + cost — CO; ) !02

Example Now consider the integral of the same form w over the the curve
2 4,2
rr+y- =1

C which is the upper half of the circle 22 + 3% = 1: C: { -0
Yy =
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Curve is given as an image. We have the image of the curve not the param-
eterised curve. We have to define a parameterisation ourself.

We consider three different parameterisations of this curve. Sure to cal-
culate the integral it suffices to calculate | ¢ W in an arbitrary given parame-
terisation r = r(t) of the curve C, then note that for an arbitrary reparame-
terisation ¢t = ¢(7), the integral will remain the same or it will change a sign
depending on the reparameterisation ¢t = ¢(7) preserves orientation or not.

rq(t): ‘ RC'OS ,0<t<m, ryt): v RC‘OS ,Ogtﬁz,(9>0)
y = Rsint y = Rsin Qt Q
and
M 47T _R<i<Rr (2.33)
3 . y: R2—t2 9 =~ = I :

All these curves are the same image. If {2 = 1 the second curve coincides
with the first one. First and second curve have the same orientation (repa-
rameterisation ¢ — Q) The third curve have orientation opposite to first and
second (reparameterisation ¢ — cost, the derivative % < 0).

Calculate integrals [, w, [, w, [, ¢, w and check straightforwardly that
these integrals coincide if orientation is the same or they have different signs
if orientation is opposite.

/ W= / (xyy — yx,)dt = / (R%cos®t + R*sin*t)dt = 7 R?
C1 0 0
& 7
/ W= / (xys — yay)dt = / (R*Q cos® Ot + R*Qsin® Qt)dt = TR*.
Cy 0 0

These answers coincide: both parameterisation have the same orientation.
For the third parameterisation:

/ng B /0R<£Uyt — yx)dt = /OR (t <ﬁ) _ m) J —

2 f dt 2 2
R —— =R = = R
0o VR?Z—t2 0 V1—u?
We see that the sign is changed.
Finally consider the integral of the form w = zdy — ydx over the semicircle in polar

coordinates instead Cartesian coordinates, We have that in polar coordinates semicircle is
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r(t) =R
p(t) =t
r?dp and v(t) = (r, 1) = (0,1), i.e. v(t) = d,. We have that w(v(t)) = r(t)?dp(9,) =
R?. Hence fcw = fow R2dt = mR?. Answer is the same: The value of integral does not

, 0 <t <. The form w = zdy — ydax = r cos pd(rsin @) — rsin pd(rsin ) =

change if we change coordinates in the plane.

For other examples see Homeworks.

2.6 Integral over curve of exact form

1-form w is called exact if there exists a function f such that w = df.

Theorem

Let w be an exact 1-form in E", w = df.

Then the integral of this form over an arbitrary curve C:  r =r(t) t; <
t <ty is equal to the difference of the values of the function f at starting and
ending points of the curve C':

/Cw = f‘ac = f(ro) — f(r1), r1=r(t1),ro=r(ts). (2.34)

Proof: [o.df = [;* df(v(t)) = [;? & f(x(t))dt = f(x(t))]i2.

Example Calculate an integral of the form w = 32%(1 +y)dx + x3dy over
the arc of the semicircle 22 +y? = 1,y > 0.

One can calculate the integral naively using just the formula (2.32):
Choose a parameterisation of Cle.g., * = cost,y = sint, then v(t) =
—sintd, + costd, and w(v(t)) = (32*(1 +y)dx + 23dy)(— sin td, + cos td,) =
—3cos®t(1 +sint)sint + cos®t - cost and

/w:/ (—3cos’tsint — 3cos® tsin®t + cos’ t)dt = ...
c 0

Calculations are little bit long.
But for the form w = 322(1 + y)dz + x3dy one can calculate the integral
in a much more efficient way noting that it is an exact form:

w = 32*(1+ y)dz + 2°dy = d (*(1 + y)) (2.35)

Hence it follows from the Theorem that
[ w=tam) - fa) = Pa S50 =2 (230
c
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Remark If we change the orientation of curve then the starting point be-
comes the ending point and the ending point becomes the starting point.—
The integral changes the sign in accordance with general statement, that in-
tegral of 1-form over parameterised curve is defined up to reparameterisation.

Corollary The integral of an exact form over an arbitrary closed curve
18 equal to zero.

Proof. According to the Theorem fcw = fc df = f|60 = 0, because the
starting and ending points of closed curve coincide.

Example. Calculate the integral of 1-form w = 2°dy + 5ax*ydx over the
ellipse 22 + % =1.

The form w = 2°dy + 5x*ydz is exact form because w = x°dy + Sxtydr =
d(z°y). Hence the integral over ellipse is equal to zero, because it is a closed
curve.

Remark The remarkable Theorem and Corollary of this section works
only for exact forms. Of course not any form is an exact form (see exercises
in Homeworks and subsection 2.9 below) E.g. 1-form zdy — ydx is not an
exact form®.

2.7 Differential 2-forms (in E?)

2.7.1 2-form-area of parallelogram

We give first general ideas about what is it differential k-form (k = 2, 3)
1-form is a linear function on vectors:

w(A): WA+ uB) = Aw(A) + pw(B),
2-form is a bilinear function on two vectors:
wAK): wANA+uB,K) = MAw(A, K)+uw(B, K) ,w(K, \A+uB) = M\ (K, A)+uw(K, B)
which obey to the following condition

w(A,B) = —w(B.A) (2.37)

Sif zdy — ydx = df = f.dx + f,dy, then f, = x and f, = —y. We see that on one hand
fzy = (fz)y = —1 and on the other hand f,, = (f,)> = 1. Contradiction.
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This condition implies that the value of of 2-form on vectors A, B is pro-
portional to the area of parallelogram II5 g formed vy these vectors. Explain
it on a simple example.

Consider differential 2-form dz A dy in E*:

dz N\ dy <(%,(%) =1

(In the same way as 1-forms dz, dy are basic forms for 1-form.)

Linearity conditions and condition (2.37) imply that for an arbitrary 2-
form w in E? w = a(z, y)dx A dy.

Take two vector fields A, B, A = 4,2 + A,-Z, Then due to conditions

T 9z Yoy’
(2.37) above we have
0 0 0 0
AB -w(aLialplipd)-
w(A,B) w( oge + yay,BzaerByay)

A, B,w(0y, 0;) Ay Byw (0, 0y) Ay Byw(0y, 04) Ay Byw(0y, 0) =

a | AyB, dx A dy(0y, 0,) Ay By dx A dy(0y, 0y) Ay By dx A dy(0y, 0,) Ay By dx A dy(0y,0,) | =
T TV ;fo

~
=0 =1 =—1

a(A,B, — A,B,) = a - area of parallelogram I1p g = adet (gz gz)

In a analogous way 3-forms are related with volume of parallelipiped, .... k-form with
volume of k-parallelipiped...

2.7.2 T Wedge product

We considered detailed definition of 1-forms. Now we give some formal approach to de-
scribe 2-forms. Differential forms on E? is an expression obtained by adding and multi-
plying functions and differentials dx,dy. These operations obey usual associativity and
distributivity laws but multiplications is not moreover of one-forms on each other is anti-
commutative:

wAw =—-w Aw if w,w are 1-forms (2.38)

In particular
dr Ndy = —dy Ndz,dv ANdx = 0,dy Ady =0 (2.39)

Example If w = zdy + zdzx and p = dz + ydx then

wAp=(xdy+ zdz) A (dz + ydx) = xdy A dz + zdx A\ dz + zydy A dz
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and
pAw=(dz+ydx) A (xdy + zdx) = xdz Ndy + zdz AN dx + zydx Ndy = —w A p

Changing of coordinates. If w = a(x,y)dzx A dy be two form and z = z(u,v),y = y(u,v)

new coordinates then dr = z,du + z,dv, dy = y,du + y,dv (v, = BméZ’“), Ty = %,
Yu = 7‘99&7“)7 y = 7‘99(672”’)). and
a(z,y)dz A dy = a (z(u,v),y(u,v)) (xydu + z,dv) A (yudu + ypdv) = (2.40)

a (x(u,v),y(u,v)) (vudu + x,dv) (Tyypdu A dv + 2y dv A du) =
a(@(u,v), y(u,v)) (Tuyo — Toyu)du A dv

Example Let w = dx A dy then in polar coordinates x = rcos,y = rsinp

dx A dy = (cos pdr — rsinpdp) A (sinedr + r cos pdp) = rdr A de (2.41)

2.7.3 1 0-forms (functions) %, 1-forms -% 2-forms

We introduced differential d of functions (0-forms) which transform them to 1-form. It
obeys the following condition:

e d: is linear operator: d(Af + ug) = Adf + pdg
e d(fg)=df -g+f-dg
Now we introduce differential on 1-forms such that
e d: is linear operator on 1-forms also
o d(fw)=df Nw+ fdw
o ddf =0
Remark Sometimes differential d is called ezterior differential.

Perform calculations using this definition and (2.38):

dw = d(wrdx 4+ wady) = dwy A dx + dws A dy = (&Jla(j v) dx + awla(j’ y) dy) A dx+

Qwa(@,y) oy Fa@y) N g (Q2@y)  dan@y) oo
Ox Oy Oz dy

Example Consider 1-form w = xdy. Then dw = d(zdy) = dx A dy.
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2.7.4 'Exact and closed forms

We know that it is very easy to integrate exact 1-forms over curves (see the sub-
section ”Integral over curve of exact form”)
How to know is the 1-form exact or no?
Definition We say that one form w is closed if two form dw is equal to zero.
Example 1-form xdy + ydx is closed because d(zdy + ydz) = 0.

It is evident that exact 1-form is closed:
w=dp=dw=d(dp)=dodp=0 (2.42)

We see that the condition that form is closed is necessary condition that form is
exact.

So if dw # 0, i.e. the form is not closed, then it is not exact.

Is this condition sufficient? Is it true that a closed form is exact?

In general the answer is: No.

E.g. we considered differential 2-form

_ xdy — ydx

2.43
.%'2 + y2 ( )

defined in E2\0. It is closed, but it is not exact (See non-compulsory exercises 11,12,13 in
the Homework 6).

How to recognize for 1-form w is it exact or no?

Inverse statement (Poincaré lemma) is true if 1-form is well-defined in E2:

A closed 1-form w in E™ is exact if it is well-defined at all points of E™, i.e. if it is
differentiable function at all points of E™.

Sketch a proof for 1-form in E2: if w is defined in whole E? then consider the function

F(r):/c w (2.44)

r

where we denote by C} an arbitrary curve which starts at origin and ends at the point r.
It is easy to see that the integral is well-defined and one can prove that w = df.

The explicit formula for the function (2.44) is the following: If w = a(z, y)dz+b(x, y)dy
then F(z,y) = fol (a(tz,ty)x + b(tz, ty)y) dt.

Exercise Check by straightforward calculation that w = dF (See exercise 14 in Home-
work 6).

2.7.5 T Integration of two-forms. Area of the domain

We know that 1-form is a linear function on tangent vectors. If A B are two vectors
attached at the point rg, i.e. tangent to this point and w,p are two 1-forms then one
defines the value of w A p on A, B by the formula

w A p(A, B) = w(A)p(B) — w(B)p(A) (2.45)
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We come to bilinear anisymmetric function on tangent vectors. If o = a(x,y)dx A dy
is an arbitrary two form then this form defines bilinear form on pair of tangent vectors:
o(A,B) =

a(z,y)dz A dy(A, B) = a(z,y) (dz(A)dy(B) — dz(B)dy(A)) = a(z,y) (A By — AyB,)
(2.46)
One can see that in the case if @ = 1 then right hand side of this formula is nothing but
the area of parallelogram spanned by the vectors A, B.
This leads to the conception of integral of form over domain.
Let w = a(x)dx A dy be a two form and D be a domain in E2. Then by definition

/ w= / a(x,y)dzdy (2.47)
D D
If w = dz A dy then

/ w = / (z,y)dzdy = Area of the domain D (2.48)
D D

The advantage of these formulae is that we do not care about coordinates”

Example Let D be a domain defined by the conditions

2 +y? <1 (2.50)
y>0 )
Calculate [;, dx A dy.
Jpdx ANdy = [, dedy = area of the D = Z.
If we consider polar coordinates then according (2.41)
de Ndy = rdr N\ dy
Hence [, dx ANdy = [, rdr ANdp = [, rdrde = fol (fy dep) rdr = 7Tf01 rdr = /2.
Another example
Example Let D be a domain in E? defined by the conditions
(x_c)z i <
T sl (2.51)
y=0

D is domain restricted by upper half of the ellipse and z-axis. Ellipse has the centre
at the point (c,0). Its area is equal to S = [, dz A dy. Consider new variables 2’,y':

"If we consider changing of coordinates then jacobian appears: If u,v are new coordi-
nates, © = x(u,v), y = y(u,v) are new coordinates then

/ a(, y)dady = / a(z(u, v), y(u, v)) det ("”“ f”) dudy (2.49)

u fo

In formula(5.9) it appears under as a part of coefficient of differential form.
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z = c+ ax’,y = by’. In new variables domain D becomes the domain from the previous
example:
(x—c)? ¥

a2 12
a? +b727x ty

and dz A dy = abdxz’ A dy’. Hence

wab
S = , dr A dy = ab dr' Ndy' = — (2.52)
Lo i <1y>0 @24y 7 <1y >0 2

Theorem 2 ( Green formula) Let w be 2-form such that w = dw’ and D be a domain—
interior of the closed curve C. Then
/ w= / W' (2.53)
D c

3 Curves in Euclidean space. Curvature

3.1 Curves. Velocity and acceleration vectors

We already study velocity vector of curves. Consider now acceleration vector
_d2r(b)
dt?

