THE UNIVERSITY OF MANCHESTER

RIEMANNIAN GEOMETRY

20 May 2016
14:00-17:00

ANSWER ANY THREE OF QUESTIONS 1-4
If you answer more questions then the marks from the three best solutions will be used.
YOU HAVE TO ALSO ANSWER QUESTION 5
All questions are worth 20 marks

Electronic calculators may not be used
P.T.O.
page 1 of 6
1.
(a) Explain what is meant by saying that G is a Riemannian metric on a manifold M.

Consider the plane \mathbf{R}^{2} with standard coordinates (x, y) equipped with Riemannian metric $G=\sigma(x, y)\left(d x^{2}+d y^{2}\right)$.
Explain why $\sigma(x, y)>0$.
Let \mathbf{A} and \mathbf{B} be two arbitrary vectors attached at some point of this plane. Explain why the cosine of the angle between these vectors does not depend on a choice of a function $\sigma(x, y)$.

In the plane with the metric G as above, consider the circle C defined by the equation $x^{2}+y^{2}=R^{2}$ and calculate its length in the case $\sigma(x, y)=e^{-x^{2}-y^{2}}$.
[8 marks]
(b) Consider the plane \mathbf{R}^{2} with standard coordinates (x, y) equipped with Riemannian metric $G=e^{-x^{2}-y^{2}}\left(d x^{2}+d y^{2}\right)$.
Write down the formula for the area element in this metric in coordinates (x, y) and in polar coordinates $(r, \varphi)(x=r \cos \varphi, y=r \sin \varphi)$.
Calculate the area of the disc, $x^{2}+y^{2} \leq R^{2}$ (in the given metric).
In the case when $R=1$ give an example of another metric $G^{\prime}=\sigma(x, y)\left(d x^{2}+d y^{2}\right)$ such that the area of the disc $x^{2}+y^{2} \leq 1$ will be the same as for the metric G.
(c) Explain what is meant by saying that a Riemannian manifold is locally Euclidean.

Consider in Euclidean space \mathbf{E}^{3} the surface

$$
\left\{\begin{array}{l}
x=3 h \cos \varphi \\
y=3 h \sin \varphi \quad, \quad h>0, \quad 0 \leq \varphi<2 \pi \\
z=h
\end{array}\right.
$$

(the upper sheet of the cone).
It is known that the induced Riemannian metric on this surface is given by the formula $G=10 d h^{2}+9 h^{2} d \varphi^{2}$.
Show that this surface is locally Euclidean.

2.

(a) Explain what is meant by an affine connection on a manifold.

Let ∇ be an affine connection on a 2-dimensional manifold M in local coordinates (u, v). It is known that $\nabla_{\frac{\partial}{\partial u}}\left(u \frac{\partial}{\partial u}\right)=\frac{\partial}{\partial u}+u \frac{\partial}{\partial v}$.
Calculate the Christoffel symbols $\Gamma_{u u}^{u}$ and $\Gamma_{u u}^{v}$.
(b) Explain what is meant by the induced connection on a surface in Euclidean space.

Consider a sphere in \mathbf{E}^{3} :

$$
\mathbf{r}(\theta, \varphi):\left\{\begin{array}{l}
x=R \sin \theta \cos \varphi \\
y=R \sin \theta \sin \varphi \\
z=R \cos \theta
\end{array}\right.
$$

Let ∇ be the induced connection on the sphere.
Calculate the Christoffel symbols $\Gamma_{\theta \varphi}^{\theta}, \Gamma_{\theta \varphi}^{\varphi}, \Gamma_{\varphi \theta}^{\theta}$ and $\Gamma_{\varphi \theta}^{\varphi}$.
(c) Give a detailed formulation of the Levi-Civita Theorem. In particular write down the expression for the Christoffel symbols $\Gamma_{k m}^{i}$ in terms of a Riemannian metric $G=$ $g_{i k}(x) d x^{i} d x^{k}$.
Consider the open disc $u^{2}+v^{2}<1$ with the Riemannian metric

$$
G=\frac{4\left(d u^{2}+d v^{2}\right)}{\left(1-u^{2}-v^{2}\right)^{2}},
$$

(Poincaré disc).
Show that all Christoffel symbols of the Levi-Civita connection of this Riemannian manifold vanish at the point $u=v=0$.

Let ∇^{\prime} be a symmetric connection on the Poincaré disc such that all Christoffel symbols of this connection in coordinates (u, v) vanish identically (at all points).
Show that the connection ∇^{\prime} does not preserve the metric of the Poincaré disc.
(You may wish to consider the vector field $\mathbf{A}=\frac{\partial}{\partial u}$.)
P.T.O.

3.

(a) Let (M, G) be a Riemannian manifold.

