$\mathrm{MATH}\ 41082$

Three hours

THE UNIVERSITY OF MANCHESTER

RIEMANNIAN GEOMETRY

 $\begin{array}{c} 20 \ {\rm May} \ 2016 \\ 14{:}00{-}17{:}00 \end{array}$

ANSWER ANY THREE OF QUESTIONS 1—4 If you answer more questions then the marks from the three best solutions will be used. YOU HAVE TO ALSO ANSWER QUESTION 5 All questions are worth 20 marks

Electronic calculators may not be used

P.T.O.

page 1 of 6

(a) Explain what is meant by saying that G is a Riemannian metric on a manifold M.

Consider the plane \mathbf{R}^2 with standard coordinates (x, y) equipped with Riemannian metric $G = \sigma(x, y)(dx^2 + dy^2)$. Explain why $\sigma(x, y) > 0$.

Let **A** and **B** be two arbitrary vectors attached at some point of this plane. Explain why the cosine of the angle between these vectors does not depend on a choice of a function $\sigma(x, y)$.

In the plane with the metric G as above, consider the circle C defined by the equation $x^2 + y^2 = R^2$ and calculate its length in the case $\sigma(x, y) = e^{-x^2 - y^2}$.

[8 marks]

(b) Consider the plane \mathbf{R}^2 with standard coordinates (x, y) equipped with Riemannian metric $G = e^{-x^2-y^2}(dx^2 + dy^2)$.

Write down the formula for the area element in this metric in coordinates (x, y) and in polar coordinates (r, φ) $(x = r \cos \varphi, y = r \sin \varphi)$. Calculate the area of the disc, $x^2 + y^2 < R^2$ (in the given metric).

In the case when R = 1 give an example of another metric $G' = \sigma(x, y)(dx^2 + dy^2)$ such that the area of the disc $x^2 + y^2 \leq 1$ will be the same as for the metric G.

[8 marks]

(c) Explain what is meant by saying that a Riemannian manifold is locally Euclidean.

Consider in Euclidean space \mathbf{E}^3 the surface

$$\begin{cases} x = 3h\cos\varphi\\ y = 3h\sin\varphi \quad , \qquad h > 0 \,, \quad 0 \le \varphi < 2\pi\\ z = h \end{cases}$$

(the upper sheet of the cone).

It is known that the induced Riemannian metric on this surface is given by the formula $G = 10dh^2 + 9h^2d\varphi^2$.

Show that this surface is locally Euclidean.

[4 marks]

P.T.O.

page 2 of 6

(a) Explain what is meant by an affine connection on a manifold.

Let ∇ be an affine connection on a 2-dimensional manifold M in local coordinates (u, v). It is known that $\nabla_{\frac{\partial}{\partial u}} \left(u \frac{\partial}{\partial u} \right) = \frac{\partial}{\partial u} + u \frac{\partial}{\partial v}$. Calculate the Christoffel symbols Γ_{uu}^u and Γ_{uu}^v .

[5 marks]

(b) Explain what is meant by the induced connection on a surface in Euclidean space. Consider a sphere in \mathbf{E}^3 :

$$\mathbf{r}(\theta,\varphi): \quad \begin{cases} x = R\sin\theta\cos\varphi \\ y = R\sin\theta\sin\varphi \\ z = R\cos\theta \end{cases}$$

Let ∇ be the induced connection on the sphere.

Calculate the Christoffel symbols $\Gamma^{\theta}_{\theta\varphi}$, $\Gamma^{\varphi}_{\theta\varphi}$, $\Gamma^{\theta}_{\varphi\theta}$ and $\Gamma^{\varphi}_{\varphi\theta}$.

[6 marks]

(c) Give a detailed formulation of the Levi-Civita Theorem. In particular write down the expression for the Christoffel symbols Γ_{km}^i in terms of a Riemannian metric $G = g_{ik}(x)dx^i dx^k$.

Consider the open disc $u^2 + v^2 < 1$ with the Riemannian metric

$$G = \frac{4(du^2 + dv^2)}{(1 - u^2 - v^2)^2},$$

(Poincaré disc).

Show that all Christoffel symbols of the Levi-Civita connection of this Riemannian manifold vanish at the point u = v = 0.

Let ∇' be a symmetric connection on the Poincaré disc such that all Christoffel symbols of this connection in coordinates (u, v) vanish identically (at all points).

Show that the connection ∇' does not preserve the metric of the Poincaré disc. (You may wish to consider the vector field $\mathbf{A} = \frac{\partial}{\partial u}$.)

[9 marks]

P.T.O.

page 3 of 6

(a) Let (M, G) be a Riemannian manifold.

Let C be a curve on M starting at the point \mathbf{p}_1 and ending at the point \mathbf{p}_2 .

Explain what is meant by the parallel transport P_C along the curve C.

Explain why the parallel transport P_C is a linear orthogonal operator.