. For curve r = r(t) in E" we have

and

Cdv(t)  dr(t) ,  dP2(t)
T T a0t T T ae
Velocity vector v(t) is tangent to the curve. In general acceleration vector
is not tangent to the curve. One can consider decomposition of acceleration
vector a on tangential and normal component:

(i=1,2,...,n). (3.1)

aA = Q¢angent +ay, (32>

where ayqngent 1S the vector tangent to the curve (collinear to velocity vector)

and a, is orthogonal to the tangent vector (orthogonal to the velocity vector).

The vector a, is called normal acceleration vector of the curve 8.

8Component of acceleration orthogonal to the velocity vector sometimes is called also
centripetal acceleration
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Example Consider a curve

= Rcos it
c. T T meE (3.3)
y = RsinQt

If we consider parameter t as a time then we have the point which moves
over circle of the radius R with angular velocity 2. We see that

_ (—RQsinQt (R cos — _0%r(t)
V= RQcost )27 RO2sinQt ) — r

Speed is constant: |v| = RQ. Acceleration is perpendicular to the velocity.
(It is just centripetal acceleration.)

What happens if speed is increasing, or decreasing, i.e. if angular velocity
is not constant? One can see that in this case tangential acceleration is not
equal to zero, i.e. the velocity and acceleration are not orthogonal to each
other.

Analyze the meaning of an angle between velocity and acceleration vectors
for an arbitrary parameterised curve r = r(t). For this purpose consider the
equation for speed: |v|? = (v, v) and differentiate it:

dv|> d
7 = (V0. v(t) =2(v(t) a(t)) = 2lv(t)l[a(®)| cos O(t),  (3.4)

where 6 is an angle between velocity vector and acceleration vector.

We formulate the following

Proposition

Suppose that parameter ¢ is just time. We see from this formula that if
point moves along the curve r(¢) then

e speed is increasing in time if and only if the angle between velocity and
acceleration vector is acute, i.e. tangential acceleration has the same
direction as a velocity vector:

d|v|? .
0 >0 (v,a) >0« cost >0 agy, =Av with A > 0. (3.5)

e speed is decreasing in time if and only if the angle between velocity
and acceleration vector is obtuse, i.e. tangential acceleration has the
direction opposite to the direction of a velocity vector.

d|v|?

7<0(:)(V,a)<0@0059<0¢)amn9:/\vwith)\<0. (3.6)
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e speed is constant in time if and only if the velocity and acceleration
vectors are orthogonal to each other, i.e. tangential acceleration is
equal to zero.

dlv[?
7:0<:>(v,a):O<:>0050:0<:>amng:0. (3.7)
t) = vt
Example Consider the curve r(t): 2(t) = v 2 It is path of the
y(t) = vyt — &
point moving under the gravity force with initial velocity v = Zm . One

Y

2
<g;2y) 2. We have that

Vg P

can see that the curve is parabola: y = (”—y> xr —

v(t) = Ve and acceleration vector a = 0 . Suppose that v, > 0.
v, — gt v

(v,a) = —g(vy — gt). Then at the highest point (vertex of the parabola)
(t = v,/g) acceleration is orthogonal to the velocity. For t < v,/g angle
between acceleration and velocity vectors is obtuse. Speed is decreasing. For
t > v,/g angle between acceleration and velocity vectors is acute. Speed is
increasing.

3.2 Behaviour of acceleration vector under reparam-
eterisation

How acceleration vector changes under changing of parameterisation of the
curve?

Let C: r=r(t),t; <t <ty beacurve and t = t(7) reparametrisation
of this curve. We know that for new parameterised curve C': /(1) =
r(t(7)), 1 < 7 < 7 velocity vector v/(7) is collinear to the velocity vector

v(t) (see (2.3)):

_ dr'(r) _ dr(t(r)) _ di(r) dr(t(7))

/
vin) =— dr dr  dt

=t v(4(7))
Taking second derivative we see that for acceleration vector:

a(r) = DD D 4y oam) = (el + £at()) (39)

63



Under reparameterisation acceleration vector in general changes its di-
rection: new acceleration vector becomes linear combination of old velocity
and acceleration vectors: direction of acceleration vector does not remain
unchanged ?.

We know that acceleration vector can be decomposed on tangential and
normal components (see (3.2)). Study how tangential and normal compo-
nents change under reparameterisation.

Decompose left and right hand sides of the equation (3.8) on tangential
and orthogonal components:

a,(T)tangent + a,<T>J_ = tTTV(t) + t72' <a<t>t‘mgem - a(t)l)

Then comparing tangential and orthogonal components we see that new tan-
gential acceleration is equal to

a/(T>tangent = tTTV(t) + tqz-a(t)tcmgent (39>
and normal acceleration is equal to
a/<T>J_ = t?_a(t)J_ (310)

The magnitude of normal (centripetal) acceleration under changing of
parameterisation is multiplied on the #2. Now recall that magnitude of ve-
locity vector under reparameterisation is multiplied on ¢.. We come to very
interesting and important observation:

Observation

a
The magnitude H remains unchanged under reparameterisation. (3.11)
v

We come to the expression which is independent of parameterisation: it
must have deep mechanical and geometrical meaning. We see later that it is
nothing but curvature.

9The plane spanned by velocity and acceleration vectors remains unchanged.(This plane
is called osculating plane.)
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3.3 Length of the curve

If r(t),a <t < bis a parameterisation of the curve L and v(t) velocity vector
then length of the curve is equal to the integral of of |v(t)| over curve:

b
Length of the curve L = / [v(t)|dt = (3.12)

/\/ do (1 (dwjft)>2+...+<d$;t(t))2dt.

Note that formula above is reparameterisation invariant. The length of
the image of the curve does not depend on parameterisation. This corre-
sponds to our intuition.

Proof Cousider curve ry = rq(t), a1 <t < by. Let t = t(7), as < 7 < by be another
parameterisation of the curve r = r(t), In other words we have two different parameterised
curves r1 = ri(t),a; < ¢ < by and ro = r1(¢(7)), as < 7 < bg such that their images
coincide (See (2.2)). Then under reparameterisation velocity vector is multiplied on ¢

dI‘2 dt dI‘l

VQ(T) = ﬁ = %E = tT(T)Vl(t(T))

Hence

b1 b2 dt(’r) b2 b2
L1 = / |V1 (t)|dt = / |V1 (t) ar dr = / |t7-V1 (t)|d7' = / |V2(T)‘d7' = L2 s
al as as as (3 13)

i.e. length of the curve does not change under reparameterisation.

IfC: r=r(t)t; <t<tisacurve in E? then its length is equal to

Lo= /: (1) dt = t))2+ (dfli)) g (3.14)

3.4 Natural parameterisation of the curves

Non-parameterised curve can be parameterised in many different ways.

Is there any distinguished parameterisation? Yes, it is.

Definition A natural parameter s = s(t) on the curve r = r(¢) is a
parameter which defines the length of the arc of the curve between initial
point r(¢;) and the point r(¢).
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If a natural parameter s is chosen we say that a curve r = r(s) is given
in natural parameterisation.

Write down explicit formulae for natural parameter.
Let C :r(t),a <t <bbeacurve in E". As always we suppose that it is
smooth and regular curve: (i.e. r(t) has derivatives of arbitrary order, and

velocity vector v # 0.
Then it follows from (3.12) that

s(t) = {length of the arc of the curve between points r(a) and r(t)} (3.15)

= [ vteiar =
/\/ dx;t,t’ (%W)Z.HJF(CZ%P)Q&’. (3.16)

( As always we suppose that it is smooth and regular curve: (i.e. r(t) has
derivatives of arbitrary order, and velocity vector v # 0.)

Example Consider circle: = Rcost,y = Rsint in E?. Then we come
to the obvious answer

= {length of the arc of the circle between points r(0) and r(¢)} = Rt =

d t’ dy(t')\ 2 ¢ t
/ \/ Zt/ (%) dt’ = / VR?sin® ' + R2 cos? t/dt’ = / Rdt' = Rt
0 a

s = Rt. Hence in natural parameterisation r = Rcos %, y = Rsin 4.

Remark If we change an initial point then a natural parameter changes
on a constant.

For example if we choose as a initial point for the circle above a point
r(t;) for t; = —7, then the length of the arc between points r(—7) and r(0)
is equal to R% and

s'(t) = s(t) + Rg.

Another
Example Consider arc of the parabola z = t,y = t2,0 < t < 1:

s(t) = {length of the arc of the curve for parameter less or equal to t} = (3.17)
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IV - (52 o

t
N
/ V1 + 4r2dr = + + > log (2t+ V1 +4t2)
0

4

The first example was very simple. The second is harder to calculate '°. In general case
natural parameter is not so easy to calculate. But its notion is very important for studying

properties of curves.

Natural parameterisation is distinguished. Later we will often use the
following very important property of natural parameterisation:

Proposition If a curve is given in natural parameterisation then

e the speed is equal to 1

(v(s),v(s)) =1, ie. |v(s)|=1, (3.18)

e acceleration is orthogonal to wvelocity, i.e. tangential acceleration is
equal to zero:

(V(8)7 8(8)) = 07 Le. Atangent — 0. (319)

Proof: For an arbitrary parameterisation |v(t)| = dt ) where L(t) is a
| =

length of the curve. In the case of natural parameter L(s) = s, i.e. |v(¢)
dZ—it) = 1. We come to the first relation.
The second relation means that value of the speed does not change (see

(3.4) and (3.7)).

0Denote by I = fg V1 +472d7. Then integrating by parts we come to:

472 1
I:t\/1+4t2—/7d7':t\/1+4t2—1+/7d7'
V14472 V14472
Hence
t\/l +4t2 /
V1 —|—47'2

and we come to the answer.
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3.5 Curvature of curve in E"

3.5.1 Definition of curvature

How to find invariants of non-parameterised curve, i.e. magnitudes which depend on the
points of non-parameterised curve but which do not depend on parameterisation?

Answer at the first sight looks very simple: Consider the distinguished natural param-
eterisation r = r(s) of the curve. Then arbitrary functions on x%(s) and its derivatives
do not depend on parameterisation. But the problem is that it is not easy to calculate
natural parameter explicitly (See e.g. calculations of natural parameter for parabola in
the previous subsection). So it is preferable to know how to construct these magnitudes
in arbitrary parameterisation, i.e. construct functions f (dd—:’f, %, ...) such that they do

not depend on parameterisation.

We define now curvature. First formulate reasonable conditions on cur-
vature:

e it has to be a function of the points of the curve

e it does not depend on parameterisation

e curvature of the line must be equal to zero

e curvature of the circle with radius R must be equal to 1/R

We first give definition of curvature in natural parameterisation. Then
study how to calculate it for a curve in an arbitrary parameterisation.

For a given non-parameterised curve consider natural parameterisation
r = r(s). We know already that velocity vector has length 1 and acceleration
vector is orthogonal to curve in natural parameterisation (see (3.18) and
(3.19)). It is just normal (centripetal) acceleration.

Definition. The curvature of the curve in a given point is equal to
the modulus (length) of acceleration vector (normal acceleration) in natural
parameterisation. Namely, let r(s) be natural parameterisation of this curve.
Then curvature at every point r(s) of the curve is equal to the length of
acceleration vector:

d*r(s)
ds?

First check that it corresponds to our intuition (see reasonable conditions
above)

k=las), a(s)= (3.20)
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It does not depend on parameterisation by definition.

It is evident that for the line in normal parameterisation z’(s) = x{ + b's
(3" b = 1) the acceleration is equal to zero.

Now check that the formula (3.20) gives a natural answer for circle.
For circle of radius R in natural parameterisation

r=r(s) = (z(s),y(s)), where z(s)= Rcos 7L y(s) = Rsinﬁ

(length of the arc of the angle 6 of the circle is equal to s = Rf.) Then

dr?(s) 1 s 1 . s
a(s) = =|—geosp —Rpsing

and for curvature

kE=la(s)| == (3.21)
we come to the answer which agrees with our intuition.

Geometrical meaning of curvature: One can see from this example that % is just
a radius of the circle which has second order touching to curve.(See the subsection ”Second

order contact” (this is not compulsory))

3.5.2 Curvature of curve in an arbitrary parameterisation.

Let curve be given in an arbitrary parameterisation. How to calculate curva-
ture. One way is to go to natural parameterisation. But in general it is very
difficult (see the example of parabola in the subsection ”Natural parameter-
isation”).

We do it in another more elegant way.

Proposition Curvature of the curve in terms of an arbitrary parameter-
isation v = r(t) is given by the formula:

lay(t)|  Area of parallelogram Il o formed by the vectors a,v

k pu— pummy
v(®)? [v[?

Y

(3.22)
where v(t) = dr(t)/dt is velocity vector and a, (t) is normal acceleration.

