
Riemannian Geometry

Coursework 2020

Here are the solutions of the coursework.

The discussions of the coursework will appear on webpage and I plan to send

students individual comments.

Solutions

1

Consider a surface M , the upper sheet of the cone

r(h, ϕ):

{
x = h cosϕ
y = h sinϕ
z = 2h

, 0 ≤ ϕ < 2π , h > 0 . (1)

Calculate the Riemannian metric G on this surface induced by the Euclidean metric in E3

in coordinates (h, ϕ).

Show that this surface is locally Euclidean by giving an example of local coordinates

(u, v), which are Euclidean coordinates.

Find the length of the shortest curve which belongs to the surface M , starts at the

point (h
0
, 0, 2h

0
) and ends at the point (−h

0
, 0, 2h

0
).

[3 marks]

We have GM = (dx2+dy2+dz2)
∣∣
M

= (cosϕdh−h sinϕdϕ)2 +(sinϕdh+h cosϕdϕ)2+

4dh2 = 5dh2 + h2dϕ2.

Under changing of coordinates {
u =
√

5h cos ϕ√
5

v =
√

5h sin ϕ√
5

(1.1)

we come to locally Euclidean coordinates: du2 + dv2 = x = 5dh2 + h2dϕ2. Hence the

surface is locally Euclidean.

Unroll the surface of the upper sheet of the cone for 0 < h < h
0
. (We can do it

since conical surface is locally Euclidean.) (You can see below another more ’pure’

solution based on locally Euclidean coordinates (1.1).)

We will come to the sector of the interior of the circle with radius R =
√

4h
0

2 + h2 =

h
0

√
5, and with the angle

θ =
length of the circle

radius of the unfolded sector
=

2πh

R
=

2πh0

h0

√
5

=
2π√

5
.
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The antipodal points at the conical surface, i.e. the points (h, ϕ), (h, ϕ+π) will be presented

by the points which are on the cicle of the unfolded csurface, such that the angle between

them will be θ
2 . The distance between these points is

d = 2R sin
θ

4
= 2h

0

√
5 sin

2π

4
√

5
= 2h

0

√
5 sin

π

2
√

5
. (1.2)

Sure one can come to this answer in a more ’pure’ way:

We proved that the surface of cone is locally Euclidean and showed that in coordinates

(1.1) Riemannian metric is Euclidean

G = du2 + dv2 = 5dh2 + h2dϕ2 ,

{
u =
√

5h cos ϕ√
5

u =
√

5h sin ϕ√
5

.

Point A = (h
0
, 0, 2h

0
) has coordinates

(u0, v0) =
(
h

0

√
5, 0
)

since cos 0 = 1 and sin 0 = 0 and point B = (−h0 , 0, 2h0) has coordinates

(u0, v0) =

(
h

0

√
5 cos

π√
5
, h

0

√
5 sin

π√
5

)
The length of the shortest curve between points A and B is equal to

√
(u1 − u0)2 + (v1 − v0)2 =

√(√
5h0 cos

π√
5
−
√

5h0

)2

+

(√
5h0 sin

π√
5
− 0

)2

=

√
5h

0

√(
cos

π√
5
− 1

)2

+ sin2 π√
5

=
√

5h
0
· 2 sin

π√
5

We came to the same answer (1.2)

2

Consider a sphere S2 of the radius a in spherical coordinates

r(θ, ϕ):

{
x = a sin θ cosϕ
y = a sin θ sinϕ
z = a cos θ

, 0 ≤ ϕ < 2π , 0 < θ < π . (1)

Calculate the Riemannian metric G on this surface induced by the Euclidean metric in E3

in spherical coordinates (θ, ϕ).

2



Give an example of non-identical transformation which preserves the metric.

Consider two points A = (a sin θ0, 0, a cos θ0) B = (−a sin θ0, 0, a cos θ0) on this sphere.

Calculate the length of the arc of the latitude
{ϕ = t
θ = θ0

which connects this points.

Explain why this is not the shortest curve on the sphere which connects points A and

B.

Give an argument explaining why sphere is not locally Euclidean.

