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SECTION A

Answer ALL FOUR questions

A1.

(a) Explain what is meant by saying that G is a Riemannian metric on a manifold M .

(b) Let G be a Riemannian metric on a 2-dimensional manifold M such that in local coordinates (u, v)

G = ||gαβ|| =
(
A(u, v) B(u, v)
C(u, v) D(u, v)

)
,

where A(u, v), B(u, v), C(u, v), D(u, v) are smooth functions.
Show that C(u, v) ≡ B(u, v) and A(u, v) > 0, D(u, v) > 0.

(c) Show that det ||gαβ|| 6= 0.

[10 marks]
Students had no problems with first and second subquestions. Just some answers on the subquestion

a) was incomplete.
Some students did not give correct answer on the subquestion c). A point is that condition det ||gαβ|| =

0 implies that in this case the matrix has non-zero eigen vector X with eigenvalue 0. Hence

X : X 6= 0 , and G(X,X) = 0

This contradicts to positive definitness of the scalar product.
One student gave just explicit construction. The solution suggested by this student is the following.

Let ||gαβ|| =
(
A B
B D

)
Consider vector X =

(
B
−A

)
. We have that X 6= 0 and on the other hand

〈X,X〉 = (B,−A)

(
A B
B D

)(
B
−A

)
= A(AD −B2) .

We see that if det ||g|| = 0 then for the non-zero vector X the condition of positive definitness is not
fullfiled. Beautiful solution. Is not it?

A2.

(a) Explain what is meant by a Riemannian manifold being locally Euclidean.

(b) Consider the surface of the cylinder x2 + y2 = 9 in E3

r(h, ϕ) :


x = 3 cosϕ

y = 3 sinϕ

z = h

,−∞ < h <∞ , 0 ≤ ϕ < 2π

Calculate the Riemannian metric G on this surface induced by the Euclidean metric in E3 in coor-
dinates (h, ϕ).
Show that the surface of the cylinder is locally Euclidean by giving an example of local coordinates
(u, v), which are Euclidean coordinates.
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(c) Give an example of other coordinates (ũ, ṽ) such that these coordinates are also Euclidean coordi-
nates.

[10 marks]
I am happy that this question was answered good. No special problems. In particular almost all

students (except few) gave an example of another local Euclidean coordinates ũ, ṽ The standard answer
was that these new coordinates differ from initial by translation. One or two students, ”rotated” initial
coordinates: (

ũ
ṽ

)(
cos θ sin θ
− sin θ cos θ

)(
ũ
ṽ

)
,

where θ is some angle.

Just one remark on the bookwork subquestion a):
An n-dimensional Riemannian manifold (M,G) is locally Euclidean Riemannian manifold, if in a

vicinity of every point p there exist local coordinates u1, . . . , un such that Riemannian metric G in these
coordinates has an appearance

G = duiδikdu
k = (du1)2 + · · ·+ (dun)2 .

Some students answering this subquestion did not emphasize that Euclidean coordinates (u1, . . . , un)
here are local coordinates, they are defined in a vicinity of an arbitrary point.

A3.

(a) Explain what is meant by an affine connection on a manifold.

(b) Let ∇ be an affine connection on a manifold M . Show that for arbitrary vector fields X and Y and
for an arbitrary function f ,

e−f∇X

(
efY

)
= (∂Xf)Y +∇XY .

(c) Explain what is meant by a canonical flat connection on Euclidean space En.
Calculate the Christoffel symbols Γrrr and Γrϕϕ of the canonical flat connection in the Euclidean
space E2, where r, ϕ are polar coordinates (x = r cosϕ,y = r sinϕ).