Proof of the Proposition
Prove first that £ = ||ift()ﬁ)2|. Note that in natural parameterisation speed
is equal to 1 and acceleration is orthogonal to curve: a = ay, |v| = 1 (see
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(3.18), (3.19)). Hence in natural parameterisation the ration % is equal

just to modulus of acceleration vector, i.e. to the curvature (3.20). On the
other hand according to the observation (3.11) (see the end of the subsection
”Velocity and acceleration vectors”) the ratio % = % does not depend

on parameterisation. Hence curvature is defined by the formula k = |‘ift()t‘)2| in

an arbitrary parameterisation.

Advantage of the formula k& = ‘ilt(t)g‘ is that it is given in an arbitrary
parameterisation. Disadvantage of this formula is that we still do not know
how to calculate a | (¢). Do the next step. Note that

lay(t)]  lai(t)|-|v]  Area of parallelogram II, 5 formed by the vectors a, v
V2 P [v[? '
(3.23)
Thus we proved formula (3.22). We express the curvature in terms of area of
the parallelogram Il , in an arbitrary parameterisation. We have that under
an arbitrary change of parameterisation ¢t = ¢(7)

VitV
a; — tla; (3.24)
Area of parallelogramlly , — t3 Area of parallelogramlIy, ,

Numerator and denominator of the fraction, which is in the RHS of the
equation (3.23) are multiplied on ¢3. The fraction, i.e. curvature does not
change.

3.5.3 Curvature of curve in E? E?

We know how to calculate area of parallelogram spanned by the vectors a, v.
In particularly it is easy to do for E® and E?, where this is just the magnitude
of vector product (see the formulae for vector product in the subsections
1.11.1 and 1.11. 2):

Area of parallelogram II, , formed by the vectors a,v  |v(t) x a(t)]
b VP TR

(3.25)

if curve is in E3.
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In the case if curve is in E? then formula for curvature is

L V@) xa)] _ |vay — vyae] _ Jusa, — vyas| _
FOE (02 +02)3 (v2 +02)2

_ Ixtytt - ytxtt|
(27 +y2)>2
This is workable formula.

(if curve is in E?) (3.26)

In general case if curve is in E™ then to calculate the area S of parallelogram note that

= |v||a|| sin 0] where |v||a|cosf = (v,a). Hence S = |v||a|v/1 — cos? § = y/v2a? — (v -a)
and curvature is equal to

2
Area of parallelogram formed by the vectors v and a v?a? — (v-a)
Cube of the speed N [v|3

k= (3.27)

Remark . Of course one can come to formulae (3.27), (3.25) and (3.5.3) by ”brute
force” making straightforward attack. Instead considering explicitly natural parameter-
isation of the curve we just try to rewrite the formula in definition (3.20) in arbitrary
parameterisation using chain rule. The calculations are not transparent. Try to do it.

Consider examples of calculating curvature for curves in E? and E3.

Example Consider a curve Cy: r(t):
)). Calculate curvature of this curve.

sationn of graph of the function f = f(z)).
0

We see that v(t) = ,a(t and we have for the curvature
0= (o) 20 = (o))

that "
_ \:L'tytt - ytxtt’ — = |f (t)’

(@ +y): (0
Example. Consider circle of the radius R, 22 + y?> = R?. Take any

parameterisation, e.g. x = Rcost,y = Rsint. Then v = (—Rcost, Rsint),
= (—Rsint, —Rcost). Applying the formula (3.26) we come to

(3.28)

|Itytt — txtt| |R2 COS2 t+ R2 Sin2 t‘ R;Z . 1

(22 +92)%  (R?cos?t+ R?sin’t)s R® R
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T = acost

Example Consider ellipse r(t): . ,0<t<2nm. Thenv(t) =
y = bsint
—asint —acost
( bcost )> a(t) = (-bsint) and for curvature we have
b — [Ty — yeu| b labsin®t + ab cos? t| _ ab
(acf + yf)% (a2 sin? ¢ + b2 cos? t)% (a2 sin?t + b2 cos2 t)%

(3.29)
In particular we see that at the points (fa,0) (t = 0,7) curvature is equal
to k = % = % and at the points (0,+b) (¢ = +Z) curvature is equal to

_ab _ b
k—a_S—a_Q.

Example Consider helix

r = Rcost
r(t): y = Rsint (3.30)
z=ct

We see that velocity and acceleration vectors are equal to

—Rsint —Rcost
dr(t dv(t
v(t) = Ic'i<t) = | Rcost |, a(t)= ‘;i) = | Rsint
c 0

One can calculate curvature traightworwardly sing the formula (3.25):

i j k

det —Rsint Rcost ¢
J— lv(t) xa(t)] —Rcost —Rsint 0/|
T NOP (7 + ) -

VERT R  RJETR R

VE+a)' (VRre)® B+
We come to the beautiful answer using ‘brute force’. Try to come to this
answer in a nicer way. Speed is constant: |v(t)| = vV R? 4+ ¢2. Velocity vector
is orthogonal to acceleration vector. This can be checked directly, but it is
evident without any calculations since speed is constant. (In fact acceleration
vector is orthogonal not only to the velocity vector but to an arbitrary vector
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at the surface of the cylinder z? + y* = R? since it is orthogonal to vertical
vectors and to velocity vector. )

How to calculate curvature? We can do it without the formula (3.25),
since the area of parallelogram is equal just to the product of speed and
length of acceleration vectors, or in the other way we may just use the formula
k= ‘3—;“ We have

_lauf _fal R

L — L
v2| vz R?24 2

since |a] = RQ? Notice that in this formula curvature tends to % if ¢ — 0 (in
this case helix tends to the circle), and curvature k tends to 0 if ¢ — oo (in
this case) helix tends to straight line.

See also examples in Homework 8.

4 Surfaces in E?. Curvatures and Shape op-
erator.

In this section we study surfaces in E3. One can define surfaces by equation
F(z,y,z) = 0 or by parametric equation

r = x(u,v)
r(u,v): Ly =vyu,v) (4.1)
z = z(u,v)

Example the equation 2% +3? = R? defines cylinder (cylindrical surface).
z-axis is the axis of this cylinder, R is radius of this cylinder. One can define
this cylinder by the parametric equation

x = Rcosyp
r(p,h): Cy=Rsinp (4.2)
z=nh

where ¢ is the angle 0 < ¢ < 27 and —oo < h < oo takes arbitrary real
values.
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Example sphere 22 + y* + 22 = R?:

x = Rsinf cos g
r(0,p): {y=Rsinfsinp ,0<0<7m 0<¢<2rm

z = Rcost

Example cone 2% + y? — k?2? = 0:

x = khcosp
r(h,o): Sy=khsing ,—co<h<oo 0<¢ <27
z=h

Example saddle z — xy = 0:

r=u
r(u,v): Sy=uv , —00 < U, v < 00
Z=uv

Example graph of the surface z = F(x,y):

r=u
r(u,v): Sy=wv ,—00 < U < 00, —00 < U < 00
z = F(u,v)

(4.3)

(4.4)

(4.5)

(4.6)

We will mainly concetrate on these surfaces, and we will study the geustion

how to define their curvatures '

ToM = {Ar, + ur,, \, 1 € R}, T, subspace in T, E*

4.1 Coordinate basis, tangent plane to the surface.

Coordinate basis vectors are r,, = 9,1, = 0,. At the any point p, p = r(u,v)
these vectors span the plane, (two-dimensional linear space) T, M in three
dimensional vector space T, 3.

(4.7)

"There are many other interesting surfaces, e.g. so called ruled surfaces (surfaces such
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E.g. consider the point p = (R,0,0) on the cylinder (4.2). Then p = r(p, h)
for ¢ = 0,h = 0. Coordinate basis vectors are

—Rsingp 0
r,=| Rcosy |, r,=10 (4.8)
0 1
or in other notations
r, = —Rsin 90, + R cos 0, r, =0, (4.9)

At the point p = (R,0,0) they are are equal to the vectors 0, and 0, re-
spectively attached at this point. Tangent plane at the point p is the plane
passing through the point p spanned by the vectors 9, and 0.

4.2 Curves on surfaces. Length of the curve. Internal
and external point of the view. First Quadratic
Form

Let M: r = r(u,v) be a surface and C' curve on this surface, i.e. C: r(t) =
r(u(t,v(t))).

Consider an arbitrary point p = r(t) = r(u(t),v(t)) at this curve.

o T, E3three-dimensional tangent space to the point p,

o T, M—two dimensional linear space tangent to the surface at the point p, spanned
by the tangent vectors 9, 0,

e T,M—one dimensional linear space tangent to the curve at the point p spanned
by the velocity vector v(t).

— M — Utg + ’Ut@ = Uy, —+ ViTry (410)

v(®) dt ou ov

These tangent spaces form flag of subspaces T,C < Ty M < Tp E®.

How to calculate the length of the arc of the curve:

O x(t) = rlult, o) = § y = y(u(t), o) B <t
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External and internal observer do it in different ways. External observer just
looks at the curve as the curve in ambient space. He uses the formula (3.12):

b= tengaathecune = [ o= [ (0" (B0Y" (0

(4.11)

What about internal observer?
Internal observer will perform calculations in coordinates u,v. We have
[v(t)| = v/(v,Vv). We have
v dr(t)  dr(u(t),v(t)) u@r(u,v) n 1.)87"(u, v) i, 4 ir, .

dt dt ou ov

Hence the scalar product

(V, V) = (T + Uiy, WTy + 0Ty ) = U2 (Ty, Ty) + 20 (T, ) + 072 (05, 1) -

To understand how internal observer can calculate the length of the curve
we have to introduce

Guu - (ru;ru)a Guv - (rmrv> Gvu — (I‘U,I'u), va — (I'U,I'»U) (412>

Of course G, = G,,. We see that internal observer calculates the length
of the curve using time derivatives wu;,v; of internal coordinates u,v and
coefficients (4.12):

(v, V) = ul(ry, ry) + 2uvy (v, 1) + 02 (vg, 1) = Griu? + 2G10uv; + Gogv?.
(4.13)
We come to conception of first quadratic form.

Definition First quadratic form defines length of the tangent vector to
the surface in internal coordinates and length of the curves on the surface.
The first quadratic form at the point r = r(u,v) is defined by symmetric

matrix: ( ) ( )
Guu G'U/U _ ru7 ru ru7 r'U
(Gw Gw> = (<ru,rv> (rv,m)’ (4.14)

where (, ) is a scalar product.

E.g. calculate the first quadratic form for the cylinder (4.2). Using (4.8),
(4.9) we come to

(& &)= (m fom) =G p)
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(See this example and other examples in Homework 9)
Let X = ar,+br, be a vector tangent to the surface M at the point r(u, v).
Then the length of this vector is defined by the scalar product (X, X):

1X|* = (X, X) = (ar, + br,, ar, + br,) = a*(ry,1,) + 2ab(r,, r,) + b*(r,, 1)
(4.16)
It is just equal to the value of the first quadratic form on this tangent vector:

(X,X) = G(X,X) = (a, )- (gu gu) . (Z) G+ 2G b+ G
(4.17)

External observer (person living in ambient space E?) calculate the length
of the tangent vector using formula (4.16). An ant living on the surface
(internal observer) calculate length of this vector in internal coordinates using
formula (4.17). External observer deals with external coordinates of the
vector, ant on the surface with internal coordinates.

If X,Y are two tangent vectors in the tangent plane T,C then G(X,Y) at the
point p is equal to scalar product of vectors X,Y: (X,Y) = (X'r; + X?ry, Y'r; +
Y2ry) = X (ry,r) Y + X (ry,12)Y2 + X2(ra,r1) Y 4+ X% (re,12) Y2 = X%(ry,15)YP =
XGopY? = G(X,Y). We identify quadratic forms and corresponding symmetric bilin-
ear forms. Bilinear symmetric form B(X,Y) = B(Y, X) defines quadratic form Q(X) =
B(X,X). Quadratic form satisfies the condition Q(AX) = A2Q(X) and so called parallel-

ogram condition
RX+Y)+Q(X-Y)=2Q(X) +2Q(Y) (4.18)

First quadratic form and length of the curve

Let r(t) = r(u(t),v(t)) a <t < b be a curve on the surface.

The first quadratic form measures the length of velocity vector at every
point of this curve. Write down again the formula for length of the curve in
internal coordinates using First Quadratic form (compare with (4.13)).

Velocity of this curve at the point r(u(t),v(t)) is equal to v = dzgt) =
usry + 141, The length of the curve is equal to

L= /ab [v(t)|dt = /ab Vv, v(t)dt = /ab V(T + vty wery + vyry)dt =

(4.19)

b
/ \/(ru, r,)u? + 2(ry, v, )uvp + (v, v,)vidr =
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b
/ \/Gnuf + 2G12utvt + Gggvgdt . (420)

An external observer will calculate the length of the curve using (4.16).
An ant living on the surface calculate length of the curve via first quadratic
form using (4.20): first quadratic form defines Riemannian metric on the
surface:

d82 = GlldU2 + QGlgdud’U -+ ngd’l)2 (421)

Example Consider the curve

Tz = RcosQt
r(t) y=RsinQt , 0<t<T
z=ct

on the cylinder (4.2) (helix). The coordinates of this curve on the cylinder
(internal coordinates) are

o(t) =Qt
h(t) = ct

(For ‘ant’ it will be line!)
To calculate the length of this curve the external observer will perform
the calculations

T T T
L= / Va4 y? + 22dt = / VO2R2 sin?t + Q2R2 cos? t + c2dt = / VQ2R? + 2dt = TV
0 0 0

An internal observer ("ant”) uses quadratic form (4.15) and perform the
following calculations:

T T T
L= / \/GH(,O? + 2G12Q0tht + Gggh%dt = / \ RQQO% + h%dt = / V Q2R2 + C2dt = T\/ Q2R2 '
0 0 0

The answer will be the same. (See this and other examples in Homework 9).