[3 marks]

We have GS2 = (dx2 + dy2 + dz2)
∣∣
S2 =

(−a sin θ sinϕdϕ+ a cos θ cosϕdθ)2 + (a sin θ cosϕdϕ+ a cos θ sinϕdθ)2 + (−a sin θdθ)2 =

a2 sin2 θ sin2 ϕdϕ2+a2 cos2 θ cos2 ϕdϕ2+a2 sin2 θ cos2 ϕdϕ2+a2 cos2 θ sin2 ϕdϕ2++a2 sin2 θdθ2 =

a2 sin2 θdϕ2 + a2 cos2 θdθ2 + a2 sin2 θdθ2 = a2dθ2 + a2 sin2 θdϕ2 . (1)

Consider transformation, rotation on angle ϕ0 around axis OZ: F :

{
θ′ = θ
ϕ′ = ϕ+ ϕ0

This transformation is obviously isometry, since it does not change the Riemannian metric

(1):

a2dθ′
2

+ a2 sin2 θ′dϕ′
2

= a2dθ2 + a2 sin2 θdϕ2 .

This arc is half of the circle of the radius r = a sin θ0. Hence its length of is equal to

L = πa sin θ0.

If we consider another arc- the arc of the circle which passes throug the poins A,B

and the North pole, ∗ we see that the length of this arc is equal to L′ = 2aθ0. We see that

L > L′:

L = πa sin θ0 ≥ 2aθ0 .

They are equal if θ = π/2, i.e. the curve L becomes equator.

Remark This answer has the following interpretation: great circle is geodesic, and

the arc of latitude becomes geodesic if θ = π
2 .

3

∗ this is the arc of great circle
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Recall that the Riemannian metric on the sphere of radius R in the stereographic

coordinates is expressed by the formula

Gstereogr. =
4R4(du2 + dv2)

(R2 + u2 + v2)2
.

a) Give an example of a non-identity transformation of coordinates u, v such that it

preserves this metric.

b) Give an example of a non-linear transformation of coordinates u, v such that it

preserves this metric.

(Hint:You may find this transformation considering transformations of the sphere.)

c) Find the length of the line v = au in R2 with respect to this metric.

Why the length of this curve does not depend on the parameter a?

[4 marks]

a) An arbitrary orthogonal transformation of E3 (e.g. an arbitrary rotation, or trans-

formation r 7→ −r) transforms sphere x2 + y2 + z2 = R2 onto itself without changing

the metric of sphere . They induce corresponding transformations of the stereographic

coordinates u, v: {
u = Rx

R−z
v = Ry

R−z
,


x = 2uR2

u2+v2+R2

y = 2vR2

u2+v2+R2

z = Ru2+v2−R2

u2+v2+R2

.

E.g. rotations along axis z induces linear transformation: we come to linear transformation

of coordinates u, v:
{
u 7→ u cos θ + v sin θ
v 7→ −u sin θ + v cos θ

.

b) To find non-lnear transformation take an arbitrary orthogonal transformation of

E3, which does not preserve the z-axis. This transformation evidently is isometry of the

sphere, and it will induce non-linear transformation of stereographic coordinates. As an

example of such transformataion one may consider transformation r 7→ −r, (x, y, z) 7→
(−x,−y,−z). This transformation sends an arbitrary point of sphere to antipodal and it

obviously preserves the metric. Using formulae for stereographic coordinates we come to:{
u = Rx

R−z 7→
−Rx
R+z = − uR2

u2+v2

v = Ry
R−z 7→

−Ry
R+z = − vR2

u2+v2

This is an inversion (up to a sign). In complex coordinates it looks as z = u+iv, z 7→ −R
2

z̄ ).

(One may consider also another transformation: rotation along axis Oy on the angle π/2:

(x, y, z) 7→ (y, z,−y), respectively u = Rx
R−z 7→

Rx
R+y = ... and v = Ry

R−z 7→
Rz
R+y = ....)
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Another solution In complex coordinates z = u+ iv the metric is

G =
4R4(du2 + dv2

(R2 + u2 + v2)2)
=

4R4dzdz̄

(R2 + zz̄)2
.

One can see that z = R2

w , i.e. is isometry.

c) An arbitrary line passing through the origin is the isometric image of a great circle

pasing through North and South pole of the sphere. Length of any great circle is equal to

2πR, hence the length of the line is equal to 2πR, this is the length of the great circle of

the sphere. It obviously does not depend on a.

Remark One can calculate the length of this line straightforwardly using brute force

calculations: The length of the line v = au with respect to the metric (1) is equal to L =

∫ √(
4R4

(R2 + u2 + v2)2

)
(u2
t + v2

t )dt =

∫ ∞
−∞

√(
4R4

(R2 + u2 + a2u2)2

)
(a2 + 1)du =

2R

∫ ∞
−∞

dz

1 + z2
= 2πR , where z = R

√
a2 + 1u .

4.

Evaluate the area of the part of the sphere of radius R = 1 between the planes given

by equations 2x+ 2y + z = 1 and 2x+ 2y + z = 2.