Let the points \mathbf{p}_1 and \mathbf{p}_2 coincide, so that C is a closed curve. Let \mathbf{a} be a tangent vector at the point \mathbf{p}_1 , and $\mathbf{b} = P_C(\mathbf{a})$. Suppose that $P_C(\mathbf{b}) = -\mathbf{a}$. Show that vectors \mathbf{a} and \mathbf{b} are orthogonal to each other.

[8 marks]

(b) Write down the differential equation for geodesics of a Riemannian manifold in terms of Christoffel symbols.

Explain the relation between the Lagrangian of a free particle on a Riemannian manifold and the differential equations for geodesics.

Calculate the Christoffel symbols on the Lobachevsky plane.

(You may use the Lagrangian of a free particle on the Lobachevsky plane $L = \frac{1}{2} \frac{\dot{x}^2 + \dot{y}^2}{y^2}$.) [6 marks]

(c) Explain why great circles are geodesics on a sphere in \mathbf{E}^3 .

On the unit sphere $x^2 + y^2 + z^2 = 1$ in \mathbf{E}^3 consider the curve *C* defined by the equation $\cos \theta - \sin \theta \sin \varphi = 0$ in spherical coordinates.

Show that in the process of parallel transport along the curve C an arbitrary tangent vector to the curve remains tangent to the curve.

[6 marks]

P.T.O.

page 4 of 6

(a) Let M be a surface in the Euclidean space \mathbf{E}^3 . Let $\mathbf{e}, \mathbf{f}, \mathbf{n}$ be three vector fields defined on the points of this surface such that they form an orthonormal basis at any point, so that the vectors \mathbf{e}, \mathbf{f} are tangent to the surface and the vector \mathbf{n} is orthogonal to the surface. Consider the derivation formula

$$d\begin{pmatrix} \mathbf{e} \\ \mathbf{f} \\ \mathbf{n} \end{pmatrix} = \begin{pmatrix} 0 & a & b \\ -a & 0 & c \\ -b & -c & 0 \end{pmatrix} \begin{pmatrix} \mathbf{e} \\ \mathbf{f} \\ \mathbf{n} \end{pmatrix},$$

where a, b and c are 1-forms on the surface M.

Express the mean curvature and the Gaussian curvature of M in terms of these 1-forms and vector fields.

Show that $da + b \wedge c = 0$.

[6 marks]

(b) Consider the surface of a saddle in Euclidean space \mathbf{E}^3 ,

$$\mathbf{r}(u,v): \quad \begin{cases} x = u \\ y = v \\ z = kuv \end{cases} \quad k \text{ is a parameter, } k \neq 0.$$

Find vector fields $\mathbf{e}, \mathbf{f}, \mathbf{n}$ defined at the points of the saddle such that they form an orthonormal basis at any point, the vectors \mathbf{e}, \mathbf{f} are tangent to the surface and the vector \mathbf{n} is orthogonal to the surface.

For the obtained orthonormal basis $\{\mathbf{e}, \mathbf{f}, \mathbf{n}\}$ calculate the vector 1-forms $d\mathbf{e}, d\mathbf{f}, d\mathbf{n}$ and the 1-forms a, b and c at the point \mathbf{p} with coordinates u = v = 0.

Deduce from these calculations the Gaussian curvature of the saddle at the point **p**.

[8 marks]

(c) Consider a surface M in \mathbf{E}^3 with local coordinates (u, v) such that the induced metric of this surface is equal to $G = \sigma(u, v)(du^2 + dv^2)$.

Write down the formula expressing Gaussian curvature of this surface in terms of the function $\sigma(u, v)$. (You do not need to prove this formula.)

Let $\sigma(u, v) = \frac{1}{v^2}$. Calculate the Gaussian curvature of this surface and explain why this surface is not locally Euclidean.

[6 marks]

P.T.O.

page 5 of 6

The following question is compulsory.

5.

(a) Give a definition of curvature tensor of an affine connection.

Deduce the expression for the components of the curvature tensor in terms of the Christoffel symbols.

Consider 2-dimensional Riemannian manifold (M, G) with Riemannian metric $G = e^{-ax^2 - by^2}(dx^2 + dy^2)$, where a, b are parameters.

Calculate the component R_{1212} of the Riemann curvature tensor at the point x = y = 0 of this manifold.

[10 marks]

(b) Let $M: \mathbf{r} = \mathbf{r}(u, v)$ be a surface in \mathbf{E}^3 with induced Riemannian metric $G = \sigma(u, v)(du^2 + dv^2)$.

Using the derivation formulae deduce the expression for the Gaussian curvature of the surface M via the function $\sigma(u, v)$.

Give an example of a surface M': $\mathbf{r}' = \mathbf{r}'(u, v)$ such that the induced Riemannian metric on this surface is $G' = \lambda \sigma(u, v)(du^2 + dv^2)$, where λ is a constant ($\lambda > 0$).

What is the relation between Gaussian curvature of surfaces M' and M?

[10 marks]

page 6 of 6

END OF EXAMINATION PAPER