4.3 Unit normal vector to surface

We define unit normal vector field for surfaces in E3.
Consider vector field defined on the points of surface.
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Definition Let M: r = r(u,v) be a surface in E3. We say that vector
n(u,v) is normal unit vector at the point p = r(u,v) of the surface M if
it has unit length |n| = 1, and it is orthogonal to the surface, i.e. it is
orthogonal to the tangent plane T, M. This means that it is orthogonal to
any tangent vector { € T,M, i.e. it is orthogonal to the coordinate vectors
r, = Oy, r, = 0, at the point p.

n: (n,r,) =(n,r,) =0,(n,n)=1. (4.22)
Write down this equation in components:
r = z(u,v)
If surface is given by equation r(u,v): ¢y =y(u,v)  then
z = z(u,v)
Ly Ly
Ty =\\Yu | Tv=1|Y |,
2y 2y
Ny
and n = | n, | is unit normal vector. Then writing the previous conditions
n,

in components we come to
(n,ry,) = NyTy+n,Yu+n.z, =0, (n,1r,) = ngz,+n,y,+ =0, (n,n) = n24n’+n? =1
ytu) — Txduy yYu zey — Yy ytv) — Thaxdw yYo T2y = U, (I, N) =T, ny n, =

Normal unit vector is defined up to a sign. At any point there are two normal
unit vetors: the transformation n — —n transforms normal unit vector to
normal unit vector.

Vector field defined at the points of the surface is called normal unit
vector field if any vector is normal unit vector.

In simple cases one can guess how to find unit normal vector field using
geometrical intuition and just check that conditions above are satisfied. E.g.
for sphere (4.3) r is orthogonal to the surface, hence

sin 6 cos
n(f, ¢) = r(f, ) =+ | sinfsiny
R cos
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For cylinder (4.2) it is easy to see that at any point (p,h) (4.2), r: z =
Rcosp,y = Rsiny, z = h, a normal unit vector is equal to

Cos
n(p,h) ==+ | sing (4.23)
0

Indeed it is easy to see that the conditions (4.22) are satisfied.
In general case one can define n(u,v) in two steps using vector product
formula:

N
n(u,v) = ﬁ where N=r, xr, (4.24)

Indeed by definition of vector product vector field N(u, v) is orthogonal to r,
and r,, i.e. it is orthogonal to the surface. Dividing N on the length we come
to unit normal vector field n(u,v) at the point r(u,v). (See other examples
of calculating normal unit vector in the Homework 9)

4.4 T Curves on surfaces—normal acceleration and
normal curvature

We know already how to measure the length of the curve belonging to the given surface.
What about curvature? Answering this question we will be able to study curvature of the
surface.

Before we have to introduce normal acceleration and normal curvature for curves on
the surfaces.

We know that acceleration vector a in general is not tangent to the curve. Recall that
when studying curvature we consider decomposition of acceleration vector on tangential
component and the component which is perpendicular to velocity vector: a = aang +ai .
The curvature of curve is nothing but the magnitude of normal acceleration a | of particle
which moves along the curve with unit speed: k = %

Now we consider normal acceleration of the curve on the surface.

Let M: r = r(u,v) be a surface and C: u = u(t),v = v(t), i.e. r(t) = r(u(t),v(t)),
be curve on the surface M. Consider an arbitrary point p = r(t) = r(u(t),v(¢)) on this

2
curve and velocity and acceleration vectors v = ) 5= 4rt)

o —m— at this point.
Definition The component of acceleration vector of the curve on the surface orthogo-
nal to the surface is called a normal acceleration of curve on the surface. If a is acceleration
vector then

a=aj+a,,, (4.25)

where the vector a|| is tangent to the surface and the vector a,, is orthogonal (perpendic-
ular) to the surface. Calculate vector a,,.
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If n is a normal unit vector to the surface, then vector a, is collinear (proportional)
to the vector n and vector a|| is orthogonal to this vector:

a, = ayn, (n,a))=0.

Take a scalar product of left and right hand sides of the formula (4.25) on the vector n.
We come to:

(n,a) = (n,a; +a,) = (n,a)) + (n,a,) =0+ ay(n,n) = a,.

Hence we come to
a=a,n=(n,a)n. (4.26)

Avoid confusion! The normal acceleration vector a,, of the curve on the surface is or-
thogonal to the surface. The normal acceleration vector of the curve in E® a is orthogonla
to the velocity vector of the curve.

Now we are ready give a definition of normal curvature of the curve on the surface.

Definition Let C be a curve on the surface M. Let v, a be velocity and acceleration
vectors at the given point of this curve and n be normal unit vector at this point. Then

an, (n,a)

=T o) (4.27)

is called normal curvature of the curve C on the surface M at the point p. Or in other

words
||

(v,v)’
i.e. up to a sign normal curvature is equal to modulus of normal acceleration divided on

the square of speed (Compare with formula (3.23) for usual curvature.)

Remark Avoid confusion: We know that usual curvature k of the curve is defined by
la |
‘VIQ )

the curve (see the formula (3.23)). Normal curvature of the curve on the surface is defined
by the analogous formula bunt in terms of normal acceleration a,, which is orthogonal to
the surface, not to the curve!

|kn| =

(4.28)

the formula k = where a; is a magnitude of the acceleration vector orthogonal to

In fact one can see that |a, | < |a,]|, i.e. modulus of the normal curvature is less or
equal to the usual curvature of the curve. (See in details the Appendix ”Relations between

usual curvature, normal curvature and geodesic curvature”)

4.5 Shape operator on the surface

Let M: r =r(u,v) be a surface and L(u,v) be an arbitrary (not necessarily unit normal)
vector field at the points of the surface M. We define at every point p = r(u,v) a linear
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operator K acting on the vectors tangent to the surface M such that its value is equal
to the derivative of vector field L(u,v) along vector &

u, v)

Ky: €€ TM — Ki(€) = DeL = fuaLéu OL(u,v)

e e R

&u, &y are components of vector €
€ =Eury + &1y (430)

The vector K1.€ € 1T, pE3 in general is not a vector tangent to the surface C' and K7, is
linear operator from the space T, M in the space T, E® of all vectors in E? attached at the
point p

It turns out that in the case if vector field L(u,v) is a unit normal vector field then
operator Ki, takes values in vectors tangent to M and it is very important geometric

properties.

Definition-Proposition Let n(u, v) be a unit normal vector field to the
surface M. Then operator
on(u,v) on(u,v)

S S(X) = Ox(—n) = —X, = = — X, T (4.31)

maps tangent vectors to the tangent vectors:

S: ToM — T,M for every X = X,r, + X,r, € T, M, S(X) e T,M
(4.32)
This operator is called shape operator.

7

Remark The sign ” —” seems to be senseless: if n is unit normal vector field then
—n is normal vector field too. Later we will see why it is convenient (see the proof of the
Proposition below).

Show that property (4.32) is indeed obeyed, i.e. vector X' = S(X) is
tangent to surface. Consider derivative of scalar product (n,n) with respect

to the vector field X. We have that (n,n) = 1. Hence
Ox(n,n) =0 = 0x(n,n) = (Oxn,n) + (n,0xn) = 2(dxn,n).

Hence (Oxn,n) = —(59(X),n) = —(X',n) = 0, i.e. vector Oxn = —X' is
orthogonal to the vector n. This means that vector X’ is tangent to the
surface.

Write down the action of shape operator on coordinate basis r, = 0,
d, = r, at the given point p:

on(u,v)
ou '

on(u,v)

S(ry) = =0, n(u,v) = — 5

S(ry) = =0, n(u,v) = —
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Since the shape operator transforms tangent vectors to tangent vectors,
then

S(r,) = —% =ar, + cr,
S(r,) = _w = br, + dr,’
le.
a bY. . .
S = (c d) in the coordinate basis r,, r, (4.33)

Examples of shape operator see in the subsection above (Shape operator,
Gaussian and mean curvature for sphere and cylinder) and in the Homework
9.
Remark. Shape operator as well as normal unit vector is defined up to
a sign:
n(u,v) — —n(u,v), then S — —85.

We show now that normal acceleration of a curve on the surface and normal curvature
are expressed in terms of shape operator.
. . _ _ _dr(t)
Let C: ;‘2(t()t)be a curve on the surface M, r(t) = r(u(t),v(t)). Let v = v(t) = =5,
_ T

a = a(t) = == be velocity and acceleration vectors respectively. Recall that
dr(t d t t
v(t) = I;i(t ) _ ey +ge, + e, = w — ir, + it (4.34)

be velocity vector; 4, v are internal components of the velocity vector with respect to the
basis {r,, = 0,,r, = 0y} and &, 9, £, are external components velocity vectors with respect
to the basis {e, = J,,e, = 0y,e, = 0.} . As always we denote by n normal unit vector.

Proposition The normal acceleration at an arbitrary point p = r(u(to),v(to)) of the
curve C on the surface M is defined by the scalar product of the velocity vector v of the
curve at the point p on the value of the shape operator on the velocity vector:

a, =ap,n=(v,5v)n (4.35)

and normal curvature (4.27) is equal to

Kn = = (4.36)

Proof of the Proposition. According to (5.32) we have

a, = (nayn =n (0 v ) n = (n.v(0) ~n ( ntu(o),o(0). ()

=0+ (—0yn,v)n=(Sv,v)n

This proves Proposition.
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4.6 Principal curvatures, Gaussian and mean curva-
tures and shape operator

Now we introduce on surfaces, principal curvatures, Gaussian curvature and
mean curvature.

Let p be an arbitrary point of the surface M and S be shape operator at
this point. S is symmetric operator: (Sa,b) = (b, Sa). Consider eigenvalues
A1, A9 and eigenvectors 1, 15 of the shape operator S

117 12 € TpM, Sll = "fllla SIQ = /{212, (437)

Definition Eigenvalues of shape operator Ai, Ay are called principal cur-
vatures:
Al = K1, A2 = Ko

Eigenvectors 1y,15 define the two directions such that curves directed along
these vectors have normal curvature equal to the principal curvatures k., x_.
These directions are called principal directions

Remark As it was noted above normal unit vector as well as a shape
operator are defined up to a sign. Hence principal curvatures, i.e. eigenvalues
of shape operator are defined up to a sign too:

n — —n,then S — —S, then (ki, k2) — (—K1, —Ka) (4.38)

Remark. Principal directions are well-defined in the case if principal curvatures
(eigenvalues of shape operator) are different: Ay = k1 # ko = A9. In the case if eigenvalues
A1 = A2 = A then S = A\F is proportional to unity operator. In this case all vectors are
eigenvectors, i.e. all directions are principal directions. (This happens for the shape
operator of the sphere: see the Homework 9.)

Remark Do shape operator have always two eigenvectors? Yes, in fact one can prove
that it is symmetrical operator: (Sa,b) = (Sb,a) for arbitrary two vectors a, b, hence it
has two eigenvectors. This implies that principal directions are orthogonal to each other.
Indeed one can see that Az(lp,11) = (Sla, ;) = (12, Shh) = A1(ly, 1;). It follows from this
relation that eigenvectors are orthogonal ((1_,1;) = 0) if A\_ # AL If A = A4 then all

vectors are eigenvectors. One can choose in this case 1_, 1 to be orthogonal.

Definition

o Gaussian curvature K of the surface M at a point p is equal to the
product of principal curvatures.

K = R1K2 (439)
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e Mean curvature K of the surface M at a point S is equal to the sum
of the principal curvatures:

H= K1+ Ko (440)

Recall that the product of eigenvalues of a linear operator is determinant
of this operator, and the sum of eigenvalues of linear operator is trace of this
operator. Thus we immediately come to the useful formulae for calculating
Gaussian and mean curvatures:

Proposition Let S be a shape operator at the point p on the surface M.
Then

e Gaussian curvature K of the surface M at the point p is equal to the
determinant of the shape operator:

K = kiky =det S (4.41)

e Mean curvature H of the surface M at the point p is equal to the trace
of the shape operator S:

H=r+r =TS (4.42)

E.g. if in a given coordinate basis a shape operator is given by the matrix

(Z 2) (see e.g. equations (4.32) and(4.35) ), then

a b

“ b):ad—bc, H:TrS:Tr(
c d

K:detS:det(
c d

) =a+d (4.43)

4.7 Shape operator, Gaussian and mean curvature for
sphere cylinder and cone

Consider now some examples. (These and other examples see in detail in the

Homework 8.)