[2 marks]

These planes are parallel. The normal equations of these planes are 2
3x+ 2

3x+ 2
3y+ 2

3z =

1
3 and 2

3x+ 2
3y+ 2

3z = 2
3 The first plane is on the distance 1

3 of the origin, the second is on

the distance 2
3 . They both intersect the sphere. The distance between the planes equals

to h = 1
3 . The area of the part of the sphere between the planes is S = 2πRH = 2π

3 .

5.

Consider the plane R2 with standard coordinates (x, y) equipped with Riemannian

metric

G = (1 + x2 + y2)e−a
2x2−a2y2 (dx2 + dy2

)
.

Calculate the total area of this plane.

[1 marks]
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Transform the Riemannian metric G = (1 + x2 = y2)e−a
2(x2+y2)(dx2 + dy2) to polar

coordinates r, ϕ:
{x = r cosϕ
y = r sinϕ :

G = (1 + r2)e−a
2r2(dr2 + r2dϕ2) , ||gαβ || =

(
(1 + r2)e−a

2r2 0

0 r2(1 + r2)e−a
2r2

)
,

and volume form is equal to dv =
√

detGdrdϕ = (1 + r2)e−a
2r2rdrdϕ. (One can instead

calculate at first volume form in Cartesian coordinates: dv =
√

detGdxdy = (1 + x2 +

y2)e−a
2(x2+y2)dxdy then perform transformation to polar coordinates.)

Total area is equal to S =
∫
R2

√
detGdv =

∫
R2(1 + r2)e−a

2r2rdrdϕ. Introduc-

ing new variable u: u = a2r2 we calculate this integral: S =
∫
R2

√
detGdv =

∫
R2(1 +

r2)e−a
2r2rdrdϕ =.

= 2π

∫ infty

0

(1 + r2)e−a
2r2)rdr = π

∫ ∞
0

(
1 +

u

a2

)
e−u

du

a2
=

π

a2

(
1 +

1

a2

)
,

since
∫∞

0
e−udu =

∫∞
0
ue−udu = 1.
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Consider the upper half-plane y > 0 with the Riemannian metric

G =
dx2 + dy2

y2

(the Lobachevsky plane).

In the Lobachevsky plane consider the domain D defined by

D = {x, y: x2 + y2 ≥ 1 , −a ≤ x ≤ a} ,

where a is a parameter such that 0 < a < 1.

Find the area of the domain D (with respect to the metric G).

Consider the points At = (a, t), Bt = (a, t) on the vertical lines delimiting the domain

D. Show that the distance between these points tends to 0 if t→∞

[3 marks]

We have G =

( 1
y2 0

0 1
y2

)
. We see that

√
detG = 1

y2 . Hence

S =

∫
x2+y2≥1,−a≤x≤a

√
detGdxdy =

∫
x2+y2≥1,−a≤x≤a

1

y2
dxdy =

∫ a

−a

(∫ ∞
√

1−x2

dy

y2

)
dx =
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∫ a

−a

dx√
1− x2

= 2 arcsin a .

Consider horizontal segment which connects the points A and B. This is{x = −a+ τ
y = t

0 ≤ τ ≤ 2a .

Its length of this segment is equal to

L =

∫ 2a

0

√
x2
τ + y2

τ

y2(τ)
dτ =

∫ 2a

0

√
1 + 0

t2(τ)
dτ =

2a

t
t00 if t→∞

We se that the length of the segment tends to 0, hence the distance , the length of the

shortest curve will tend to zero as well.

Remark The shortest curve which connects these points is the arc of semicircle which

conneccts these points with centre at origin.

Tne answer has the following geometrical interpretation. Our domain may be consid-

ered as a isocseless triangle, with vertex at infinity. The angle between vertical line and

the circle is equal to

6 α = 6 β =
π

2
− arcsina ,

and the sum of angles of this triangle is equal to

6 α+ 6 β + 6 γ =
(π

2
− arcsin a

)
+
(π

2
− arcsin a

)
+ 0 = π − arcsin a.

Since Lobachevsky plane has cconstant curvature hence

S(D) =

∫
D

dxdy = K(6 α+ 6 β + 6 γ − π) = 2arcsin a

We come to the answer
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Let ∇ be an affine connection on the 2-dimensional manifold M such that in local

coordinates (u, v), ∇ ∂
∂u

(
u2 ∂

∂v

)
= 3u ∂

∂v + u ∂
∂u .

Calculate the Christoffel symbols Γuuv and Γvuv of this connection.