Let C be a curve on M starting at the point \mathbf{p}_{1} and ending at the point \mathbf{p}_{2}.
Explain what is meant by the parallel transport P_{C} along the curve C.
Explain why the parallel transport P_{C} is a linear orthogonal operator.
Let the points \mathbf{p}_{1} and \mathbf{p}_{2} coincide, so that C is a closed curve.
Let a be a tangent vector at the point \mathbf{p}_{1}, and $\mathbf{b}=P_{C}(\mathbf{a})$.
Suppose that $P_{C}(\mathbf{b})=-\mathbf{a}$.
Show that vectors \mathbf{a} and \mathbf{b} are orthogonal to each other.
(b) Write down the differential equation for geodesics of a Riemannian manifold in terms of Christoffel symbols.

Explain the relation between the Lagrangian of a free particle on a Riemannian manifold and the differential equations for geodesics.

Calculate the Christoffel symbols on the Lobachevsky plane.
(You may use the Lagrangian of a free particle on the Lobachevsky plane $L=\frac{1}{2} \frac{\dot{x}^{2}+\dot{y}^{2}}{y^{2}}$.)
(c) Explain why great circles are geodesics on a sphere in \mathbf{E}^{3}.

On the unit sphere $x^{2}+y^{2}+z^{2}=1$ in \mathbf{E}^{3} consider the curve C defined by the equation $\cos \theta-\sin \theta \sin \varphi=0$ in spherical coordinates.

Show that in the process of parallel transport along the curve C an arbitrary tangent vector to the curve remains tangent to the curve.
4.
(a) Let M be a surface in the Euclidean space \mathbf{E}^{3}. Let $\mathbf{e}, \mathbf{f}, \mathbf{n}$ be three vector fields defined on the points of this surface such that they form an orthonormal basis at any point, so that the vectors \mathbf{e}, \mathbf{f} are tangent to the surface and the vector \mathbf{n} is orthogonal to the surface. Consider the derivation formula

$$
d\left(\begin{array}{c}
\mathbf{e} \\
\mathbf{f} \\
\mathbf{n}
\end{array}\right)=\left(\begin{array}{ccc}
0 & a & b \\
-a & 0 & c \\
-b & -c & 0
\end{array}\right)\left(\begin{array}{c}
\mathbf{e} \\
\mathbf{f} \\
\mathbf{n}
\end{array}\right),
$$

where a, b and c are 1 -forms on the surface M.
Express the mean curvature and the Gaussian curvature of M in terms of these 1-forms and vector fields.
Show that $d a+b \wedge c=0$.
(b) Consider the surface of a saddle in Euclidean space \mathbf{E}^{3},

$$
\mathbf{r}(u, v):\left\{\begin{array}{l}
x=u \\
y=v \\
z=k u v
\end{array} \quad . \quad k \text { is a parameter }, k \neq 0\right.
$$

Find vector fields $\mathbf{e}, \mathbf{f}, \mathbf{n}$ defined at the points of the saddle such that they form an orthonormal basis at any point, the vectors \mathbf{e}, \mathbf{f} are tangent to the surface and the vector \mathbf{n} is orthogonal to the surface.
For the obtained orthonormal basis $\{\mathbf{e}, \mathbf{f}, \mathbf{n}\}$ calculate the vector 1-forms $d \mathbf{e}, d \mathbf{f}, d \mathbf{n}$ and the 1 -forms a, b and c at the point \mathbf{p} with coordinates $u=v=0$.
Deduce from these calculations the Gaussian curvature of the saddle at the point \mathbf{p}.
[8 marks]
(c) Consider a surface M in \mathbf{E}^{3} with local coordinates (u, v) such that the induced metric of this surface is equal to $G=\sigma(u, v)\left(d u^{2}+d v^{2}\right)$.
Write down the formula expressing Gaussian curvature of this surface in terms of the function $\sigma(u, v)$. (You do not need to prove this formula.)

Let $\sigma(u, v)=\frac{1}{v^{2}}$. Calculate the Gaussian curvature of this surface and explain why this surface is not locally Euclidean.

The following question is compulsory.

5.

(a) Give a definition of curvature tensor of an affine connection.

Deduce the expresssion for the components of the curvature tensor in terms of the Christoffel symbols.

Consider 2-dimensional Riemannian manifold (M, G) with Riemannian metric $G=e^{-a x^{2}-b y^{2}}\left(d x^{2}+d y^{2}\right)$, where a, b are parameters.

Calculate the component R_{1212} of the Riemann curvature tensor at the point $x=y=0$ of this manifold.
[10 marks]
(b) Let $M: \mathbf{r}=\mathbf{r}(u, v)$ be a surface in \mathbf{E}^{3} with induced Riemannian metric $G=$ $\sigma(u, v)\left(d u^{2}+d v^{2}\right)$.
Using the derivation formulae deduce the expression for the Gaussian curvature of the surface M via the function $\sigma(u, v)$.

Give an example of a surface $M^{\prime}: \mathbf{r}^{\prime}=\mathbf{r}^{\prime}(u, v)$ such that the induced Riemannian metric on this surface is $G^{\prime}=\lambda \sigma(u, v)\left(d u^{2}+d v^{2}\right)$, where λ is a constant $(\lambda>0)$.

What is the relation between Gaussian curvature of surfaces M^{\prime} and M ?