Example Calculate mean an Gaussian curvature for sphere 2% +y?+2% =

R
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For the sphere of radius R in spherical coordinates (see 4.3)

x = Rsinf cos ¢
r(0,p): {y=Rsinfsing ,0<0<7m 0<¢<2rm

z = Rcost
Rcosfcosp —Rsinfsin g
coordinate basis vectors are ry = % = | RcosfOsing |,r, = g—; = | Rsinfcosy
—Rsind 0
and unit normal vector which is orthogonal to sphere equals to n(f, p) =
sin # cos
r(if) = | sinfsiny
cos 6

One can see that n is indeed orthogonal to the sphere. This is evident
geometrically: the fact that (n,ry) = (n,r,) = 0 and its length equals to 1
can be checked by straightforward calculations. On the other hand one cna
prove it noticing that equation of sphere 2% + y? + 22 = R? can be rewritten
as (r,r) = R?. Differentiating this equation by 6 and » we come to

2(r,r) =0=2(ry,r)

50 r,r)=0=2(r,7r)

0
55
2
Thus we have proved that vector r is orthogonal to basic vectors ry, ry, i.e.to
any tangent vector. The length of this vector is equal to R. Hence n = ++4.

Consider shape operator. By definition Sv = —d,n:

g, On0.0) 0 (r(0.9)\ _ _re
"9 ~ @\ R ) R
and
on(b, o) 9 (r(0,9) ry
SI‘W = - = — — = — —
Op Op R R
_1
Hence in the coordinate basis rg,r, S = OR _Ol . In the case if we
R

choose the opposite direction for unit normal vector then we will come to the
answer just with changing the signs: if n - —n, S — —S.
We see that principal curvatures, i.e. eigenvalues of shape operator are

the same:
1 . 1
)\1 = )\2 = ——,1l.e. K] = Rg = ——

R R
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(if we choose the opposite sign for n then k; = Ky = %) Thus we can

calculate Gaussian and mean curvature: Gaussian curvature

1
K:KJl'K,Q:detS:@.

Mean curvature 5

H:/$1+/€22TI'SI—FL.

If we choose the opposite sign for n then S — —S, principal curvatures
change the sign, Gaussian curvature K = K - k3 does not change but mean

curvature H = k1 + ko will change the sign: if n — —n then H = %.
Example Cylindircal surface 22 + y? = a?
For the cylinder we have (see 4.2)
T =acosy
r(h,p): Sy=asing ,0<¢ <27, —00<h<o0.
z=h
—asinp
Coordinate basis vectors are (see 4.8) r, = g—; = | acosp |, r, = % =
0

0

0] and unit normal vector which is orthogonal to cylinder equals to

1

cos p
n(h,p) = |[sing |. One can see that n is indeed orthogonal to cylin-
0

der surface. This is evident geometrically but one can calculate also that
((n,ry) = (n,r,) = 0) and its length equals to 1. Consider shape operator.
By definition Sv = —0yn:

on(h, p) g ¥

Srp=———">=——|sinp | =0,
Oh Ooh 0
and
on(d cos sin 1 —asin @
Sr, = — n( ,<p)___ sinpg | =— | —cosp | =—| acosyp S
Op 0 0 0 0 a
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We see that rj, ry, are eigenvectors of Shape operator. In the coordinate basis

0 0 . : o .
0 1] In the case if we choose the opposite direction for unit
a

normal vector (n — —n) then we will come to the same answer just with
changing the signs: if n - —n, S — —§5.

We see that principal curvatures, i.e. eigenvalues of shape operator are:
1

1
)\1 = 0,)\2 = ——,i.e. R1 = O,KZQ = ——
a a

ry, T, S =

(if we choose the opposite sign for n then kg = é) Thus we can calculate
Gaussian and mean curvature: Gaussian curvature

K=k -ky=detS=0.

Mean curvature

1
H=krk+r=TrS=—.
a

If we choose the opposite sign for n then S — —S, principal curvatures
change the sign, Gaussian curvature K = K - k3 does not change but mean
curvature H = k1 + ko will change the sign: if n — —n then H = i

Example Surface of the cone 2% + y? — k222 = 0
For the surface of the cone we have (see 4.4)

x =khcosyp
r(h,¢): Ly=khsinp ,0<¢<2m, —00<h<o00.
z=h
—hsin g
Coordinate basis vectors are (see 4.8) r, = g—; = | hcosp |, 1, = g—,‘; =
0

cos
sing | For cone the expression for unit normal vector is not so trivial
1
cos
like fro sphere or cylindre. One can see that the vector N = | sing | is
—k
orthogonal to the surface: (N,r,) = cosp(—khsiny) + sinp(khcosp) =
0 and (N,r,) = cospkcosy + sinpksing) — k = 0. The length fo this
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vector is equal to k2 + 1, hence unit unit normal vector which is orthogonal

cos
to cylinder equals to n(h,p) = ki21+ = | sing |. Sure we can calculate it
—k
straightforwardly: n = I:Z%:I
Now consider shape operator. By definition Sv = —0,n:
on(h ] 1 oS¥
Srh:—M:—— ——— | singp =0,

oh Oh \ VE2+1\ _,

and

_on(d,p) D 1 ij:g o,

dp o\ VIEr1\ khy/k?2 + 1

We see that rj, ry, are eigenvectors of Shape operator. In the coordinate basis

0 0
ry,r, S = (O 1 ) . In the case if we choose the opposite direction for
' khv/kZ+1 . ‘ ' .
unit normal vector then we will come to the same answer just with changing

the signs: if n - —n, S — —5.
We see that principal curvatures, i.e. eigenvalues of shape operator are:

1 1
e =0 kg ———
k2 + 1 ! T kW 1

(If we choose the opposite sign for n then ry = m) Thus we can
calculate Gaussian curvature K and mean curvature H:

A =0,X =—

1
khvk2+1°

If we choose the opposite sign for n then S — —S, principal curvatures
change the sign, Gaussian curvature K = k; - ko does not change but mean

curvature H = k1 + ko will change the sign: if n — —n then H = T %QH-

K=k -kp=detS =0, H=kK1+r=TrS=

4.8 T'Principal curvatures and normal curvature

In this subsection we principal curvatures, eigenvectors of the shape operator by x_, <
and respectively eigenvectors by 1_,1,.
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One can consider different curves passing through an arbitrary point p on the surface
M. We know that if v velocity vector of the curve then normal curvature is equal to
Fn = (fv‘:;‘;) (see (4.36)). What are the relations between normal curvature of curves and
principal curvature? The following Proposition establishes these relations.

Proposition
Let k_,ky, k— < ky be principal curvatures of the surface M at the point p (eigen-
values of shape operator S at the point p).
Then normal curvature k of an arbitrary curve on the surface M at the point p takes
values in the interval (k_, K4 ):
ke <k, < ky (4.44)

Example E.g. consider cylinder surface of the radius R. One can calculate that
principal curvatures are equal to k- = 0, k4 = % (see Homework 8). Then for an arbitrary
curve on the surface normal curvature £, takes values in the interval (0, %) (up to a sign).
(See Homework 8 and appendix ”Normal curvature of curves on cylinder surface”)

Proof of Proposition: If velocity vector v of curve is collinear to the eigenvector 1,
v = AL} then normal curvature of the curve C at the point p according to (4.36) is equal
to

(VaSV) (A1+aS)‘1+) /\2 (l+7K+1+) K4+ (1+71+)
(v (AL, ALy) (L4, 14) (14+,14)

Analogously if velocity vector v is collinear to the eigenvector 1_ then normal curvature
of the curve C at the point p is equal to k, = (E,\fv\;) = (zl,_,,sll:)) = (1(’1’51’_1)’) = K_.

In the general case if v =wv,1; +wv_1_ is expansion of velocity vector with respect to
the basis of eigenvectors then we have for normal curvature

. (v,5v)  (vply +o 1o Aol + A v l)  kyvf ko0 (4.45)
"o(vyv) (gl o ol o ) 02 02 '

Hence we come to the conclusion that

ngﬁ + Kk_v?

e <y (4.46)

Thus we prove that normal curvature varies in the interval (A_, A4).
Now remember the definition of principal curvatures from the subsection 4.4: we see
that A_, Ay are just principal curvatures.

K- < Knormal =

Summarize all the relations between normal curvature, shape operator and Gaussian
and mean curvature.

e Principal curvatures k_, k4 of the surface M at the given point p are eigenvalues
of shape operator S acting at the tangent space T, M (rk_, k). Corresponding
eigenvectors 1 ,1_ define directions which are called principal directions. Principal
directions are orthogonal or can be chosen to be orthogonal if x_ = k4. The normal
curvature K, for an arbitrary curve on the surface M at the point p varies in the
interval (k_, k4):

e < kp < Kyt (4.47)
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o Gaussian curvature K of the surface M at a point S is equal to the product of
principal curvatures, i.e. determinant of shape operator S:

K=Ky k_=detS (4.48)

o Mean curvature H of the surface M at a point S is equal to the half-sum of the
principal curvatures, i.e. half of the trace of shape operator S:

H=ky+r_=TrS (4.49)

4.9 T Parallel transport of vectors along curves. Geo-
metrical meaning of Gaussian curvature.

4.9.1 T Concept of parallel transport of the vector tangent to the
surface

Parallel transport of the vectors is one of the fundamental concept of differential geometry.
Here we just give some preliminary ideas and formulate the concept of parallel transport
for surfaces embedded in Euclidean space.

Let M be a surface r = r(u,v) in E3 and C: r(t) = r(u(t),v(t)), t1 <t <ty be a
curve on this surface.

Let X; be a vector tangent to the surface at the initial point p = r(¢;) of the curve
r(t) on the surface: X; € T,M. Note that X; is a vector tangent to the surface, not
necessarily to the curve. We define now parallel transport of the vector along the curve C:

Definition Let X(¢) be a family of vectors depending on the parameter ¢ (t; <t < t5)
such that following conditions hold

e For every t € [t1,t2] vector X(¢) is a vector tangent to the surface M at the point
r(t) = r(u(t),v(t)) of the curve C.

° X(t) = X1 for t :tl

U] d)zt(t) is orthogonal to the surface, i.e.
X{(t X (t
dzg ) is collinear to the normal vector n(t), di ) = A(t)n(t) (4.50)

Recall that normal vector n(t) is a vector attached to the point r(t) of the curve
C': r(t). This vector is orthogonal to the surface M.

The condition (4.50) means that only orthogonal component of vector field X(t)
can be changed.

We say that a family X(¢) is a parallel transport of the vector X; along a curve C': r(t)
on the surface M. The final vector Xy = X(t2) is the image of the vector X; under the
parallel transport along the curve C.
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Using the relation (4.50) it is easy to see that the scalar product of two vectors remains
invariant under parallel transport. In particularly it means that length of the vector does
not change. If X(¢), Y(t) are parallel transports of vectors X;,Y; then

d dX (t) dY (1)
4 X0y = (v o) + (x0. %) —o

dY (1)
dt

because vector d)(it(t) is orthogonal to the vector Y (¢) and vector

the vector X(¢). In particularly length does not change:

is orthogonal to

4
dt

_4a
Cdt

dX (%)

X0 = 5 xo.x0) =2 (F.x0) = 20000, x0) =0 @451

Remark The relation (4.50) shows how the surface is engaged in the parallel transport.
Note that it is non-sense to put the right hand side of the equation (4.50) equal to zero:
In general a tangent vector ceased to be tangent to the surface if it is not changed! (E.g.
consider the vector which transports along the great circle on the sphere)

Example

In the case if surface is a plane then everything is easy. If vector X; is tangent to

the plane at the given point, it is tangent at all the points. Vector does not change under
dX() _
a

parallel transport X(t) = X,
Example
Consider the vector e, = % attached at the point (0,0, R). It is tangent vector to
the sphere x? + y? 4+ 22 = R? at the North Pole. Define parallel transport of this vector
along the meridian ¢ = 0,0 = t: r(t): x = Rsint,y = 0,z = Rcost.

cost
Consider the vector field X(t) = 0 attached at the point r(¢) of the meridian.
—sint
1
One can see that X(t)|t=0 = | 0 | is the initial vector attached at the North pole and
0
ax(@ _a [T\ _ (7 _ x
da—dt\ . - ] R
—sint —cost

is orthogonal to the surface of the sphere. Hence X(¢) is the parallel transport of the
initial vector along the meridian on the sphere.

More in detail about parallel transport see also in the Appendix “Parallel transport
of vectors tangent to sphere”.

4.9.2 T'Parallel transport along a closed curve

We will formulate another Theorem which is strictly related with the Theorema Egregium
and explains how internal observer can calculate Gaussian curvature.
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Let C' be a closed curve on a surface M such that C' is a boundary of a compact
oriented domain D C M, then during the parallel transport of an arbitrary tangent vector
along the closed curve C' the vector rotates through the angle

A® =/ (X,ReX) = / Kdo (4.52)
D

where K is the Gaussian curvature and do = +/det gdudv is the area element induced by
the First quadratic form on the surface on the surface M, i.e. do = +/det gdudv.
In particular if Gaussian curvature K is constant then

A® =/ (X,RcX)=KS (4.53)

For example consider the sphere % + y? + 22 = R? and the triangle ABC on it with
vertices A = (0,0,1), B = (1,0,0) and C = (cos ¢, sin p,0). Then during parallel transport
of the vector along the triangle ABC' it will rotate on the angle ¢ (see the Homework 8).
On the other hand the area of this triangle equals to S = R*p. We see that

S

The angle of rotation of tangent vector in fact depends only on the internal geometry
of surface. Thus the relation above can be used for proving the Theorema Egregium.