[1 marks]

Using axioms for connection and definition of the Christoffel symbols we have

∇ ∂
∂u

(
u2 ∂

∂v

)
= ∇∂u(u2)∂v + u2∇∂u∂v = 2u∂v + u2 (Γuuv∂u + Γvuv∂v) =
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u2Γuuv∂u +
(
2u+ u2Γvuv

)
∂v .

Comparing with the answer

∇ ∂
∂u

(
u2 ∂

∂v

)
= 3u

∂

∂v
+ u

∂

∂u

we see that Γuuv = u
u2 = 1

u and Γvuv = 3u−2u
u2 = 1

u

8

a) Let ∇ be an arbitrary connection on n-dimensional manifold M and let {Γikm(x)}
be the Christoffel symbols of this connection. Let let ω = ωi(x)dxi be a differential form

on M . Show that

Γ̃ikm = Γikm + δikωm (8a)

are Christoffel symbols of the new connection.

(b) Let Γ
i(1)
km be the Christoffel symbols of a connection ∇(1) and Γ

i(2)
km be the Christoffel

symbols of a connection ∇(2).

Show that the linear combinations 2
3Γ

i(1)
km + 1

3Γ
i(2)
km , are Christoffel symbols for some

new connection.

Explain why 1
2Γ

i(1)
km + 1

3Γ
i(2)
km are not Christoffel symbols for some connection.

[3 marks]

Γikm are Christoffel symbols of some connection. They transform as

Γi
′

k′m′ =
∂xi

′

∂xi
∂xk

∂xk′
∂xm

∂xm′ +
∂2xr

∂xk′∂xm′

∂xi
′

pxr
(8a.1)

Γikm are Christoffel symbols of some connection ∇. According Proposition (see lecture

notes paragraph, 2.1.4 Space of connections, page 51 of Lecture notes)) Γikm are Christoffel

symbols of another connection ∇̃ since they differ on the tensor of valency

(
1
2

)
.

Another solution

Recall that under change of coordinates xi to xi
′

Christoffel symbols change in the

following way:

Γi
′

k′m′ =
∂xi

′

∂xi
∂xk

∂xk′
∂xm

∂xm′ Γi
′

k′m′ +
∂2xr

∂xk′∂xm′

∂xi
′

pxr
(8a.1)

Check that symbols Γ̃ikm defined by equation (8a) indeed transform according the rule

(8a.1)
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∂xi
′

∂xi
∂xk

∂xk′
∂xm

∂xm′ Γ̃ikm +
∂2xr

∂xk′∂xm′

∂xi
′

∂xr
=
∂xi

′

∂xi
∂xk

∂xk′
∂xm

∂xm′

[
Γikm + δikωm

]
+

∂2xr

∂xk′∂xm′

∂xi
′

∂xr
=

=
∂xi

′

∂xi
∂xk

∂xk′
∂xm

∂xm′ Γikm +
∂2xr

∂xk′∂xm′

∂xi
′

∂xr︸ ︷︷ ︸
see equation (8a.1)

+
∂xi

′

∂xi
∂xk

∂xk′
∂xm

∂xm′ δ
i
kωm =

Γi
′

k′m′ +
∂xi

′

∂xk
∂xk

∂xk′
∂xm

∂xm′ ωm = Γi
′

k′m′ +
∂xi

′

∂xk′
∂xm

∂xm′ ωm =

Γi
′

k′m′ + δi
′

k′ωm′ = Γ̃i
′

k′m′ .

Another solution

Denote by ∇ the conection with Christoffel symbols Γikm. Consider new connection

∇̃: ∇̃XY = ∇XY + Xω(Y)

(see Example in the paragraph 2.1.4 Space of connections, page 52 of Lecture notes. )

Chirstoffel symbols of this new connection are

Γ̃ikm: Γ̃ikm
∂

∂xi
= ∇̃∂k∂m = ∇∂k∂m +

∂

∂xk
ω

(
∂

∂xm

)
=
(
Γikm + δikωm

)
.
∂

∂xi
.

Thus we see that Γ̃ikm = Γikm + δikωm are Chritoffel symbols of the new connection

Difference of two connections is tensor field, if ∇ is a connection, then ∇̃ is another

connection if and only if the difference ∇̃−∇ is a tensor field. On the other hand one can

see that if c∇ is connection, then c = 1. Hence α∇+ β∇̃ is connection if and only if

α∇+ β∇̃ − α(∇− ∇̃)︸ ︷︷ ︸
tensor field

= (α+ β)∇̃

is a connection, i.e. α + β = 1. This explains why Show that the linear combinations

2
3∇+ 1

3∇̃, is a connection and 1
2∇+ 1

3∇̃ is not a connection:

2

3
+

1

3
= 1 , however

1

2
+

1

3
6= 1 .
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