[15 marks]
Students answered well the subquestions a) and b).
The subquestion c) induces some problems. They are the following:
i) defining canonical flat connection on Euclidean space it is very important to note that the Christoffel

symbols vanish in Cartesian coordinates. It is not the full answwer to say that Christoffel symbols
vanish just in some coordinates.

ii) It was expected the following solution for calculating the Christofel symbols for canonical connection
in polar coordinates: Since canonical Christoffel symbols of canonical flat connection vanish in Cartesian
coordinates, hence

Γrrr =
∂2x

∂r2
∂r

∂x
+
∂2y

∂r2
∂r

∂y
= 0 , since ∂2x

∂r2
= ∂2y

∂r2
= 0
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and

Γrϕϕ =
∂2x

∂ϕ2

∂r

∂x
+
∂2y

∂ϕ2

∂r

∂y
= −r cosϕ

x

r
− r sinϕ

y

r
= −r cos2 ϕ− r sin2 ϕ = −r

Many students who calculated the Christoffel symbols Γrrr and Γrϕϕ did it in another way using Levi-Civita
formula(see the discussion of the question B6 below). In the case if these calculations were right, they
received the full credit 1.

A4.

(a) State the relation between the Riemannian curvature tensor of the Levi-Civita connection of a surface
in E3 and its Gaussian curvature.

(b) Consider in E3 the surface of the saddle z = kxy (k 6= 0):

r(u, v) :


x = u

y = v

z = kuv

, −∞ < u, v <∞

Using the shape operator calculate the Gaussian curvature at the point p of the saddle with coor-
dinates x = y = z = 0.
Calculate the scalar curvature R of the Riemannian curvature tensor of the induced Riemannian
metric on the saddle at the point p.

(c) Explain why the saddle is not a locally Euclidean surface.

[15 marks]
This question is not difficult, and it is bookwork question, in spite of this students did not answer it

in full details.
The answer on subquestion a) is the following:
Let M be a surface in E3, K be Gaussian curvature, ||gαβ|| induced Riemannian metric, Rikmn—

Riemann curvature tensor of Levi-Civita connection, R—scalar curvature of this tensor. Then

R

2
=
R1212

det g
= K .

Almost all students gave only partial answer on this easy bookwork question.
The answer subquestion b) is described in detail in lecture notes, however only few students delivered

detailed calculations for shape operator.

1in spite of the fact that it has to be proved that the answer has to be the same
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SECTION B

Answer TWO of the three questions

B5.

(a) Consider the stereographic projection of the sphere x2 + y2 + z2 = 1 (without the north pole) on
the plane R2: (u, v) are standard coordinates on R2 and for arbitrary point (x, y, z) on the sphere
except the point z = 1, {

u = x
1−z

v = y
1−z

,


x = 2u

u2+v2+1

y = 2v
u2+v2+1

z = u2+v2−1
u2+v2+1

. (B5a)

The metric

G =
4(du2 + dv2)

(u2 + v2 + 1)2
, (B5b)

is induced on the plane R2 from the metric on the sphere by the stereographic projection.
Calculate the total area of R2 with respect to the Riemannian metric (B5b).

(b) Let C be the intersection of the sphere with the plane z = x.
Let C ′ be the image of the curve C under the stereographic projection.
Show that C ′ is a circle.

(c) The curve C ′ divides the plane R2 into two domains. Find the areas of these domains of R2 with
respect to the Riemannian metric (B5b).

[20 marks]
This was not easy question.
You may answer subquestion a) in two different ways
a) Calculate explicitly the area of the plane with induced metric (B5 b):

=

∫
R2

√
det gdudv =

∫
R2

√(
4

(1 + u2 + v2)2

)2

dudv =

∫
R2

4

(1 + u2 + v2)2
dudv =

∫
R2

4

(1 + r2)2
rdrdϕ = 2π

∫ ∞
0

2dz

(1 + z)2
= −4π

1

1 + z

∣∣∞
0

= 4π, .

(see the lecture notes for detailes of this calculation)
b) just note that stereographic projection is isometry, hence the area of plane with induced metric

(B5b) has to be equal to the area of sphere (without North pole) of radius 1, i.e. it is equal to 4π2.
Here the straightforward solution is not terribly longer than the second solution (compare with answer

on subquestion c) below).