The Theorem above has very interesting

Corollary Let ABC be triangle on the surface M where AB, AC, BC' are shortest
curves connecting the points A, B,C. Let «a, (3,7 be angles of this triangle. For usual
triangle sum of angles equal to w. It turns out that for triangel on the surface the sum of
angles is related with Gaussian curvature:

oz—|—ﬁ+’y—7r=/ Kdo (4.54)
AABC

Internal observer may use this formula for calculating gaussian curvature at any given
point: He draws the triangle calculate the sum of angles and see that

a+fB+y—7

K =~
S

4.9.3 Theorema Egregium

We know that Gaussian curvature of cylinder cone and plane equals to zero
and Gaussian curvature of sphere equals to (see the calculations in the
end of the subsection 4.7 and Homework 8.)

We know that we can form cylindrical surface and cone surface bending
the sheet of paper without ”shrinking”. On the other hand one can not form

1
=
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a part of sphere from the sheet of the paper without ”shrinking” it. How to
express mathematically this fact?

Consider on the sheet of the paper two close points A, B and the segment
AB. The length of this segment is the shortest distance between points A
and B. Any curve starting at the point A and finishing at the point B has the
length which is greater or equal than the length of the segment AB. When we
form cylindrical (or conic) surface bending the sheet of the paper we do not
distort this property. The segment AB on the cylindrical surface will become
the curve which we will denote also AB, but the length of this curve will be
the same and it will be the shortest curve amongst all the curves connecting
the points A and B. Internal observer ("ant” mathematician living on the
cylindrical surface) observes that the curve AB on the cylinder has the same
length as it has before (being the segment on flat sheet of the paper). This is
strictly related with the fact that Gaussian curvature of the cylinder surface
equals to zero.

Theorem (Theorema Eggregium) The Gaussian curvature of surface is
defined by first quadratic form. If Two surfaces have the same quadratic form
then they have the same Gaussian curvature.

In other words if we measure the length of the curves and angles between
them on two surfaces we will come to the same answers, then these surfaces
have the same Gaussian curvature.

In particular if a surfaces have vanishing Gaussian curvature then locally
one comes to this surface bending the sheet of the paper without ”shrinking”.

This Theorem explains why sphere even locally cannot be transformed to
the plane without distorting.

This remarkable Theorem which belongs to Gauss is the foundation result
in differential geometry.

The proof of Theorem will be given in the course of Riemannian geometry.

Note that we calculated Gaussian curvature using Shape operator, i.e.
in terms of External observer. The Theorem says that Gaussian curvature
depends only on distances on the surface, hence the internal observer can
calculate the Gaussian curvature using e.g. the formulae for rotation of vector
over closed curve. or the formula (4.54)for sum of the angles of triangle.

4.10 Gauss Bonnet Theorem

I would like to finish the course with the following very inspiring formula:
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Consider the integral of curvature over whole closed surface M. According
to the Theorem above (see the formula (4.52)) the answer has to be equal
to 0 (modulo 27), i.e. 2r N where N is an integer, because this integral is a
limit when we consider very small curve. We come to the formula:

/ Kdo = 27N
D

(Compare this formula with formula (5.27)).

What is the value of integer N7

We present now one remarkable Theorem which answers this question
and prove this Theorem using the formula (5.54).

Let M be a closed orientable surface.'> All these surfaces can be clas-
sified up to a diffeomorphism. Namely arbitrary closed oriented surface M
is diffeomorphic either to sphere (zero holes), or torus (one hole), or pretzel
(two holes),... "Number k” of holes is intuitively evident characteristic of the
surface. It is related with very important characteristic—Euler characteristic
X (M) by the following formula:

x(M)=2(1—-g(M)), where g is number of holes (4.55)

Remark What we have called here "holes” in a surface is often referred
to as "handles” attached o the sphere, so that the sphere itself does not have
any handles, the torus has one handle, the pretzel has two handles and so
on. The number of handles is also called genus.

Euler characteristic appears in many different way. The simplest appear-
ance is the following:

Consider on the surface M an arbitrary set of points (vertices) connected
with edges (graph on the surface) such that surface is divided on polygons
with (curvilinear sides)—plaquets. (”Map of world”)

Denote by P number of plaquets (countries of the map)

Denote by E number of edges (boundaries between countries)

Denote by V number of vertices.

12Closed means compact surface without boundaries. Intuitively orientability means
that one can define out and inner side of the surface. In terms of normal vectors ori-
entability means that one can define the continuous field of normal vectors at all the
points of M. The direction of normal vectors at any point defines outward direction.
Orientable surface is called oriented if the direction of normal vector is chosen.
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Then it turns out that
P—E+4+V =x(M) (4.56)

It does not depend on the graph, it depends only on how much holes has
surface.

E.g. for every graph on M, P — E+V = 2 if M is diffeomorphic to
sphere. For every graph on M P— FE+V = 0 if M is diffeomorphic to torus.

Now we formulate Gaufl-Bonnet Theorem.

Let M be closed oriented surface in E3.

Let K(p) be Gaussian curvature at any point p of this surface.

Recall that sign of Gaussian curvature does not depend on the orienta-
tion. If we change direction of normal vector n — —n then both principal
curvatures change the sign and Gaussian curvature K = det A/ det G does
not change the sign 3.

Theorem (GauB -Bonnet) The integral of Gaussian curvature over the
closed compact oriented surface M is equal to 27 multiplied by the Euler
characteristic of the surface M

1

— [ Kdo = x(M) = 2(1 — number of holes) (4.57)
2m M

In particular for the surface M diffeomorphic to the sphere k(M) = 2,
for the surface diffeomorphic to the torus it is equal to 0.

The value of the integral does not change under continuous deformations
of surface! It is integer number (up to the factor m) which characterises
topology of the surface.

E.g. consider surface M which is diffeomorphic to the sphere. If it is
sphere of the radius R then curvature is equal to %, area of the sphere is
equal to 47 R? and left hand side is equal to ‘21—7’; = 2.

BFor an arbitrary point p of the surface M one can always choose cartesian coordinates
(z,y,z) such that surface in a vicinity of this spoint is defined by the equation z =
ax® + bx? + ..., where dots means terms of the order higher than 2. Then Gaussian
curvature at this point will be equal to ab. If a,b have the same sign then a surfaces looks
as paraboloid in the vicinity of the point p. If If a,b have different signs then a surfaces
looks as saddle in the vicinity of the point p. Gaussian curvature is positive if ab > 0 (case
of paraboloid) and negative if ab < 0 saddle
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If surface M is an arbitrary surface diffeomorphic to M then metrics and
curvature depend from point to the point, Gaufi-Bonnet states that integral
nevertheless remains unchanged.

Very simple but impressive corollary:

Let M be surface diffeomorphic to sphere in E3. Then there exists at least one point
where Gaussian curvature is positive.

Proof: Suppose it is not right. Then |, v Kvdet gdudv < 0. On the other hand
according to the Theorem it is equal to 4m. Contradiction.

In the first section in the subsection ”Integrals of curvature along the plane curve”
we proved that the integral of curvature over closed convex curve is equal to 2w. This

Theorem seems to be ”ancestor” of GauB-Bonnet Theorem!4.

Proof of Gauf$-Bonet Theorem
Consider triangulation of the surface M. Suppose M is covered by N triangles. Then
number of edges will be 3N/over2. If V number of vertices then according to Euler

Theorem 3N N

Calculate the sum of the angles of all triangles. On the one hand it is equal to 27V. On
the other hand according the formula (5.54) it is equal to

N N
Z<7T+/ KdO')ZTFN—F </ Kdo):Nﬂ'—F/ Kdo
A — \Ja, M

i=1 i — i

We see that 27V = N7 + [, Kdo, i.e.

/M Kdo == <2V - ];) =2mx(M) g

5 tAppendices

5.1 Formulae for vector fields and differentials in cylin-
drical and spherical coordinates

Cylindrical and spherical coordinates

4 Note that there is a following deep difference: Gaussian curvature is internal property
of the surface: it does not depend on isometries of surface. Curvature of curve depends
on the position of the curve in ambient space.
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e Cylindrical coordinates in E3

T =rcose
y=rsine (0<p<2m0<r<oo) (5.1)
z=nh

e Spherical coordinates in E3

x =rsinfcosp
y=rsinfcosp (0<¢<2m,0<r<o0)— — — cylindrical coordiantes in E?

z=1rcosf
(5.2)

Example (Basis vectors and forms for cylindrical coordinates)
Consider cylindrical coordinates in E®: u = r,v = ¢, w = h. Then calculating partial
derivatives we come to

O = %81 + %81, + %82 = 08 0y + sin pd,
0, = wf}‘ + 720y + aza —rsin o0y + r cos I, (5.3)

Op = 8—&-8%0 —i—azﬁ =90,
Basic forms are dr, dy, dh and
dr(0,) =1,dr(0,) = 0,dr(0y) =0
dp(9y) = 0,dp(d,) = 1,dp(Or) = 0 (5:4)
dh(0,) = 0,dh(0,) = 0,dh(0s) =1
Example (Basis vectors for spheric coordinates)

Consider spheric coordinates in E3: u = r,v = §,w = ¢. Then calculating partial
derivatives we come to

Or 8 —|— 520, +3za = sin 0 cos p0, + sin @ sin pd, + cos 60,
89:%83;4— 540, + 560= = rcos f cos 00, + 1 cos O sin 9, — rsin 60, (5.5)

O, = dxa + 823 + dza —rcos 8 sin 0, + rsin d cos ¢0,

Basic forms are dr, df, dy and
dr(0,) =1,dr(09) =0,dr(0,) =0

d0(8,) = 0,d0() = 1,d0(D,,) = 0 (5.6)

dp(9;) = 0,dp(0p) = 0, d‘P(&p) =1
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We know that 1-form is a linear function on tangent vectors. If A, B are two vectors
attached at the point rg, i.e. tangent to this point and w,p are two 1-forms then one
defines the value of w A p on A, B by the formula

w A p(A, B) = w(A)p(B) — w(B)p(A) (5.7)

We come to bilinear anisymmetric function on tangent vectors. If o = a(z,y)dz A dy
is an arbitrary two form then this form defines bilinear form on pair of tangent vectors:
o(A,B) =

a(z,y)dx A dy(A, B) = a(z,y) (dz(A)dy(B) — dz(B)dy(A)) = a(z,y)(A. By — AyB,)
(5.8)
One can see that in the case if @ = 1 then right hand side of this formula is nothing but
the area of parallelogram spanned by the vectors A, B.
This leads to the conception of integral of form over domain.
Let w = a(x)dz A dy be a two form and D be a domain in E2. Then by definition

/Dw:/Da(x,y)dxdy (5.9)

If w = dz A dy then

/ w = / (x,y)dzdy = Area of the domain D (5.10)
D D

The advantage of these formulae is that we do not care about coordinates'®

Example Let D be a domain defined by the conditions
{x2 +42 <1

5.12
y> 0 (5.12)

Calculate [;, dz A dy.
Jpdx ANdy = [, dedy = area of the D = Z.
If we consider polar coordinates then according (2.41)

dr ANdy =rdr A\ dy

Hence [, dx Ndy = [, rdr Ndp = [, rdrdp = fol (fy dg) rdr = 7Tf01 rdr =7/2.
Another example

I5Tf we consider changing of coordinates then jacobian appears: If u,v are new coordi-
nates, z = x(u,v), y = y(u,v) are new coordinates then

/ a(z, y)dzdy = / a(z(u,v), y(u,v)) det <x“ 5‘) dudv (5.11)

u x’U

In formula(5.9) it appears under as a part of coefficient of differential form.
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Example Let D be a domain in E? defined by the conditions

(z—c)? £<
{ 7ot sl (5.13)

D is domain restricted by upper half of the ellipse and z-axis. Ellipse has the centre
at the point (c¢,0). Its area is equal to S = fD dx N dy. Consider new variables /)1
z = c+ az’,y = by’. In new variables domain D becomes the domain from the previous
example:

(CL’ — C)2 yQ /2 /2
a? + [ ty
and dx A dy = abdx’ A dy’. Hence
wab

S:/ dac/\dy:ab/ da' Ndy' = — (5.14)
=22 | ¥2 <1 y>0 22y 2 <1,y >0 2
22 2 > LYZ sLy' =2

Theorem 2 ( Green formula) Let w be 2-form such that w = dw’ and D be a domain—

interior of the closed curve C. Then
/ w = / w’ (5.15)
D C

5.2 Curvature and second order contact (touching) of
curves
Let C1, Cy be two curves in E2. For simplicity we here consider only curves in EZ2.
Definition Two non-parameterised curves Cy, Cy have second order contact (touch-
ing) at the point rq if
e They coincide at the point r¢
e they have the same tangent line at this point

e they have the same curvature at the point rq

If ri(t),r2(t) are an arbitrary parameterisations of these curves such that ri(tg) =
ra(to) = ro then the condition that they have the same tangent line means that velocity
vectors vi(t), va(t) are collinear at the point ¢g.

(As always we assume that curves under considerations are smooth and regular, i.e.
x(t),y(t) are smooth functions and velocity vector v(t) # 0.)

Example Consider two curves Cy, Cy—graphs of the functions fi, fo. Recall that
curvature of the graph of the function f at the point (z,y = f(z)) is equal to (see (3.28))

h(z) = — ) (5.16)

(1+ f'(x))*
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Then condition of the second order touching at the point ro = (¢, yo) means that

They coincide at the point ro: f(z¢) = g(zo)
They have the same tangent line at this point: f/(z¢) = ¢'(z0)

They have the same curvature at the point ro:—L 20l — —97@0) 5 o £17(30) = g (z,)

1+ (@)?  (149'(z0)) 2

We see that second order touching means that difference of the functions in vicinity of the
point zg is of order o((x — z0)?). Indeed due to Taylor formula

f(x) = f(@o) + f'(20) (2 — x0) + %f”(xo)(x —x0)? + ... (5.17)
9(x) = g(zo) + ¢ (20)(z — w0) + 39" (x0)(x — 20)* + ... '
where we denote by dots terms which are o(z — x¢)2. (They say that f(z) = o(z — x9)"
Hence

f(@) = g(z) = o(z — w0)* (5.18)

because f(zo) = g(w0), f(z0) = g(x0), f'(x0) = g'(x0) and f"(20) = g"(20)
In general case if two curves have second order contact then in the vicinity of the
contact point one can consider these curves as a graphs of the functions y = f(z) (or

= f(y)).

To clarify geometrical meaning of second order touching consider the case where one
of the curves is a circle. Then second order touching means that curvature of one of these
curves is equal to 1/R, where R is a radius of the circle.

We see that to calculate the radius of the circle which has the second order touching
with the given curve at the given point we have to calculate the curvature of this curve at
this given point.

Example. Let C; be parabola y = ax? and Cs be a circle. Suppose these curves have
second order contact at the vertex of the parabola: point 0, 0.

Calculate the curvature of the parabola at the vertex. Curvature at the vertex is equal
to k(t)|t=0 = 2a (see Homework). Hence the radius of the circle which has second order

touching is equal to
1
=5
To find equation of this circle note that the circle which has second order touching to
parabola at the vertex passes trough the vertex (point (0,0)) and is tangent to z-axis.
1

The radius of this circle is equal to R = 5. Hence equation of the circle is

1
(x — R*) +y? = 0, where R:%

One comes to the same answer by the following detailed analysis:

Consider equation of a circle: (z — z0)? + (y — y0)? = R%. The condition that curves
coincide at the point (0,0) means that 22 + y2 = R%. z-axis is tangent to parabola at
the vertex. Hence it is tangent to the circle too. Hence y3 = R? and zo = 0. We
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see that an equation of the circle is 2% + (y — R)?> = R% The circle 2% + (y — R)? =
22 + 9% — 2yR = 0 in the vicinity of the point (0,0) can be considered as a graph of the
function y = R—+/R? — 22 .. The condition that functions y = ax? and y = R—+/R? — 22
have second order contact means that

R — v/ R2? — 22 = ax? + terms of the order less that 22 .

But
or 7 2 x? ) 2? 9
R— R—J? —R—R 1_W_R_R 1—ﬁ+0($) —ﬁ“t‘O(l‘)
Comparing we see that a = ﬁ and % = 2a. But curvature of the parabola at the vertex

is equal to k = 2a (if a > 0). We see that k = +.

5.3 Integral of curvature over planar curve.

We consider here the following problem: Let C' = r(t) be a planar curve, i.e. a curve in
E2.

Let n(r(t) be a unit normal vector field to the curve, i.e. n is orthogonal to the curve
(velocity vector) and it has unit length.

E.g. if r(¢) : 2(t) = Rcost,y(t) = Rsint, then n(r(t)) = <Z?§:

If point moves along the curve r(t),t; < t < to then velocity vector and vector field
n(t) rotate on the same angle. It turns out that this angle is expressed via integral of
curvature over the curve...

Try to analyze the situation:

Proposition Let C:  r(t) be a curve in E2, v(t) = d’;—(:), velocity vector, k(r(t))—
curvature and n(t) unit normal vector field. Denote by ¢(t) the angle between normal
vector n(t) and x-axis.

Then
dn(t)
7 = +k(r(t))v(t) (5.19)
de(t)
S — k(e () v (1) (5.20)

(Sign depends on the orientation of the pair of vectors (v, n))

Note that the second statement of the Proposition has a clear geometrical meaning;:
If C is a circle of the radius R then RHS of (5.20) is equal to %. It is just angular velocity
dp/dt.

To prove this Proposition note that (n,n) = 1. Hence

dn(t)
0= gm0 =2 (5 n0)



i.e. vector 48 g orthogonal to the vector n. This means that dn(t)

di dt
because curve is planar. We have dl;—gt) = k(r(t))v(t) where & is a coefficient. Show that

the coefficient x is just equal to curvature k (up to a sign). Clearly (n,v) = 0 because
these vectors are orthogonal. Hence

0= g 0v) = (HLv) + (n0. %) -

(5(x(O)v(t), v(t) + (n(t),a(t) = £(xt) V(O + (n,a1)

because (n(t),a(t)) = (n,ay ). But (n,a, ) is just centripetal acceleration: (n,a,) =

is collinear to v(t),

+|a, | and curvature is equal to |a, |/|v|?. Hence we come to x(r(t)) = + lli‘é‘ = +k. Thus

we prove (5.19).
To prove (5.20) consider expansion of vectors n(t), v(t) over basis vectors 9;,9,. We
see that

n(t) = cos p(t)0, + sin p(t)d, and v(t) = |v(¢)| (— sin p(t)9y + cos p(t)dy) (5.21)

Differentiating n(t) by ¢ we come to dr{;ff) = dﬁf) (—sinp(t)0y + cos p(t)dy) = d‘ggt) ‘Zgg‘
Comparing this equation with equation (5.19) we come to (5.20).

The appearance of sign factor in previous formulae related with the fact that normal
vector field is defined up to a sign factor n — —n.

It is useful to write formulae (5.19), (5.20) in explicit way. Let r(¢): x(t),y(¢t) be a

Tt

parameterisation of the curve. Then v(¢) = velocity vector. One can define normal

n(t) = \/x;Ty% <;?f) (5.22)

n(t) = \/:c;Tyf (y;) (5.23)

If we consider (5.22) for normal vector field then

dn(t) _ zuys — yur (xt) (5.24)
dt (a2 +y2)2 \be |

vector field as

or changing the sign as

Recalling that k = % we come to (5.19). For the angle we have
ri+yr)?2
LYt — YLt

do _ Tyn = yitu [ o
! (27 +v7)

= - €T + 2: 5.25
dt @7yt VI 5:2)

This follows from the considerations above but it can be also calculated straightforwardly.
Remark Note that last two formulae do not possess indefenity in sign.

This Proposition has very important application. Consider just two examples:
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Consider upper half part of the ellipse 2%/a? + y?/b*> = 1,y > 0. We already know
that curvature at the point x = acost,y = bcost of the ellipse is equal to
B ab
 (aZsint2t + b2 cos? t)3/2

and speed is equal to \a2sin?t + b2 cos2t Apply formula (5.20) of Proposition. The
curvature is not equal to zero at all the point. Hence the sign in the (5.20) is the same for
all the points, i.e.

- /W dy(t)dt = i/ﬂ k(e(0)|v(8)] = (5.26)
0 0

4 ab \/ 4 abdt
a?sin’t + b2 cos? t dt = / )
,/0 (a2 sin®t + b2 cos? t)3/2 o a?sin®t+ b2 cos?t

We calculated this integral using geometrical considerations: left hand side represents the
angle of rotation of normal unit vector and this angle is equal to w. Try to calculate the
last integral straightforwardly: it is not easy exercise in calculus.

Another example: Let r = r(t),x = z(t),y = y(t),t1 < t < t3 be a closed curve in
E? (r(t1) = r(t2).) We suppose that it possesses self-intersections points. We cannot us
a formula (5.20) for integration because in general curvature may vanish at some points,
but we still can use the formula (5.25). The rotation of the angle ¢ is equal to 27n, (n-is
called winding number of the curve). Hence according to (5.25) see that

t
? Tyt — TeYs —9
T2 re ™
t t T Yt

L1

or .
2
1 TeYee — Tl

il =n 5.27
27T t1 x% + y? ( )

The integrand us equal to the curvature multiplied by the speed (up to a sign). Left hand
side is integral of continuous function divided by transcendent number 7. The geometry
tells us that the answer must to be equal to integer number.

5.4 Relations between usual curvature normal curva-
ture and geodesic curvature.
Consider at any point p of the curve the following basis {v,f, n}, where
e velocity vector v is tangent to the curve
e the vector f is the vector tangent to the surface but orthogonal to the vector v.
e 1 is the unit normal vector to the surface, i.e.it is orthogonal to vectors v and f.

Decompose acceleration vector over three directions, i.e. over three one-dimensional
spaces spanned by vectors v, f and n:
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a = a4rthogonal to surface T @tang.to surf. and orthog. to curve T 2tangent to curve
(5.28)

The vector a which is collinear to normal unit vector n, will be

orthogonal to surface
called vector of normal acceleration of the curve on the surface. We denote it by a,,.

The vector Aang.to surf. and orthog. to curve collinear to unit vector fo will be
called vector of geodesic acceleration . We denote it by ageoq-

The vector Agangent to curve collinear to velocity vector v, is just vector of tangential
acceleration . We denote it azqng. We can rewrite (5.28) as

a = a, + Ageod + Atang (529)

Study the expansion (5.29). Both vectors a,, and agc.q are orthogonal to the curve.
The vector ageoq is orthogonal to the curve but it is tangent to the surface. The vector
a,, is orthogonal not only to the curve. It is orthogonal to the surface.

The vector ageoq + a, = a | is orthogonal to the curve. It is the vector of normal
acceleration of the curve.

Remark Please note that when we consider the curves on the surface it could arise
the confusion between the vector a,—mnormal acceleration of the curve on the surface and
the vector a; of normal acceleration of the curve (see (3.2)).

When we decompose in (5.29) the acceleration vector a in the sum of three vectors
Ay, Ageod and agqng then the vector a,,, the normal acceleration of the curve on the surface
is orthogonal to the surface not only to the curve. The vector

a| = a, + ageod,

is orthogonal only to the curve and in general it is not orthogonal to the surface (if
Ageod # 0). It is the normal acceleration of the curve. It depends only on the curve.
The normal acceleration a,, of the curve on the surface which is orthogonal to the surface
depends on the surface where the curve lies.

We know that the curvature of the curve is equal to the magnitude of normal acceler-
ation of the curve divided on the square of the speed (see (3.22)). We have:

|aJ_| _ |an+ageod|

curvature of the curve k = =
v|? [v[?

The vectors a,, and ageoq transform under reparameterisation in the same way as a vector
ay (see (3.11)). If t — t(7) then

a) (1) = t7a, and a),(1) = t7an(t), ayea(T) = t7ageod(t) (5.30)
where a'(7) = %r(t(T)) =t2a+t.,.v (see (3.9), (3.10), (3.8)). Hence the magnitudes
|2geod| |ay|
— 5.31
P Ve 31
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. . . . . a a
are reparameterisation invariant as well as magnitude k = “iTzl = %

Multiply left and right hand sides of the equation (5.29) on unit normal vector n.
Then (atang,n) = (ageod, n) = 0 because vectors ageoq and aiqng are orthogonal to the
vector n. We come to the relation

a, = (n,a)n and,|a,|=|(a,n)|. (5.32)

Or in other words scalar product (n,a) is equal to |a,| (up to a sign).
Compare the formula
.y = 2 (5.33)
(v,v)

(see (4.27)) for normal curvature with the formula

_
(v,v)

k

for usual curvature (see (3.22)).
It follows from (5.30), (5.31) and (4.27) (or (5.33)) that for any curve on the surface
the modulus of the normal curvature is less or equal than usual curvature.

|in| < k (5.34)

Indeed we have for usual curvature

2 2
a a a a +a a
b= o = et el \/7> ot el )

Normal curvature is a positive or negative real number. (Usual curvature is non-
negative real number). Normal curvature changes a sign if n — —n.

Remark We obtained in (5.31) that the magnitude % is reparameterisation in-

. . a
variant. It defines so called geodesic curvature Kgeoq = | ﬁfl‘;'il. We see that usual curvature

k, normal curvature x and geodesic curvature kgeoq are related by the formula

k2 = K:?;eod + "{iormal (536)

5.5 Normal curvature of curves on cylinder surface.

Example Consider an arbitrary curve C': h = h(t), ¢ = ¢(t) on the cylinder

x = Rcosp
r(p,h): ¢y = Rsing
z=h

Pick any point p on this curve and find normal acceleration vector at this point of this
curve.
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Without loss of generality suppose that point p is just a point (R,0,0). Note that
vector e, attached at the point (R, 0,0) is unit vector orthogonal to the surface of cylinder,
i.e. e, = —n at the point p = (R, 0,0).