The subquestion b) was not difficult: the fact that the curve C ′ is a circle follows from equations
(B5a):

z = x⇔ u2 + v2 − 1

u2 + v2 + 1
=

2u

u2 + v2 + 1
⇔ u2 + v2 − 1 = 2u⇔ (u− 1)2 + v2 = 1

2removing a point does not change area
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thus we see that C ′ is a circle of radius 1 with centre at the point u = 1, v = 0.

The subquestion c) was the most difficult subquestion of this question: just naive brute force straight-
forward calculations of integral∫

(u−1)2+v2≤1

√
detGdudv =

∫
(u−1)2+v2≤1

4dudv

(u2 + v2 + 1)2
dudv .

are not succesfull3.
On the other hand answer on this question can be obtained by the following beautiful and short

consideration: the stereographic projection is isometry of the sphere of unit radius (without the north
pole) on the plane with metric (B5a). The interior of the circle C ′ is the image of the halph sphere since
the curve C is the great circle, and this great circle dissects the sphere on two hemispheres: Hence its
area in metric (B5a) is equal to

area of interior of C ′ =
area of unit sphere

2
=

4π

2
= 2π.

B6.

(a) Give a detailed formulation of the Levi-Civita Theorem. In particular write down the expression
for the Christoffel symbols Γikm of the Levi-Civita connection in terms of the Riemannian metric
G = gik(x)dxidxk.

(b) Consider sphere of radius R in stereographic coordinates. It is equipped with metric

G =
4R4(du2 + dv2)

(R2 + u2 + v2)2
. (B6a)

Show that Christoffel symbols of Levi-Civita connection ∇ vanish at the point u = v = 0 in
coordinates (u, v).

(c) Consider on the sphere a connection ∇̃ such that the Riemannian metric (B6a) is invariant with
respect to this connection, and the Christoffel symbols Γ̃uvv and Γ̃vuu of the connection ∇̃ vanish at
all points (u, v).
Show that the connection ∇̃ does not coincide with the Levi-Civita connection ∇.
Does it contradict to Levi-Civita Theorem that the Riemannian metric (B6a) is invariant with respect
to two different connections?
Justify the answer.

[20 marks]
The full answer on subquestion a) is something like this:
Let M be a Riemannian manifold with metric G = gikdx

idxk. Let ∇ be a symmetric connection on
M , i.e. its Christophel symbols Γmik satisfies the condition: Γmik = Γmki. We say that symmetric connection

3this integral can be calculated but this needs the special technique and what is very important during exam, it needs
the time!
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∇ is Levi Civita connection if it preserves scalar product, i.e. if for arbitrary vectors Y,Z at an arbitrary
point

∂X < Y,Z >=< ∇X (Y) ,Z > + < Y,∇X (Z) > . (B6b)

Levi-Civita Theorem claims that on the Riemannian manifold (M,G) there exists uniquely defined Levi
Civita connection. In local coordinates Christoffel symbols of this connection have the following appear-
ance:

G = gikdx
idxk ⇒ Γmik(x) =

1

2
gmn(x)

(
∂gin(x)

∂xk
+
∂gkn(x)

∂xi
− ∂gik(x)

∂xn

)
. (B6c)

Almost all students answered this subquestion, however many students answered it incompletely, in
spite of the fact that this is bookwork question. In particular, this is very important the uniqueness:
there is unique symmetric connection ∇ which preserves scalar product. This part of Levi-Civita Theorem
is very important.

The answer on subquestion b) follows from Levi-Civita formula (B6c). Namely for Riemannian metric
The derivatives of Riemannian metric vanish at the point u = v = 0. Indeed we have that

G = σ(du2 + dv2) , ||gαβ|| =
(
σ 0
0 σ

)
,where σ =

4R2

(1 + u2 + v2)
, (B6d)

hence for example
∂guu
∂v

∣∣
u=v=0

=
∂σ

∂v

∣∣
u=v=0

=
−2 · 4R2 · 2v
(1 + u2 + v2)

∣∣
u=v=0

= 0 .

Hence according to formula (B6,2) all Christoffel symbols vanish at the point u = v = 0 in stereographic
coordinates.