RemarkUnit vector, as well as normal curvature is defined up to a sign. It is conve-

nient for us to choose n = —e,, not n = e,.
Vectors ey, e, are tangent to the surface of cylinder. At the point p = (R,0,0)
p=0,h=0.
e e dr(t) _de(t)  dy(t) | d=()
_dr(t)  dx Yy 2 _
VETa T A e Ta T T
d t dsin p(t dh(t .
RM% + REE 2 )ey + ( )ez = —Rsinppe, + Rcos ppe, + he,
dt dt dt
Thus v = Rge, + he, at the point p = (R,0,0). (5.37)
For acceleration vector
d*r(t)  d%x(t) d?y(t) d?z(t) d? cos p(t) d? sin p(t) d?h(t)
AT T2 T Tae U g T a2 TR et e =

R (f(c,b)2 cos p — psin go) e, +R (f(c,b)2 sin ¢ + @ cos gp) e, + ﬁez = pRe, + }iez - (¢)2Rem
at the point p = (R, 0,0) where cos ¢ = 0,sinp = 1. We see that
a= $Re, + he. - (¢)’Re, (5.38)
—_———

———
tangent to the surface normal to the surface

We see that a,, = (¢)?Re,. Comparing with velocity vector (5.37) we see that

V2 .
a, = horizontal n (539)

R

We see that for any curve on the cylinder 2 + y> = R? the normal curvature (Tglg’ )

(see (4.27)) is equal to

(an,m) _ R¢?
|v|2 R2¢? +h2

(5.40)

and it obeys relations

0 S Rnormal S E

depending of the curve. E.g. if the curve on the cylinder is a straight line z = zg,y =
Yo, 2 = t then a = 0 and normal curvature of this curve is equal to the naught as well as
usual curvature.

If the curve is circle x = Rcost,y = Rsint, z = zg then normal curvature of this curve
as well as usual curvature is equal to %.

Remark Very important conclusion from this example is
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normal curvature of the cylinder of the radius R takes values in the interval (O, %) It
cannot be greater than %

Note that we can consider on cylinder very curly curve of very big curvature. The normal

curvature at the points of this curve will be still less than %.

At any point of the surface normal curvature in general depends on the curve but it
takes values in the restricted interval.

E.g. for the sphere of radius R one can see that normal curvature at any point is
equal to % independent of curve. In spite of this fact the usual curvature of curve can be
very big '0. If we consider the circle of very small radius r on the sphere then its usual
curvature is equal to k = % and k — oo if r — 0 So we see that one can define curvature
of surface in terms of normal curvature.

5.6 Parallel transport of vectors tangent to the sphere.

1. Consider now in a more detail the parallel transport along curves on sphere.

In the case if surface is a plane then everything is easy. If vector X; is tangent to
the plane at the given point, it is tangent at all the points. Vector does not change under
parallel transport X (t) = X.

Consider a case of parallel transport along curves on the sphere.

Consider on the sphere 22 + y? + 22 = a? (a is a radius) tangent vectors:

acos 6 cos ¢ —asinfsin
rg = | acosfsiny r, = | asinfcosy (5.41)
—asind 0
asinf cos p
attached at the point r(6,p) = | asinfsine |. One can see that
acosf

(ro,rg) =a, (rp,ry) =0, (ry,ry)= a?sin? 6
It is convenient to introduce vectors which are parallel to these vectors but have unit

length:

To ry

e =—, €, = ep,e9) =1, (eg,e,) =0, (e,,e,) =1. 5.42
0 a7 © asind (97 9) a(97 g&) 7(4;73 90) ( )
How these vectors change if we move along parallel (i.e. what is the value of %7 88%);
how these vectors change if we move along meridians (i.e. what is the value of %, aai(f).
First of all recall that unit normal vector to the sphere at the point 6, ¢ is equal to @:

sin 6 cos ¢

n(f, o) = | sinfsinep

cos 6

161t is the geodesic curvature of the curves which characterises its curvature with respect
to the curve. The relation between usual geodesic and normal curvature is given by the
formula (5.36).
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Now calculate:

cos 6 cos —sinf cos ¢
% = ;9 cosfsing | = | —sinfsing | = —n (5.43)
—sinf —cosf
de o [co8 6 cos p —cosfsinp
a—e =55 | € Osing | = | cos@cosp | = cosbe,, (5.44)
¥ ® —sinf 0
de —sing —cos @ sin
a—g’ =55 | cosv | = cosfcosp | =0, (5.45)
0 0
de —singp —cosp
a—‘p =55 | s | =~ siny | = —sinfn — cos fey, (5.46)
14 ¥ 0 0

Some of these formulaes are intuitively evident: For example formula (5.43) which
means that family of the vectors ey () is just parallel transport along meridian, because
its derivation is equal to —n.

Another intuitively evident example: consider the meridian 6(t) = t, ¢(t) = o,
0 <t <. It is easy to see that the vector field

cos B(t) cos g
X(t) = ep(0(t), po) = | cosB(t)sin pg
—sin 6(¢)

attached at the point (6(t), po) is a parallel transport because for family of vectors X(t)
all the conditions of parallel transport are satisfied. In particular according to (5.43)

0 cos p

aX(t) dot) o [57

2 =2 = | cosOsing | = -n(f(t), o)
-~ ar o0\

Now consider an example which is intuitively not-evident.
Example. Calculate parallel transport of the vector e, along the parallel. On the
sphere of the radius a consider the parallel

0(t) =0o,p(t) =t, 0<t<2m (5.47)

In cartesian coordinates equation of parallel will be:

asin O(t) cos p(t) asin Oy cost
r(t) = | asin@(t)sinp(t) | = | asinf(t)sint |, 0<¢<2x (5.48)
—acosf(t) —acos b

It is easy to see that the family of the vectors e, (6o, ¢(t)) on parallel, is not parallel
dey (00,0(t)) _ dey(00,p)
dt - do

transport! because is not equal to zero (see (5.46) above). Let a
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family of vectors X(t) be a parallel transport of the vector e, along the parallel (5.47):
X(t) = a(t)eq(t)+b(t)e,(t) where a(t), b(t) are components of the tangent vector X(t) with
respect to the basis eg, e, at the point § = 6y, =t on the sphere. Initial conditions for
coefficients are a(t)|t=o = 0,b(t)|t=0 = 1 According to the definition of parallel transport
and formulae (5.43)—(5.46) we have:

XY _ 3ol It _ (300 o) ot + e
b(t) (—sinfpn — cosfey) =
- (d(;(tt) —b(t) cos 90) ey + (de(;) + a(t) cos 90) e, — b(t)sinfyn (5.49)

Under parallel transport only orthogonal component of the vector changes. Hence we
come to differential equations

da(t) b(t) =
7 wb(t) =0 B _ B
{dl;(ttt) 4 wa(t) a’(o) - 0) b(O) - 07 w = COS 90 (550)

The solution of these equations is a(t) = sinwt, b(t) = coswt. We come to the following
answer: parallel transport along parallel § = ¢y of the initial vector e, is the family

X(t) = sinwt ey + cos wt e, w = cos by (5.51)

During traveling along the parallel 8 = 6y the eg component becomes non-zero At the
end of the traveling the initial vector X(t)|;—o = e, becomes X(t)|i—2r = sin2rweq +
cos 2mwe,: the vector e, after woldtrip traveling along the parallel 6 = ¢, trans-
forms to the vector sin(27 cosfy)eg + cos(2m cosby)e,. In particularly this means
that the vector e, after parallel transport will rotate on the angle

angle of rotation = 27 cos 6

Compare the angle of rotation with the area of the segment of the sphere above the
parallel 6 = 6y. According to the formula (?7?) area of this segment is equal to S =
2rah = 2wa?(1 — cosfy). On the other hand Gaussian curvature of the sphere is equal
to al—z Hence we see that up to the sign angle of rotation is equal to area of the seqment

divided on the Gaussian curvature:

S
Ap = iE = £27wcos by (5.52)

5.7 Parallel transport along a closed curve on arbi-
trary surface.

The formula above for the parallel transport along parallel on the sphere keeps in the
general case.

Theorem Let M be a surface in E3. Let r(t): r(t),t; <t < ta,r(t;) = r(t2) be a
closed curve on the surface M such that it is a boundary of domain D of the surface M.
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(We suppose that the domain D is bounded an orientate.) Let X(t) be a parallel transport
of the arbitrary tangent vector along this closed curve. Consider initial and final vectors
X(t1), X(t2). They have the same length according to (4.51).

Theorem The angle Ay between these vectors is equal to the integral of Gaussian
curvature over the domain D:

Ap—+ / Kdo (5.53)
D
where we denote by do the element of the area of surface of M.

The calculations above for traveling along the parallel are just example of this Theo-
rem. The integral of Gaussian curvature over the domain above parallel 8 = 6, is equal
to K - 2ma(l — cosfg)=-=% - 2ma?(1 — cos fy) = 27 (1 — cos f). This is equal to the angle of
rotation 27 cosfy (up to a sign and modulo 27). Another simple

Example. Consider on the sphere 22 + y? + 22 = a? points A = (0,0,1), B = (1,0,0)
and C = (0,1,0). Consider arcs of great circles which connect these points. Consider the
vector e, attached at the point A. This vector is tangent to the sphere. It is easy to see
that under parallel transport along the arc AB it will transform at the point B to the
vector —e,. The vector —e, under parallel transport along the arc BC will remain the
same vector —e,. And finally under parallel transport along the arc C'A the vector —e,
will transform at the point A to the vector —e,. We see that under traveling along the

curvilinear triangle ABC' vector e, becomes the vector —e,, i.e. it rotates on the angle 7.

It is just the integral of the curvature - over the triangle ABC: K - S = 1 . 4”8“2 = 3.

a? a?
We know that for planar triangles sum of the angles is equal to w. It turns out that

Corollary Let ABC be a triangle on the surface formed by geodesics. Then

LA+ LB+ /LC =1+ / Kds (5.54)
AABC

The Gaussian curvature measures the difference of m and sum of angles.
The corollary evidently follows form the Theorem. It is of great importance: It gives
us tool to measure curvature. (See the tale about ant.)

5.8 A Tale on Differential Geometry

Once upon a time there was an ant living on a sphere of radius R. One day he asked
himself some questions: What is the structure of the Universe (surface) where he lives? Is
it a sphere? Is it a torus? Or may be something more sophisticated, e.g. pretzel (a surface
with two holes)

Three-dimensional human beings do not need to be mathematicians to distinguish
between a sphere torus or pretzel. They just have to look on the surface. But the ant
living on two-dimensional surface cannot fly. He cannot look on the surface from outside.
How can he judge about what surface he lives on " This is not very far from reality: For
us human beings it is impossible to have a global look on three-dimensional manifold. We
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need to develop local methods to understand global properties of our Universe. Differential
Geometry allows to study global properties of manifold with local tools.?

Our ant loved mathematics and in particular Differential Geometry. He liked to draw
various triangles, calculate their angles «, 3,7, area S(A). He knew from geometry books
that the sum of the angles of a triangle equals 7, but for triangles which he drew it was

not right!!!!
Finally he understood that the following formula is true: For every triangle
(OZ+/B+’Y—7T):C (1)
S(A)

A constant in the right hand side depended neither on size of triangle nor the triangles
location. After hard research he came to conclusion that its Universe can be considered as
a sphere embedded in three-dimensional Euclidean space and a constant c is related with

radius of this sphere by the relation
1

c= Rr2 (2)
...Centuries passed. Men have deformed the sphere of our old ant. They smashed it. It
seized to be round, but the ant civilisation survived. Moreover old books survived. New
ant mathematicians try to understand the structure of their Universe. They see that
formula (1) of the Ancient Ant mathematician is not true. For triangles at different places
the right hand side of the formula above is different. Why? If ants could fly and look on the
surface from the cosmos they could see how much the sphere has been damaged by humans
beings, how much it has been deformed, But the ants cannot fly. On the other hand they
adore mathematics and in particular Differential Geometry. One day considering for every
point very small triangles they introduce so called curvature for every point P as a limit
of right hand side of the formula (1) for small triangles:

- (at+fty—m)
KP)= 1 —_
(P)= 5@
Ants realise that curvature which can be calculated in every point gives a way to decide
where they live on sphere, torus, pretzel... They come to following formula '® : integral
of curvature over the whole Universe (the sphere) has to equal 47, for torus it must equal
0, for pretzel it equalts —4...
1
by K(P)dP = 2 (1 — number of holes)
s

5.8.1 Gramm matrix, Gramm determinant

This inequality is related with the following construction. Let {ai,...,a,,} be m vectors
in Euclidean vector space E" (where m,n in general are two different positive integers.
Consider so called Gramm matrix (Grammian) of these vectors

Gill: G = (a;,a)

18Tn human civilisation this formula is called Gauf8-Bonet formula. The right hand side
of this formula is called Euler characteristics of the surface.
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Let a¥ is a matrix of components of vectors {a;} in an orthonormal basis {e;}:

n
a; = E afek
k=1

Then the following very important identity takes place
det G = (det A)%. (5.55)
Proof is easy. We have
(a;,a5) = (Z arey, Z afe;«) = (AAT)U = det G = det (AAT) = (det A)?
k=1 k=1

Corollary 1. Vectors {aj,...,a,,} are linear independent if and only if det G > 0..

Corollary 2. Take m = 2. We come to CBS inequality:

det G = (a,a)(b,b) — (a,b)? > 0.
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