Many students solved this subquestion. On the other hand some students came to the conclusion
using the following ”consideration”: Riemannian metric G is constant at the origin, hence

due to equation (B6c) Christoffel symbols vanish at the origin. This is wrong considera-
tion! the sentence

the metric is constant at the given point

is senseless!
(This fact was carefully discussed during tutorials).

Now about last subquestion. It was may be the most difficult question of exam.
Denote by Γ̃uuu,Γ

u
uv, . . . , Γ̃

v
vv Christoffel symbols of the connection ∇̃. Consider preservation of scalar

products (B6a) by the connection ∇̃. We have that 〈∂u, ∂u〉 = 〈∂v, ∂v〉 = σ, 〈∂u, ∂v〉 = 0 hence due to
equation (B6b)

0 = ∂u〈∂u, ∂v〉 = 〈∇̃u∂u, ∂v〉+ 〈∂u, ∇̃u∂v〉 = Γ̃vuu〈∂v, ∂v〉+ Γ̃uuv〈∂u, ∂u〉 =

Γ̃vuuσ + Γ̃uuvσ ⇒ Γ̃uuv ≡ 0 , since Γ̃vuu ≡ 0 ,

and on the other hand

∂vσ = ∂v〈∂u, ∂u〉 = 2Γ̃uvuσ ⇒ Γ̃uvu =
1

2
∂v log σ 6≡ 0 .

i.e. connection ∇̃ is not symmetric: 0 ≡ Γ̃uuv 6= Γ̃uvu.
We see that connection ∇ is not symmetric, hence it does not coincide with symmetric Levi-Civita

connection ∇.
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The existence of the non-symmetric connection which preserves scalar metric does not contradict to
Levi-Civita theorem, which says about uniqueness of symmetirc connection which preserves the scalar
metric.

Compare it with non-symmetric connection in E3 which preserves scalar product (see the question 7 in Cousework).

B7.

(a) Let (M,G) be a Riemannian manifold, let C be a curve on M starting at the point p1 and ending
at the point p2.
Explain what is meant by parallel transport PCp1p2

along the curve C.

(b) Show that in the case that p1 = p2 = p (C is a closed curve), then PCp1p2
= PCp is an orthogonal

operator in the tangent space TpM .

(c) Let M be the sphere x2 + y2 + z2 = R2 in E3 with induced Riemannian metric, and let the curve C
on M be an intersection of the sphere with a plane x+ z = R. Take the point p = (R, 0, 0) on the
curve C and consider vectors Y = ∂

∂y
and Z = ∂

∂z
which are tangent to the sphere at the point p.

Find the result of the parallel transport of these vectors along the closed curve C.

[20 marks]
The last question was not easy, however it was in some sence ‘predictable’. The subquestions a) b)

were carefully analyzed in lecture notes.
To answer subquestion c) you have to note that the plane x + z = R dissects from the sphere the

segment. Area of the segment is equal to
S = 2πRh , (B7a)

where h is the height of the segment. One can see that the distance from origin till plane z + x = R is
equal to R

√
2

2
, hence the height of the segment is equal to h = R− R

√
2

2
and area of the segment is equal

to

S = 2πRh = 2πR2

(
1−
√

2

2

)
. (B7b)

(see for details the last formula in subsection 1.5.2. in Lecture notes)
According to the Theorem on parallel transport every vector rotates on the angle

∠Φ =

∫
D

Kdσ =
1

R2
S(D) =

1

R2
2πR2

(
1−
√

2

2

)
= π(2−

√
2) . (B7c)

If one calculates the angle of rotation, then one can easy deduce that the result of paralel transport is

PC

(
Y
Z

)
=

(
cos Φ − sin Φ
sin Φ cos Φ

)(
Y
Z

)
,

where Φ is given by equation (B7c).
This question was not answered succesfully in spite of the fact that tit is not very difficult. Paradoxially

maybe the most difficult part was to use the formula (B7a) 4 which belongs to elementary mathematics.

4it is not worthless to note that many years ago the formula (B7a) was just the part of school mathematics
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